
Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Masterarbeit im Fach Technische Informatik 14. Juni 2023

Synthesis of Optimized AUTOSAR Embedded Systems:
Automated System-Call Specialization and Lock Elision
on Multicore Applications as a Whole-System Approach

Andreas Kässens

Please cite as:
Andreas Kässens, “Synthesis of Optimized AUTOSAR Embedded Systems: Automated System-
Call Specialization and Lock Elision on Multicore Applications as a Whole-System Approach”
Master’s Thesis, Leibniz Universität Hannover, Institut für Systems Engineering, June 2023.

www.sra.uni-hannover.de

Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System und Rechnerarchitektur
Appelstr. 4 · 30167 Hannover · Germany

https://www.sra.uni-hannover.de

Synthesis of Optimized AUTOSAR Embedded Systems:
Automated System-Call Specialization and Lock Elision on

Multicore Applications as a Whole-System Approach

Masterarbeit im Fach Technische Informatik

vorgelegt von

Andreas Kässens

geb. am 18. Oktober 1995
in Papenburg

angefertigt am

Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Fakultät für Elektrotechnik und Informatik
Leibniz Universität Hannover

Erstprüfer: Prof. Dr.-Ing. habil. Daniel Lohmann
Zweitprüfer: Prof. Dr.-Ing. Bernardo Wagner

Betreuer: Björn Fiedler, M.Sc.
Gerion Entrup, M.Sc.

Beginn der Arbeit: 14. Dezember 2022
Abgabe der Arbeit: 14. Juni 2023

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third
parties. I certify that the work has not been submitted in the same or any similar form for
assessment to any other examining body and all references, direct and indirect, are indicated as
such and have been cited accordingly.

(Andreas Kässens)
Hannover, 14. Juni 2023

A B S T R A C T

Embedded real-time systems in safety-critical areas, such as in the automotive and aerospace
industries, have particularly high software requirements regarding safety and reliability. In
the automotive sector, the operating system standard AUTomotive Open System ARchitecture
(AUTOSAR) has been established as a common basis among manufacturers and suppliers to
meet these criteria. With priority-based real-time scheduling and static configuration, AUTOSAR-
compliant operating systems are well suited for deployment in real-time systems. However,
there is an aim to further optimize these software systems to improve their non-functional
characteristics, including dependability, memory consumption, and runtime delays.

In this thesis, I present the development of the Multicore AUTOSAR Compatible Application-
specific Whole-system-optimizer (MACAW) system generator that supports the key interfaces of
the AUTOSAR operating system specification. Using the Automated Real-time system Analyzer
(ARA) framework, previous work developed the MultiSSE, a static code analysis to obtain
a graph enumerating and connecting all possible system states. By automatically detecting
certain interaction patterns between operating system objects in this graph, the performance
of operating system calls can be optimized. Costly actions such as Inter-Processor Interrupts
(IPIs) or spinlock operations can be eliminated if they do not affect subsequent system states.
Spinlock operations that are never executed by two processor cores simultaneously can be
omitted without affecting functionality, and IPIs that do not affect scheduling on the target core
can be skipped.

MACAW is implemented as the synthesis step within the ARA framework for real-time appli-
cations and currently supports the POSIX platform. At compile time, the detected optimizations
will be automatically applied to a specialized system call variant for each call site. Evaluation of
available test applications shows that about 28 % of the affected cross-core system calls can be
optimized. In particular, the avoidance of IPIs leads to a measurable reduction in delays and
jitter.

v

KU R Z FA S S U N G

Eingebettete Echtzeitsysteme in sicherheitskritischen Bereichen, wie beispielsweise in der
Automobil- und Luftfahrtindustrie, stellen besonders hohe Softwareanforderungen bezüglich
Betriebssicherheit und Zuverlässigkeit. Im Automobilsektor wurde der Betriebssystemstandard
AUTOSAR als gemeinsame Basis zwischen Herstellern und Zulieferern etabliert, um diese Krite-
rien zu erfüllen. Mit prioritätsbasiertem Echtzeit-Scheduling und statischer Konfiguration sind
AUTOSAR-konforme Betriebssysteme für die Anwendung in Echtzeitsystemen gut geeignet. Wei-
terhin gibt es das Bestreben, diese Softwaresysteme zu optimieren, um ihre nicht-funktionalen
Eigenschaften einschließlich Zuverlässigkeit, Speicherverbrauch und Laufzeitverzögerungen zu
verbessern.

In dieser Arbeit stelle ich die Entwicklung des MACAW-Systemgenerators vor, der die wich-
tigsten Schnittstellen der AUTOSAR-Betriebssystemspezifikation unterstützt. Mithilfe des ARA-
Frameworks wurde in bisherigen Arbeiten mit der MultiSSE eine statische Codeanalyse ent-
wickelt, um einen Graphen, der alle möglichen Systemzustände aufzählt und verknüpft, zu
erhalten. Durch die automatische Erkennung bestimmter Interaktionsmuster zwischen Betriebs-
systemobjekten in diesem Graphen kann die Ausführungsgeschwindigkeit von Betriebssystemauf-
rufen optimiert werden. Teure Aktionen wie IPIs oder Spinlock-Operationen können eliminiert
werden, falls sie keine Auswirkungen auf nachfolgende Systemzustände haben. So können
Spinlock-Operationen, die nie von zwei Prozessorkernen gleichzeitig ausgeführt werden, oh-
ne Beeinträchtigung der Funktionalität ausgelassen werden, und IPIs, die sich nicht auf das
Scheduling auf dem Zielkern auswirken, können übersprungen werden.

MACAW ist als ein Syntheseschritt innerhalb des ARA-Frameworks für Echtzeitanwendun-
gen implementiert und unterstützt derzeit die POSIX-Plattform. Bei der Kompilierung werden
die ermittelten Optimierungen automatisch auf spezialisierte Systemaufruf-Varianten für jede
Aufrufstelle angewandt. Die Auswertung anhand von verfügbaren Testanwendungen zeigt, dass
etwa 28 % der betroffenen kernübergreifenden Systemaufrufe optimiert werden können. Insbe-
sondere die Vermeidung von IPIs führt zu einer messbaren Reduzierung von Verzögerungen und
Laufzeitschwankungen.

vii

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 Operating System Design . 3
2.2 Embedded Operating Systems . 4

2.2.1 Priority-Based Scheduling . 4
2.2.2 Multicore Systems . 5

2.3 OSEK and AUTOSAR Standards . 6
2.3.1 OSEK System Specification . 6
2.3.2 AUTOSAR Classic Platform . 8

2.4 POSIX on Linux . 10
2.5 Compiler and Code Toolchain . 11

2.5.1 LLVM Intermediate Representation . 12
2.5.2 Automatic Source Code Modification . 13
2.5.3 RTOS Specialization . 13

2.6 dOSEK System Analysis and Synthesis . 14
2.7 MultiSSE: Whole-System Analysis and Optimization with ARA 15
2.8 Related Work . 18

3 Architecture 19
3.1 Architecture and Framework . 19
3.2 AUTOSAR Kernel Libraries Implementation . 20
3.3 Code Generator Implementation . 25

3.3.1 IR Code Modification . 25
3.3.2 AUTOSAR OS Generation . 26
3.3.3 Architecture Specific Code . 27
3.3.4 Generic System Calls . 27
3.3.5 Specialized System Calls . 27

3.4 Conclusion . 31

4 Analysis 33
4.1 AUTOSAR Test Applications . 33

ix

Contents

4.2 Evaluation of the System Call Specialization . 35
4.2.1 Microbenchmarks . 35
4.2.2 Performance Impact Metrics . 36

4.3 Result Discussion . 38

5 Conclusion 39

Lists 41
List of Acronyms . 41
List of Figures . 43
List of Tables . 45
List of Listings . 47
Bibliography . 49

A IPI Test Application 53

B MACAW Generator Test Suite 55

C POSIX Microbenchmarks 59

x

1I N T R O D U C T I O N

In recent years, the complexity of embedded software systems, such as automotive control
systems, has increased rapidly. Next to traditional control units and infotainment systems,
advanced driver assistance systems and autonomous driving capabilities have become crucial
technologies in modern vehicles. Such real-time control applications require complex system
design and software architecture, and the automotive industry developed the AUTomotive Open
System ARchitecture (AUTOSAR) standards as a common framework for application reusability
and communication between control units. The (classic) AUTOSAR specification is based on the
predecessor Open Systems and their Interfaces for the Electronics in Motor Vehicles (german:
Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen, OSEK), targeted
at event-triggered real-time control systems with safety and deterministic execution as primary
targets [AUT]. An OSEK/AUTOSAR system is generated from the application code and a system
description, producing a single application-specific binary image [OSE04b].

Real-time control systems have very strict requirements regarding timing, such as task
deadlines and maximum delays [Coo17]. Therefore, Real-Time Operating Systems (RTOSs)
like AUTOSAR implement suitable scheduling policies, as well as mechanisms for resource
allocation and event-handling functionality. Extending OSEK, the AUTOSAR standard also
supports multicore systems and advanced protection features [AUT22].

With the high complexity of software systems and limited computational resources in em-
bedded devices, fulfilling the timing requirements is increasingly challenging for application
developers. Deploying more powerful processors for typical embedded applications is not de-
sirable due to additional costs, power consumption, or space requirements. To ensure optimal
performance and meet the safety goals, the automatic optimization of such complex software
systems is an important area for research. In addition to performance and response timing
improvements, RTOS optimizations can involve various other non-functional aspects, such as
energy consumption, memory footprint, or fault tolerance and dependability. One possible way
of enabling optimizations for RTOS systems is static code analysis of the complete software
system, including the application code and the operating system. Using the static system config-
uration of OSEK/AUTOSAR systems, knowledge about the runtime execution can be extracted
for system optimization already at system generation time.

By consideration of the AUTOSAR system call interface semantics, the MultiSSE whole-
system analysis in the Automated Real-time system Analyzer (ARA) project statically analyzes
interactions between system objects and collects them in a system state graph [EFL23]. This
state graph includes all possible states of the complete AUTOSAR system, including all cores,
their local states like current execution points, and the global system objects. In this thesis,
the implementation of an AUTOSAR system generator that can leverage this static knowledge

1

1 Introduction

to optimize cross-core system calls in multicore applications is presented. Building upon the
Dependability-Oriented Static Embedded Kernel (dOSEK) RTOS generator for OSEK systems as
a foundation, one key objective of this work is to optimize timing parameters like delay and jitter
to improve the system performance, reliability, and predictability. A generic implementation
of a system call may contain unnecessary overhead for certain call sites, depending on the
current system state. In such cases, specialized system call variants can minimize this overhead
in the kernel path to improve the timing behavior of the system call. Based on the system
analysis in ARA, this static application-specific specialization of AUTOSAR systems will be
applied automatically during the synthesis of the AUTOSAR system.

As a first step, I will extend dOSEK with multicore features like Inter-Processor Interrupts
(IPIs), locking mechanisms, and synchronization of cores. The AUTOSAR system generator must
be integrated into the ARA framework to access the analysis results. Next, the optimization of
system calls will be added and automatically applied during the AUTOSAR system generation.
To restrict the scope of this thesis, the implementation is limited to the POSIX platform, but a
modular software design allows porting to other architectures without code duplication. Finally,
I will evaluate the resulting RTOS generator regarding the implemented AUTOSAR features,
and measure the performance improvements of the optimizations.

2

2F U N DA M E N TA L S

2.1 Operating System Design

An operating system provides the interface for the user to interact with the computer hardware.
From the users’ perspective, one key task of operating systems is providing the possibility to
execute programs conveniently and efficiently. For applications, the operating system offers
abstractions that simplify the development process. In a system-level view, the operating system
is a software layer between the hardware and the applications. This layer manages the hardware
resources and multiplexes access to the hardware by virtualization. To ensure safety and security,
operating systems can isolate the applications and the system itself. Figure 2.1 provides an
overview of operating system components [Loh20]. The applications can access the abstracted
hardware and the operating system functionality using the system call interface [SGG18].

Applications

System call interface

Device drivers

Interrupt synchronisation

Inter-process communication

Interrupt handling

Process management

Control flow abstraction

Hardware

Figure 2.1 – Operating system components between applications and hardware [Loh20,
adapted]

Due to hardware-specific dependencies, some components of operating systems require
platform-specific adaptations. An important design objective for operating systems is to ensure
portability to simplify the adaption to new hardware platforms. Operating systems with modular
designs abstract the hardware-specific details, allowing common functionality to be implemented
on top of these abstractions [SGG18]. General-purpose operating systems typically feature
a monolithic kernel, which provides all functionality like scheduling, file systems, memory

3

2.1 Operating System Design

management and device drivers inside this kernel. Next to other existing operating system
architectures like microkernels, a library operating system is another design concept that enables
specialized, efficiency-focused environments for single-application use cases. Similar to the
beginning of operating system design, the system image is compiled by linking the application
and system libraries together into a single binary, the system image [Sta18].

Multicore design and interrupt handling impose additional challenges to operating system
development. If concurrent tasks or interrupt handlers call the same function and access the
same shared memory, this can lead to unexpected and potentially hazardous behavior. Such
reentrancy issues can be addressed by careful design or with synchronization mechanisms to
ensure the safe execution of shared code [Coo17].

Operating system development involves many conflicting design goals, resulting in significant
variations in the architecture, features, or design principles for specific use cases. The follow-
ing section focuses on the requirements of multicore embedded operating systems regarding
scheduling and timing.

2.2 Embedded Operating Systems

Embedded operating systems are highly specialized software systems that run on embedded
devices, such as microcontrollers, Internet of Things (IoT) devices, and Electronic Control
Units (ECUs) in vehicles. Such devices are often tailored to their specific use case and have
limited hardware resources, such as main memory, computing power, or storage capacities.
Consequently, these constraints must be considered when developing an operating system for
embedded systems.

Since embedded systems typically have a single use case, all necessary operating system
interfaces are known at build time. In addition to functional requirements like interrupt-driven
events, mutual exclusion and synchronization between cores, RTOSs have many more non-
functional requirements like timing and response constraints. Furthermore, because of the
limited hardware resources, the usage of storage and main memory must be optimized to not
exceed the system’s capabilities. In contrast to general-purpose operating systems, unused code
can be automatically removed to reduce the image size, and the performance can be improved
through application-specific system optimizations. For the implementation of an AUTOSAR
kernel later in this work, the following subsections provide detailed elaboration on priority-based
scheduling for real-time use cases and multicore design concepts.

2.2.1 Priority-Based Scheduling

A key feature of event-driven embedded operating systems is their ability to support real-time
applications with specific timing requirements, such as fuel injection control units or robotic
systems. An RTOS shall be able to guarantee fixed deadlines and deterministic execution
sequences through scheduling decisions.

In a multitasking RTOS, the scheduler executes the tasks according to their priority. While
non-preemptive schedulers require cooperative multitasking, preemptive schedulers can suspend
the execution of one task in favor of a different task with higher priority [Aud+95]. In the
OSEK/AUTOSAR context, larger numbers are higher priorities [OSE05].

With resource sharing between tasks, the problem of priority inversion can occur. When a
low-priority task holds a resource that a critical high-priority task requires, the high-priority task
must wait until the low-priority task frees the resource. If another task with a higher priority

4

2.2 Embedded Operating Systems

than the resource-holding task becomes active, the critical task must wait for this other task to
terminate before the low-priority task can free the resource. This issue is particularly problematic
when multiple other tasks run before the highest-priority task can access the resource because
the low-priority task cannot free the resource yet, leading to a chained priority inversion.

The priority inversion problem can be mitigated by using priority inheritance or the Priority
Ceiling Protocol (PCP). The more commonly used PCP assigns a ceiling priority to system
resources, which is equal to the maximum priority of all tasks that contend for this resource.
When one task locks this resource, the PCP elevates the task’s dynamic priority to the ceiling
priority of that resource. After unlocking, the priority returns to the predefined task priority.
With this mechanism, tasks cannot be preempted by other tasks with lower or equal priority
compared to the resource, preventing the priority inversion problem and deadlocks [Coo17].

2.2.2 Multicore Systems

In a multicore system, one chip houses two or more computing cores. In a generic Symmetric
Multiprocessing (SMP) system, these cores are identical and can execute all tasks in the same
manner. However, the increase in processing power with each additional CPU core does not
scale linearly because of multiple factors. A shared bus system connects all CPU cores, and
access to the memory decreases the overall throughput. Figure 2.2 depicts a typical multicore
system with shared level 2 cache and local level 1 cache [SGG18]. If one core updates a word in
its own cache, the cache coherence mechanism notifies the other cores to prevent access to an
invalidated copy of the word [Sta18]. Interrupts in multicore systems are local to one core, and
if a core needs to communicate with another one, an IPI is required to trigger the rescheduling
on the receiving side. Along with the costs associated with interrupt handling, such as register
saving or cache invalidations, IPI transmission over the shared bus system causes additional
overhead, making IPIs a costly signaling mechanism.

Processor chip

Core0 Core1 Core2 Core3

registers registers registers registers

L1 cache L1 cache L1 cache L1 cache

L2 cache

main memory

Figure 2.2 – Multicore system with caching [SGG18, adapted]

Additionally, efficient application design for multicore systems is more complex and access to
shared resources must be serialized to prevent race conditions, leading to reduced throughput.
This serialization is commonly achieved through mutual exclusion (mutex) and the operating

5

2.2 Embedded Operating Systems

system provides locking primitives like spinlocks or semaphores for the applications. Because
spinlocks are actively waiting, they are typically only used for short critical sections where a
rescheduling operation including context switch would take up too much time. Alternatively to
using spinlocks as a mutex mechanism, passively waiting mutex concepts like binary semaphores
lead to a suspension of the thread until it can enter the critical section. All implementations of
multicore locking mechanisms require atomic operations, which are operations that cannot be
interrupted by other cores simultaneously because the shared bus is locked [SGG18]. Instead of
using higher-level locking mechanisms for variables, atomic operations can also be used directly,
for example, to synchronize a multithreaded counter [Sta18]. The programming language or
compiler intrinsics can support such operations and the compiler selects the correct atomic
instructions. On an x86 machine, atomic machine instructions have a lock prefix.

2.3 OSEK and AUTOSAR Standards

The OSEK standard is a set of specifications developed by a joint project of the automotive
industry called OSEK/VDX with the objective to standardize the system architecture for ECUs in
vehicles. In 2005, the project published the latest version of the real-time capable operating
system specification [OSE05].

The successor to the OSEK system specification in the automotive industry is driven by the
AUTOSAR Group, a global partnership of automobile manufacturers that aims to standardize
more system functions and functional interfaces. The AUTOSAR consortium has established two
platforms: the Classic and the Adaptive Platform, each for distinct target applications. While
the Adaptive Platform focuses on runtime services for high-performance control units used in
automated vehicles, the Classic Platform is designed to replace OSEK for embedded systems
with high requirements regarding predictability, safety, and responsiveness [AUT; AUT22].

This work is based on the Classic Platform, therefore following references to AUTOSAR always
relate to that specification. The first version of the AUTOSAR Operating System specification
was published in 2005 and has since been updated and extended continuously. AUTOSAR
adopts most of the OSEK specification and interfaces but adds additional functionality, including
support for multicore systems [AUT22].

2.3.1 OSEK System Specification

OSEK is a statically configured operating system using a priority-based scheduling policy. In
contrast to other embedded operating systems, OSEK does not allow dynamic memory man-
agement, hence it does not require a memory allocation mechanism or a heap. This design
decision simplifies the operating system architecture and mitigates software bugs at the expense
of reduced flexibility. By eliminating the handling of dynamic instances, a static system analysis
can rely solely on the static system configuration for optimization. The system generation
requires the static configuration to create static OS instances and their properties [OSE05].

The system is described using the OSEK Implementation Language (OIL), a text-based system
configuration that is generated into application-specific system code. Figure 2.3 describes the
development process of an OSEK system. The user-defined application code, the library operating
system kernel, and the generated system code are compiled together to form the complete system
image, as described in section 2.1 [OSE04b].

The Listing 2.1 and 2.2 provide an example of a small OSEK-conform system. The OIL excerpt
describes a Task with its scheduling properties and the related OS resources [OSE04b]. In the

6

2.3 OSEK and AUTOSAR Standards

Figure 2.3 – Application development example in OSEK [OSE04b]

application code, OSEK system calls like ActivateTask can be used to interact with the configured
OS objects.

1 TASK T0 {

2 PRIORITY = 1;

3 /* preemptable task */

4 SCHEDULE = FULL;

5 ACTIVATION = 1;

6 AUTOSTART = FALSE;

7 RESOURCE = R1;

8 };

9

10 ISR I0 {

11 CATEGORY = 2;

12 };

Listing 2.1 – OIL configuration

1 int main() {

2 StartOS (0);

3 }

4 Task(T0) {

5 GetResource(R1);

6 /* critical section */

7 ReleaseResource(R2);

8 TerminateTask ();

9 }

10 ISR2(I0) {

11 ActivateTask(T0);

12 }

Listing 2.2 – OSEK application

Automotive use cases have real-time system requirements for OSEK implementations. For
this reason, the OSEK specification provides the functionality required to support event-driven
systems [OSE05]. However, the standardized interfaces for operating system primitives, schedul-

7

2.3 OSEK and AUTOSAR Standards

ing policies, and priority mechanisms in OSEK do not cover all aspects of an operating system.
OSEK only provides framework conditions for the implementation of hardware abstraction and
interaction with devices.

The key system elements for control software in OSEK are Tasks. The scheduler manages and
switches the Tasks based on their activation state and priority. For synchronization between Tasks,
the OSEK specification defines Resource and Event mechanisms. Resources provide access control
for logic resources and devices and should be implemented using the PCP. With the Event system
services, different Tasks in the system can be synchronized. To support the aforementioned
event-driven systems, Interrupt Service Routines (ISRs) and Alarms based on Counters or Timers

are available. Actions triggered by an Alarm can be the activation of a new Task or the setting
of an Event. Calls to the OSEK system services return a StatusType variable, which can either be
E_OK or a coded error. The system configuration supports user-defined Hooks that are called on
certain events. In case of a system call error, a user-defined ErrorHook is called to handle the
error. Other user-defined hooks include a Pre/PostTaskHook for time tracing and debugging and
the Startup/ShutdownHook for system initialization and deinitialization. The OSEK specification
defines system services as Application Programming Interface (API) calls to C functions or
preprocessor macros, although other languages can be used for the system implementation as
long as they work with the C interface [OSE05]. In order to reduce the memory footprint for
small embedded devices, Basic Tasks can use a shared stack if they do not need a waiting state
for Events. Such Basic Tasks always run to completion or are preemptable by higher-priority tasks
but do not have a waiting state for Events, making stack sharing possible [DL18]. On the other
hand, Extended Tasks can use the Event services but require a separate stack, resulting in a larger
system image.

An additional OSEK standard defines sender/receiver-based communication for data transfer
between tasks and interrupt service routines in ECUs [OSE04a].

2.3.2 AUTOSAR Classic Platform

In general, AUTOSAR adapts most of the OSEK system design, system service interfaces, and
scheduling mechanisms. Although the API is backward compatible with OSEK, AUTOSAR dis-
continued the system configuration with OIL and proposed AUTOSAR XML (ARXML). However,
to support both OSEK and AUTOSAR, most vendor implementations provide an import and
conversion tool for OIL. AUTOSAR adapts and extends some OSEK system services to support
multicore systems and adds new services. Tasks are bound to specific cores by static configuration
and cannot be reassigned dynamically to other cores. The advantage of this approach is that
scheduling on each core can be performed independently, without the need for shared waiting
queues and locking. Some OSEK system services such as Interrupt enabling or disabling, as
well as Resources and Timers, are explicitly limited to core-local usage, while other services are
extended for multicore support. In multicore systems, Resources implemented using the PCP are
insufficient to enforce mutually exclusive access to critical sections between concurrent tasks on
different cores. For this purpose, AUTOSAR introduces Spinlocks, which are busy waiting locks
to enable sequential access to these sections. AUTOSAR specifies checks to prevent deadlock
situations, nesting, and interference with Resource handling. New API calls are defined for
managing multicore hardware, and a synchronized startup and shutdown concept across all
cores is required.

To support cross-core interactions, AUTOSAR extends services like ActivateTask or SetEvent with
an IPI mechanism. Such cross-core interactions are synchronous, the calling task will only return
after the remote core completes the interaction. Additional StatusTypes are defined in AUTOSAR,

8

2.3 OSEK and AUTOSAR Standards

for example for Spinlock errors or issues during the startup sequence. The Table 2.1 provides an
overview of all AUTOSAR system calls relevant to this work and their description [AUT22].

System Call Description OSEK comparison

ActivateTask activate a new task and reschedule cross-core
TerminateTask terminate the current task and reschedule cross-core
ChainTask combination of ActivateTask and TerminateTask cross-core
GetSpinlock acquire a lock new
TryToGetSpinlock acquire a lock, return if locked already new
ReleaseSpinlock free the acquired lock new
GetResource enter critical section only core-local
ReleaseResource leave the critical section only core-local
WaitEvent wait until the event is set and reschedule cross-core
SetEvent set the event for a certain task and reschedule cross-core
GetAlarm read relative alarm value in ticks cross-core
SetRelAlarm set relative alarm value and enable alarm cross-core
StartCore start a new core, before StartOS new
StartOS start system and reschedule only core-local
GetCoreID retrieve the core identifier new
ShutdownOS stop scheduling of tasks only core-local
ShutdownAllCores stop all activated cores synchronously new
EnableAllInterrupts enable interrupts only core-local
DisableAllInterrupts disable interrupts only core-local

Table 2.1 – AUTOSAR system call interface subset [AUT22; OSE05]

The AUTOSAR standard defines more advanced features, some of which require hardware
support. The implementation in this work does not need the following protection mechanisms
and features, therefore they are only mentioned briefly. In AUTOSAR, Tasks and their related
system resources are collected in OS-Applications to provide access protection among multiple
OS-Applications. Furthermore, memory protection isolates a Task and allows access only to certain
memory areas. This feature requires hardware support, particularly a Memory Protection Unit
(MPU). AUTOSAR also defines mechanisms to prevent timing faults like missed deadlines or
inter-arrival times for Task activation against spurious interrupts or erroneous sources. For
backward compatibility, OSEK applications behave like trusted OS-Applications in AUTOSAR,
where these protection mechanisms can be disabled. The Inter-OS-Application Communicator
(IOC) component is responsible for communication between applications, particularly across
memory protection boundaries. The Software Free Running Timer (SWFRT) module enables
measurements using timers and adds new API calls like GetElapsedValue and GetCounterValue. A
series of tasks or events with certain timing can be activated using ScheduleTables [AUT22].

9

2.4 POSIX on Linux

2.4 POSIX on Linux

The implementation of the AUTOSAR kernel in this thesis is using the Portable Operating System
Interface (POSIX) standard as a virtual platform. This section provides the fundamentals of the
system interface defined by POSIX and highlights features that are important for this work.

The Austin Group, a joint working group of the IEEE, The Open Group, and ISO/IEC is
responsible for the development and maintenance of the POSIX standards. Among other things,
they define standard concepts and interfaces between system services in operating systems and
applications.

The system interface is defined as C functions and intended to allow the implementation of
efficient and portable applications across UNIX-like systems. It is important to note that POSIX
does not define a complete operating system, including the administration of system objects
and users. Instead, it focuses on a minimal interface definition and allows optional extensions.

Next to some basic concepts like file access permissions, file names, or byte orders, POSIX
defines memory synchronization and thread handling in the pthread interface. These functions
provide mutex, spinlock, signal and thread abstractions, which are scheduled according to the
defined scheduling policy. As an example, the system interface pthread_create shown in Listing 2.3
is used to create a new thread with given attributes. POSIX supports priority-based real-time
scheduling policies and the thread attributes include the real-time priority. Next to the threads,
spinlocks are defined as a busy waiting mechanism for thread synchronization and mutual
exclusion. For inter-thread signaling, POSIX supports standard signals and real-time signals,
with the difference that real-time signals can be queued and always arrive in a guaranteed order.
Although the pthread_kill function name suggests differently, any defined signal identifier can
be sent to the receiving thread [IEE17].

1 int pthread_create(pthread_t *restrict thread ,

2 const pthread_attr_t *restrict attr ,

3 void *(* start_routine)(void*), void *restrict arg);

4

5 int pthread_spin_lock(pthread_spinlock_t *lock);

6 int pthread_spin_trylock(pthread_spinlock_t *lock);

7 int pthread_spin_unlock(pthread_spinlock_t *lock);

8

9 int pthread_kill(pthread_t thread , int sig);

Listing 2.3 – POSIX thread, spinlock and signal interfaces [IEE17]

POSIX does not mandate a particular implementation of the defined system interfaces. In
GNU/Linux systems, the GNU C Library (glibc) project including the Native POSIX Thread
Library (NPTL) and the librt library implements the POSIX thread interface, including real-time
extensions, along with some specific additions [Mic; DM03]. To utilize the POSIX interface, user
applications link against the glibc libraries. The glibc libraries, in turn, use the Linux system call
interface as shown in Figure 2.4.

A remarkable difference between the glibc libraries and the POSIX standard is the addition
of Linux-specific extensions. Next to additional scheduling options, the timer_create interface
in glibc extends the POSIX interface with an additional option to specify the target thread
that shall receive the timer interrupt. Not only is glibc extending existing POSIX interfaces,

10

2.4 POSIX on Linux

Application

glibc with NPTL and librt

Linux System Call Interface

Architecture specific code Kernel functionality

Hardware

Kernel code

User code

Figure 2.4 – POSIX system call interface in GNU/Linux

it additionally provides useful, albeit non-portable interfaces that are not part of POSIX, like
pthread_setaffinity_np to set a thread’s affinity to certain cores [Mic].

2.5 Compiler and Code Toolchain

In order to execute programs on a CPU, either compilation or runtime interpretation is required to
translate the high-level language code into machine code that can be executed by the underlying
hardware microarchitecture. In compiler design, the classical approach for this translation
consists of three phases: frontend, optimization, and backend. The frontend involves parsing
the source code and checking it for errors, resulting in a language-specific Abstract Syntax Tree
(AST) that contains all relevant tokens for the program’s functionality. In the next phase, the
AST is converted to an intermediate format that is suitable for the optimization steps. The
third step is the backend, which transforms the intermediate code into the target instruction
set. One advantage of this design is that frontends for different programming languages or
backends for different instruction sets can be exchanged, while common optimization steps do
not need to be reimplemented. This modular architecture reduces the effort of supporting new
programming languages or porting the compiler to a new target platform because it minimizes
code duplication.

LLVM is a collection of compiler tools that follows this approach and strictly separates the
three phases. The project has designed the LLVM Intermediate Representation (IR) language,
which is used for the optimization and backend steps. Compared to GCC, where the intermediate
language is not designed to be used externally, the LLVM IR can be modified or optimized using
the LLVM API [Fre; Lat11]. In Figure 2.5 the phases of the LLVM compiler toolchain are depicted
for C code on an x86 architecture.

For the generator implementation in this thesis, the next subsection will describe the LLVM
IR code in more detail.

11

2.5 Compiler and Code Toolchain

Frontend
Clang

Optimization Backend
X86

External
modifications

C code LLVM IR LLVM IR Assembly

LLVM IR

Figure 2.5 – LLVM toolchain for C code

2.5.1 LLVM Intermediate Representation

The LLVM IR is designed to be a flexible and language-agnostic representation of high-level
languages. It serves as a common language during compilation and optimization steps in the
LLVM toolchain and can be available in both human-readable and bytecode formats. In LLVM IR,
functions are decomposed into basic blocks, which are linked together to form a Control Flow
Graph (CFG). The CFG represents the branching of possible control flows between the basic
blocks. Each basic block has a defined set of predecessors and successors, which is the base
for optimizations at the function level. The first basic block of a function has no predecessor,
and it is executed automatically on function entry. The LLVM IR language shares similarities
with Reduced Instruction Set Computer (RISC) opcodes, but it has a strong and simple type
system [Lat11]. This type system offers various advantages, such as increased readability and
more possible optimizations at the IR level [LLVa].

Listing 2.4 displays a comparison of an LLVM function with one basic block with the corre-
sponding C and assembly code. The increment operator on variables declared _Atomic in the C
language translates to an atomicrmw add instruction in LLVM. For x86 assembly, this will insert a
lock instruction prefix to prevent simultaneous access to the shared data bus, as described in
subsection 2.2.2.

1 void atomic_fetch_and_inc(_Atomic(int) *i) {

2 (*i)++;

3 return;

4 }

1 atomic_fetch_and_inc:

2 mov 0x4(%esp),%eax

3 lock addl $0x1 ,(%eax)

4 ret

1 define void @atomic_fetch_and_inc(i32* %0) {

2 entry:

3 %2 = atomicrmw add i32* %0, i32 1 seq_cst , align 4

4 ret void

5 }

Listing 2.4 – Atomic instruction in C (left), x86 assembly (right) and LLVM IR (bottom)

As mentioned before, the IR code is very well suited for optimization and external modification
using the LLVM API. The upcoming subsection will provide further details on such modifications.

12

2.5 Compiler and Code Toolchain

2.5.2 Automatic Source Code Modification

Compiler technologies have evolved over time to provide many optimizations, which are possible
at every abstraction level. These optimizations aim to improve non-functional requirements such
as execution time, memory footprint, and power consumption. The functional requirements of
the source code remain unchanged, and optimizations must not alter the program’s visible state
during execution. Optimizations performed at the high-level source code level in the AST are
universal and machine independent. However, code modifications at this level may not fully
exhaust all possibilities and advantages of the hardware architecture. Alternatively, optimization
at the assembly instruction level is only applicable to a specific instruction set or architecture
and can improve code performance by replacing or reordering instructions. Finally, optimization
at the intermediate code level is both machine-independent and similar to assembly opcodes,
allowing for many hardware-related optimizations using heuristics or suitable metrics.

To provide an interface for operations on the LLVM IR code, the LLVM C++ API can be used.
The API can be utilized to replace, insert, or modify instructions, basic blocks, or functions [LLVb].
LLVM is designed to be highly modular, every optimization pass is independent of the others or
may declare dependencies to other passes where necessary. This results in a pipeline, where
each pass directly works on the IR code. This modularity allows for extensions and granular
unit-testing [Lat11].

Listing 2.5 shows an example usage of the LLVM API.

1 Function &Func = module.getFunction("main");

2 cout << "Function " << Func.getName () << endl;

3 for (BasicBlock &BB : Func)

4 cout << "Basic block " << BB.getName () << endl;

Listing 2.5 – Accessing basic blocks with the LLVM C++ API [LLVb]

A related domain to code compilation and optimization is source code generation from a
static system description. The generator is a translation unit that creates lower-level code from
a higher-level description, thus it has the same function as a compiler. Statically configured
embedded operating systems like OSEK follow this approach, where the system description in
OIL format must be transformed into C code [OSE04b]. The categorization of optimizations
specifically targeted to statically configured RTOS is described in the following subsection.

2.5.3 RTOS Specialization

Automatic code optimization for static RTOSs can be much deeper than in normal applications
because all possible system inputs can be calculated a priori. At compile-time, the system
can be specialized to the use case of the specific application. The key objective of system
specialization is to improve non-functional requirements, while the functionality of the system
and application is not affected. This specialization usually comes at the cost of flexibility, which
is not required in static RTOS as the application scenario does not change for the product’s
lifetime. To provide a classification for various specialization levels, the following taxonomy has
been introduced [Fie+18]:

13

2.5 Compiler and Code Toolchain

Specialization of Abstractions

Removing certain abstractions from the system is a simple specialization that can be used even
in general-purpose operating systems. If a real-time application does only require a single
core, an operating system that can support multicore applications can be specialized in various
aspects. Semantics of cores, locking mechanisms, and cross-core communication interfaces
can be removed, without affecting the application. Another example is reducing the system
call interface by removing alarm or event handling if the application does not require these
mechanisms.

Specialization of Instances

A more specialized system can create concrete instances of abstractions, which requires more
static knowledge about the application. This can involve static initialization of tasks, including
their scheduling parameters, activation state, or name. RTOS with statically defined instances,
such as OSEK/AUTOSAR, enable this specialization by design. The OIL system description
contains the static information that is required for this type of specialization.

Specialization of Interactions

The most specialized optimization can be applied at the interaction level between instances.
With knowledge about interactions between system objects, kernel paths can be accelerated by
reducing the overhead that is not needed for specific interactions. This concept can be utilized
for whole-system optimization with static code analysis that examines all possible interaction
sequences.

This specialization classification is used in the following sections to differentiate the depth of
specializations in related work.

2.6 dOSEK System Analysis and Synthesis

As this work is using the dOSEK project as a foundation, it will now be introduced in detail.
dOSEK is a research project focused on improving dependability and tolerance against tran-

sient hardware faults in embedded operating systems. By static system design with Specialization
of Interactions, transient hardware faults are mitigated, as fewer indirections improve the toler-
ance. Additionally, system objects are arithmetically encoded to harden the kernel and allow
error detection to prevent silent data corruption. Apart from the dependability features, dOSEK
is designed as a statically configured OSEK/AUTOSAR-compliant RTOS [Hof+15]. Because of
the focus on dependability, dOSEK does not implement all OSEK features, like multiple tasks per
priority or multiple activations per task. While dOSEK supports x86 and ARM platforms, as well
as POSIX as a virtual platform, multicore functionality is not part of the implementation. To
generate a dOSEK system image, a whole-system compilation approach involving two steps is
employed: static analysis of the application and tailoring the system to the application’s needs.
Because inter-task interactions have a predictable behavior with the compile-time knowledge
from the system analysis, system calls can be optimized to specialize interactions and to improve
the non-functional properties [Hof+15].

14

2.6 dOSEK System Analysis and Synthesis

One application of this whole-system approach is the System State Enumeration (SSE),
which creates a global CFG that incorporates both the user application and kernel logic. In most
modern compilers, CFGs are created to allow optimization on function or program level (as
discussed in subsection 2.5.1). However, such optimizations cannot cover the transition from
the application to the kernel code as it is required for system calls, because detailed system
behavior is not predictable in non-real-time and non-deterministic operating systems. The SSE
incorporates semantics of an RTOS and the static configuration knowledge into the control-flow
analysis to provide the global CFG. The elements in the global CFG are grouped abstract system
states, which include all relevant status information of the system, such as task states, occupied
resources, and their call stack at a specific point in the control flow. Unlike the local CFG in
LLVM, the global CFG does not operate on basic blocks. Instead, the concept of Atomic Basic
Blocks (ABBs) is used, where all basic blocks that do not interact with the operating system
are merged into one ABB, while system calls remain visible as a single ABB. This abstraction
hides the complexity of the application logic and focuses on the interaction with the system
objects during analysis. During the system analysis, all possible abstract system states are
enumerated and connected in a state transition graph, which is then used to create the global
CFG by grouping the states. This graph structure provides a view of all possible control flows
across the system call interface and enables the specialization of system calls for each call site.
While most OSEK implementations use a generic system call interface, fine-grained control over
the implementation of system services per call site can reduce overhead by providing only the
minimum necessary functionality. If the global CFG contains only one successor state to an
ActivateTask system call, the scheduling decision is known ahead of time, and the system call can
be specialized to directly dispatch to the following task. When the exact scheduling decision
cannot be determined by the analysis, at least a subset of possible tasks can be considered
in a partially specialized system call. System call specialization using cross-kernel control
flow knowledge increases the runtime performance in the kernel path while increasing the
code memory usage [DHL15]. The SSE enables optimization by Specialization of Interactions,
therefore it provides very extensive specialization possibilities [Fie+18].

Similar to LLVM passes, the analysis steps are orchestrated in a pipeline with interdepen-
dencies, and the results are stored in a common graph. The system generator uses the results
from the OIL reading pass and several other analysis steps to create the dOSEK code. To reduce
indirections, each system call in the application is replaced with a specialized variant that stati-
cally contains the parameters. This replacement requires modifications to the application, which
are performed in the IR code. The generated code is then linked together with the modified
application and the system libraries to create the system image.

2.7 MultiSSE: Whole-System Analysis and Optimization with
ARA

ARA is a framework and compiler toolchain for static system analysis and optimization of
embedded applications and supports multiple RTOS. It was created as a research project to
analyze instance creation and interactions in OSEK and FreeRTOS [ESD19]. Based on the
instance analysis, ARA was extended to also transform systems with dynamic instantiation like
FreeRTOS by statically initializing objects that are dynamically allocated on each boot. With this
approach called Static Instance Analysis (SIA), ARA utilizes whole-system analysis to modify
application code and specialize the system to reduce boot time [Fie+21]. Building upon previous

15

2.7 MultiSSE: Whole-System Analysis and Optimization with ARA

results, the whole-system analysis was applied to an abstract OS model to enable analysis steps
to work across multiple different operating systems. The system model for each RTOS is used
to statically analyze system behavior, state transitions, and system object instances. While this
is applicable for various analysis tasks, OS-specific semantics, such as scheduling decisions,
must be considered as well [ENL22]. Like in dOSEK, steps are separated and can store global
knowledge about the analyzed application into a common graph.

For synthesis, the ARA generator was adapted from dOSEK for FreeRTOS on an ARM platform.
Figure 2.6 provides an overview of the structure of ARA optimization steps including the abstract
OS model.

Figure 2.6 – Whole-system optimization with ARA [ENL22]

Next to the SIA and the SSE, which was ported from dOSEK, ARA includes the MultiSSE
analysis. While the SSE supports only single-core applications, the MultiSSE extends the cross-
kernel control-flow analysis concept to multicore systems.

The key idea of MultiSSE approach is to create a Multicore State Transition Graph (MSTG) of
all possible abstract system states for the multicore system. One multicore system state includes
the local state of multiple cores and global OS objects at a given time in the system. To keep
the number of states as low as possible, the MultiSSE first creates core-local system states like
the SSE and synchronizes these states only when required, instead of combining all possible
system states of all cores. Such Synchronization Points (SPs) are created for the affected cores
of cross-core system calls and depend on the RTOS semantics. For example, a GetSpinlock system
call in AUTOSAR synchronizes all cores that contend for the same spinlock. As a result, the
MSTG contains two different types of nodes, either core-local states or SPs between two or more
cores. Every possible execution order of the parallel cores must be considered when analyzing
multicore applications, so multiple local states can originate from the same ABB. Additionally,
pre-calculated timing information per ABB can be leveraged to reduce the number of states
in the MSTG by considering worst-case and best-case execution times when pairing the local
states at SPs. This reduction of the MSTG leads to a reduced analysis time and potentially more
optimizations.

An example synchronization point, including four tasks on three cores, is shown in Figure 2.7.
At the system start, only task T11 is running on core 1, while the other cores are idling and their
tasks are suspended [EFL23].

16

2.7 MultiSSE: Whole-System Analysis and Optimization with ARA

Figure 2.7 – MultiSSE example initial system state (synchronization point) [EFL23]

Detailed information about interactions between the application and the RTOS can be ex-
tracted from the MSTG. Just like the SSE enables system call specializations for single-core appli-
cations, the MultiSSE can be used for the following multicore optimizations in AUTOSAR [EFL23].

Lock Elision

In a multicore AUTOSAR system, GetSpinlock is used for mutual exclusion of critical sections. If no
state in the MSTG is actually waiting for the global spinlock object, the complete lock, including
all related system calls, could be removed from the generated system. If the spinlock only
spins for certain call sites, these system calls can be specialized, while the others are unaffected.
This optimization can mitigate architecture-specific costs of spinlocks like shared bus locking
and cache coherence overhead. Additionally, locking structures that are never required can be
removed to reduce the system image size.

Deadlock Detection

Deadlocks happen if one core executes GetSpinlock on a lock that is already held by the same core.
Such deadlocks must be prevented in AUTOSAR by bookkeeping and returning an error code to
the system caller. The same issue can arise if nested spinlocks are not locked and unlocked in
the correct order. According to the AUTOSAR specification, such deadlocks must be prevented
already during the generation phase by the definition of a fixed spinlock ordering [AUT22]. As
the MSTG already contains the necessary information to allow checks for deadlock prevention
independent of their ordering, this is not required in ARA.

IPI Avoidance

For cross-core ActivateTask system calls, an IPI must be issued to trigger rescheduling on the target
core. This rescheduling is not needed if the currently running task has a higher priority than
the task marked ready, and the IPI can be omitted. The same logic applies to other cross-core
system calls like SetEvent. If the receiving core does not have an active task that is waiting for
this Event, or a task with higher priority than the waiting task is running, the IPI is unnecessary.
With this optimization, the runtime performance of the system can be improved because fewer
interrupts are triggered, which mitigates additional IPI-related timing overhead.

17

2.7 MultiSSE: Whole-System Analysis and Optimization with ARA

In summary, the specialization of cross-core system calls can increase the system performance
by reducing delay and jitter with the elision of costly cross-core operations [EFL23].

2.8 Related Work

Numerous operating systems have been developed for embedded systems and vary in terms
of their features, supported platforms, and level of specialization. This section focuses on
open-source RTOS projects with whole-system optimization and specialization in mind. Some
commonly used RTOS in the industry are Zephyr, FreeRTOS, and Erika OS.

Zephyr is a versatile and relatively new RTOS with lots of modern features. It supports
multiple platforms and offers a virtual POSIX platform for testing and development. Like a Linux
kernel, Zephyr can be configured using Kconfig to disable unnecessary functions. Furthermore,
Zephyr allows resource definition at compile time, which can be used for Specialization of
Instances [Zep]. However, Zephyr does not use static application analysis to specialize system
calls on a per-usage level.

FreeRTOS is a popular open-source RTOS kernel in the market that supports many platforms
and provides a port for a Linux/POSIX system for development [Ama]. Specializing FreeRTOS
systems is challenging because it provides dynamic system object creation. While Specialization
of Instances is possible by preallocation of pseudo-dynamic objects, the application of static
analysis for further optimization is limited, and interactions between dynamic system objects
cannot be specialized [ESD19; Fie+21].

Erika Enterprise v3 is another well-established embedded operating system kernel that
conforms to the OSEK/AUTOSAR standards. It was designed with multicore support and utilizes
the RT-Druid tool for generating static RTOS code from an OIL file [Evi]. Although the RT-
Druid generator supports some analysis plugins, it is unable to take application-specific analysis
information into account, and its ability to optimize the RTOS beyond the instances defined in
the system description is limited.

Apart from the industry-grade systems, scientific research has created other relevant RTOSs.
Trampoline RTOS is an embedded operating system that implements the OSEK/AUTOSAR
specifications and also supports multiple hardware platforms. It supports all OSEK features,
memory protection features, and isolation [Bec+06]. As an OSEK conforming OS, Specialization
of Instances by statically defining all OS resources is possible. Nevertheless, Trampoline does not
support multicore applications, except for the PowerPC platform. To specialize the RTOS for the
application, a Petri net OS model is used for analyzing reachability and pruning dead code from
the system [Tig+17]. However, this OS model analysis was introduced to replace preprocessor
macros in the code to automate the Specialization of Abstractions. In addition to the dead code
elimination, the operating system model is used for formal verification, including support for
multicore applications [HBR21].

In contrast to the previously mentioned systems, dOSEK provides the deepest application-
specific optimization by using knowledge from static code analysis for Specialization of Interac-
tions. As explained in section 2.6, dOSEK specializes system call sites to improve dependability
and performance. Further publications like Semi-Extended Tasks for optimization of memory
usage or OSEK-V hardware specialization based on interaction analysis are implemented in the
dOSEK framework [DL18; DL17]. Yet, due to the absence of support for multicore applications,
the dOSEK generator in its current form cannot be used for cross-core optimizations such as
Lock Elision and IPI Avoidance.

18

3A R C H I T E C T U R E

This chapter presents the architecture and implementation of the Multicore AUTOSAR Compatible
Application-specific Whole-system-optimizer (MACAW) RTOS generator. While MACAW is
largely based upon the dOSEK system generator, this thesis shifts the focus from dependability
to cross-core runtime optimizations by interaction specialization as described in section 2.7.

3.1 Architecture and Framework

The architecture of the operating system generator follows the generic OSEK/AUTOSAR image
generation approach (see Figure 2.3), with the additional specialization of cross-core interactions.
The desired level of specialization for multicore applications requires static code analysis with
knowledge about the RTOS semantics and enumeration of all possible system states. With
the AUTOSAR OS model and the MultiSSE analysis in ARA, this knowledge is available for
AUTOSAR applications. In order to leverage this knowledge, MACAW RTOS is implemented
into the ARA whole-system-compiler. Specifically, the system generator component serves as the
synthesis module of the ARA toolchain (illustrated in Figure 2.6).

For implementing the core functionality of an AUTOSAR kernel and the generator, dOSEK is
used as a base because it already decouples the kernel and the system call implementation for
interaction-specific optimization. As dOSEK only supports single-core applications, additional
system features need to be implemented to support multicore AUTOSAR use cases. As the focus
of this work is cross-core runtime optimization, MACAW currently only supports the virtual
POSIX platform on Linux. This restriction allows for faster development because the system
generator can be tested without additional hardware and deployment, and hardware-specific
details can be ignored.

The diagram in Figure 3.1 displays a high-level overview of the AUTOSAR image generation
process in ARA.

To perform the static system analysis, ARA reads the system description and the application’s
IR code to construct the required data structures, such as the instance interaction graph, CFG,
and MSTG. Optimizations for cross-core interactions, such as Lock Elision, leverage the MultiSSE
output to identify patterns or system calls that can be replaced. The system generator then
employs the analysis results to synthesize specialized code that associates the application-specific
system calls with the application-independent AUTOSAR libraries. Additionally, the generator
modifies the IR code to enable system call specializations and inserts startup code to ensure the
correct initialization of the system and tasks.

19

3.1 Architecture and Framework

ARA

app.cc app.ll

app.oil

Analysis

MultiSSE
Lock Elision
IPI Avoidance

Synthesis

IR Modification
Generator

app_mod.ll

autosar.cc

AUTOSAR
libraries

AUTOSAR
image

clang

clang

Figure 3.1 – AUTOSAR image generation with ARA

The following sections provide the implementation details of the application-independent
AUTOSAR kernel libraries and the code generator.

3.2 AUTOSAR Kernel Libraries Implementation

ARA is configured using the Meson build system, which enables the choice of architecture, test
cases, and the selection of compilers and tools. To add the MACAW system generation to ARA, I
have added initial support for the POSIX target platform, and inappropriate test cases for this
architecture must be disabled.

The implementation of the kernel functionality is split into multiple separate libraries. While
the libautosar_os library provides fundamental interfaces like the scheduler, hook declarations,
and all OSEK/AUTOSAR types, the libautosar_posix and libautosar_generic libraries provide the
architecture-dependent functionality like the spinlock implementation, Task Control Blocks
(TCBs), and interrupt handling. Another library named libautosar_test is required for testing
functionality only, not for the actual AUTOSAR implementation.

With dOSEK as a base, these libraries need extensions and adaptations to support the required
multicore functionality. The following paragraphs describe the components that are implemented
into the kernel libraries of every MACAW system, independent of the application.

Logging

For development and debugging, dOSEK uses a DEBUG preprocessor symbol to enable logging
output to STDERR. The implementation of the logging uses the C++ stream operator and the
write system call. With multicore debugging output, per-core buffering is required to prevent
character interleaving which renders the log useless. Additional locking is not needed because
the write system call itself is atomic per POSIX specification, if the buffer length does not exceed
512 bytes [IEE17]. In the MACAW implementation, the buffer is flushed after 80 characters or
line breaks.

20

3.2 AUTOSAR Kernel Libraries Implementation

Spinlocks

The AUTOSAR specification mandates the GetSpinlock/TryToGetSpinlock/ReleaseSpinlock system
calls. Implementations for spinlocks are architecture-specific and require atomic operations
like Compare and Swap (CAS) (see subsection 2.2.2) for synchronization between multiple
cores [AUT22]. The spinlock functionality of the POSIX interface, as described in section 2.4, is
used to implement the AUTOSAR-conformant spinlock functions. The Linux manual states that
spinlocks should be used in combination with a real-time scheduling policy only, and thread
placement must be considered to prevent deadlocks [Mic]. The following paragraph (Core
Handling) describes how MACAW handles thread placement and provides real-time behavior.

To ensure the reliability of the AUTOSAR system, it is required to handle certain cases to
prevent deadlocks. Firstly, when invoking the GetSpinlock system call with the same lock on the
same core, the system should return E_OS_SPINLOCK. Secondly, if a task calls ChainTask/TerminateTask,
the system must check for unreleased spinlocks and return the same error if the task holds any
locks. Similar to the event implementation in dOSEK, each task in MACAW contains a bitmask
to store whether any spinlocks are currently locked. Furthermore, spinlocks are allowed to be
nested only in a predefined order to prevent deadlocks, which is a requirement for OS generation.
The MultiSSE already enables Deadlock Detection, thereby fulfilling this requirement without
any need for nesting order definitions.

Unlike in OSEK, the ChainTask/TerminateTask system calls can fail because of unreleased spin-
locks. When reaching the end of the task function without a successful rescheduling, another
ErrorHook is triggered with the status code E_OS_MISSINGEND [AUT22]. If the user-defined hook does
not reschedule, MACAW forces a shutdown.

Core Handling

Multicore functionality requires architecture-specific code for starting and stopping cores. In the
POSIX platform in dOSEK, a core corresponds to a thread that is scheduled by the host kernel.
For TCB switching, the POSIX virtual platform makes use of x86-specific assembly code.

In contrast, the FreeRTOS POSIX simulator for Linux creates a new POSIX thread for each
task. While this approach has the benefit of using platform-independent pthread condition signals
instead of assembly code for TCB switching, it also results in many signals being delivered to
different threads in the process [Ama]. As a consequence, task dispatching becomes slow in com-
parison to using assembly instructions. Also, instead of per-core timer interrupts implemented
using POSIX timers, multiple threads on one core would require additional interrupt dispatching.
To add multicore functionality to the dOSEK approach, new cores are created with pthread_create.
This call takes a start routine argument that specifies the entry point of the created thread (as
shown in Listing 2.3). For IPIs, the core startup function stores the pthread_t identifier in an
array. Additionally, MACAW keeps track of the number of cores in a global cores counter variable
for the synchronization function (in Listing 3.2). Finally, the new core executes the main function
defined in the application. Nevertheless, the cores cannot be shut down safely with pthread_exit,
because the task-switching mechanism manipulates the stack, and the stack unwinding will fail.
To circumvent this, the shutdown sequence will disable all interrupts and wait in an endless loop,
as defined in AUTOSAR [AUT22]. The last core then executes ShutdownMachine which corresponds
to exit in POSIX, thus all threads will be terminated, and the process will be cleaned up (shown
in Figure 3.2) [IEE17].

To run all threads actually in parallel on a Linux host, the number of threads is limited to
the number of available cores on the host and a maximum of 16 cores by static definitions. To

21

3.2 AUTOSAR Kernel Libraries Implementation

achieve real-time behavior, MACAW sets the CPU affinity for each thread to a different host core,
and the whole process must be scheduled with a real-time policy. Although a common Linux
kernel as a general-purpose operating system does not support real-time applications by default,
the PREEMPT_RT patch set provides real-time priority scheduling. To enable this scheduling policy
for the MACAW system, the process can be started with chrt(1) [Mic].

Synchronization, Startup and Shutdown Sequence

Differences in hardware platforms and synchronization problems require a predefined multicore
startup and shutdown sequence. During the startup phase, the first core, which is identified
by OS_CORE_ID_MASTER, can start other cores using the StartCore system call as shown in Listing 3.1.
Each core can activate new cores itself until StartOS is called.

1 int main(void) {

2 StatusType rv;

3 switch(GetCoreID ()) {

4 case OS_CORE_ID_MASTER:

5 StartCore(OS_CORE_ID_1 , &rv);

6 default:

7 StartOS (0);

8 }

9 }

Listing 3.1 – Startup sequence for two cores

To execute the StartupHook and the scheduling of the first task on all cores simultaneously,
AUTOSAR defines two synchronization points in StartOS. For the shutdown sequence, AUTOSAR
specifies two different mechanisms for backward compatibility with OSEK. In an OSEK ap-
plication, the calling core stops scheduling after calling ShutdownOS, immediately followed by
the ShutdownHook. The synchronized shutdown of multiple cores in AUTOSAR is triggered using
ShutdownAllCores, where a synchronization point is introduced before the simultaneous execution
of the ShutdownHook on all cores [AUT22]. MACAW adds a fourth synchronization point in the
shutdown sequence and waits until all cores have finished the ShutdownHook before the machine is
shut down completely. Figure 3.2 displays these synchronization points from system start until
shutdown for two AUTOSAR cores.

main
Start

Core

main

StartOS

StartOS

Sync

Sync

Startup

Hook

Startup

Hook

Sync

Sync

T00

idle

Shutdown

AllCores
ShutdownOS

ShutdownOS

Sync

Sync

Shutdown

Hook

Shutdown

Hook

Sync

Sync

Shutdown

Machine

Figure 3.2 – Multicore synchronization points [AUT22, adapted]

22

3.2 AUTOSAR Kernel Libraries Implementation

The implementation of the synchronization points requires locking or atomic operations
because all threads concurrently modify a global counter. POSIX provides exactly this syn-
chronization mechanism with pthread_barrier [IEE17], which is internally implemented using
spinlocks in glibc. However, the pthread_barrier requires a fixed number of threads to be synchro-
nized at initialization, which is not given at the first synchronization point during the startup
phase. Therefore, MACAW directly uses atomic operations for the synchronization of cores.

Listing 3.2 shows the implemented synchronization function that must be executed by all
active cores to achieve synchronicity. The number of syncing_cores is counted until all threads
are synchronized to the last core that enters the while-loop. Similar to the Trampoline imple-
mentation, multiple sync_points ensure correct synchronization throughout the lifetime of the
system. Unlike the pthread_barrier, the implemented synchronization mechanism is capable of
handling the simultaneous increment of active cores during the startup phase.

1 _Atomic(int) cores = 1;

2 _Atomic(int) syncing_cores[arch:: SYNC_MAX] = {0};

3 void sync_all_hardware_threads(cpu_sync_point_t sync_point) {

4 syncing_cores[sync_point]++;

5 // wait until all cores have synced

6 while (syncing_cores[sync_point] < cores);

7 }

Listing 3.2 – Synchronization of multiple cores

Scheduling

Compared to Trampoline, where each system call is locked using a kernel spinlock, the system
calls and the scheduling implementation in MACAW are lock-free. Each core schedules inde-
pendently and in the case of cross-core interactions like ActivateTask, the data structures of the
scheduler on the target core are modified atomically to prevent data races.

The scheduling implementation is created by template expansion as part of the code generator
described in subsection 3.3.2.

Interrupts and Timers

Interrupts can be modeled using signals on the POSIX platform. In dOSEK, sending a signal to
the whole process is sufficient because only one thread in the process exists that will handle
this signal. Interrupts in multicore systems, and particularly IPIs on POSIX, require that the
receiving thread can be specified.

Cross-core interactions like SetEvent in AUTOSAR need a synchronized IPI that returns only
after the system call completes on the remote core. The interrupt trigger implementation in
MACAW takes the signal identifier, target core, and a sync flag as arguments, as displayed in
Listing 3.3. After the IPI is triggered, the calling core waits until the target core has processed
all interrupt handlers and reschedules.

In the AUTOSAR specification, a Counter can be defined either as a manually incremented
software counter or as a hardware counter triggered by a timer interrupt. Each core must provide
its own hardware counter, and the counter value of other cores must not be modified [AUT22].

23

3.2 AUTOSAR Kernel Libraries Implementation

1 _Atomic(bool) ipi_cleared[MAX_CPUS];

2 void IRQ:: trigger_interrupt(int irq , int cpuid , bool sync) {

3 if (! cpu_online(cpuid)) {

4 return;

5 }

6 if (!sync) {

7 pthread_kill(get_thread_id(cpuid), irq);

8 return;

9 }

10 /* synchronized interrupt: wait until target core does reschedule */

11 ipi_cleared[cpuid] = false;

12 pthread_kill(get_thread_id(cpuid), irq);

13 while(ipi_cleared[cpuid] == false);

14 }

Listing 3.3 – Interrupt trigger mechanism

While the POSIX standard does provide timer_create and timer_settime system calls, the thread
identifier where the interrupt will be triggered cannot be specified [IEE17]. As described in
section 2.4, the implementation of timer_create in Linux extends the POSIX interface with an
additional option to specify the target thread that shall receive the timer interrupt [Mic]. MACAW
uses this extension to provide timer functionality for each thread. An alternative approach would
be to create one timer per core with different signals and unblock only one of those timers per
thread. However, this would also impact the implementation of other interrupt-related system
calls, such as EnableAllInterrupts.

For user-defined interrupt handlers for AUTOSAR hardware interrupts, MACAW also uses
POSIX signals. Because POSIX standard signals can be queued only once according to the
standard, such interrupts should be defined within the range of real-time signals, specifically
between SIGRTMIN and SIGRTMAX, to prevent lost interrupts. The guardian function is registered
as the handler for all POSIX signals in the process, dispatches to the appropriate ISR for the
received signal, and reschedules if the ISR requests it. Table 3.1 provides an overview of the
signals used in the system.

Signal Function

SIGUSR1 Trigger Reschedule

SIGUSR2 Trigger synchronized shutdown
SIGALRM Timer interrupt with 1 kHz
SIGRTMIN..SIGRTMAX user-defined ISRs

Table 3.1 – POSIX signals employed in MACAW

Test Code

The evaluation of the implemented system in chapter 4 requires a testing interface within
the system image. When modified for thread safety using atomic test state variables, the

24

3.2 AUTOSAR Kernel Libraries Implementation

test functionality provided by dOSEK is acceptable for multicore testing as well. Tests can
be implemented as an execution order test using a test_trace function and comparison to an
expected trace or as assertions of single expected values. The initialization of the test framework
is done by calling the TEST_MAKE_OS_MAIN preprocessor macro with the desired startup sequence.
Listing 3.4 shows the resulting output of a successful test execution of an example application
(Appendix A).

expect: 0123E

traced: 0123E

+

SUCCESS 1 0:0

Tests finished: ALL OK

Listing 3.4 – Test execution result

The Meson unit test system is utilized to automate the execution of available tests by reading
the output of the test results. Available tests are described in chapter 4.

After the details about the implemented system functionality, the following section describes the
MACAW code generator and the application-specific optimization of system calls.

3.3 Code Generator Implementation

As already shown in Figure 3.1, the MACAW RTOS synthesis consists of two steps: IR modification
and code generation. The IR modification makes use of the LLVM API to insert startup code and
error handling calls into the application code. Details about these modifications are explained
in subsection 3.3.1.

As introduced in section 2.7, the code generator step of ARA implemented in Python is based
on the dOSEK code generator and consists of three components. Firstly, the operating system
generic generator rules include the instantiation and initialization of operating system objects.
In the case of AUTOSAR, this includes the architecture-independent setup of statically defined
instances like tasks, alarms, and spinlocks. Secondly, the architecture-specific part is required
for hardware-dependent code blocks like interrupt handling, TCBs, stack allocation, and linker
scripts. The interface to this part is defined in a common generic architecture. The last part is the
system call implementation, where either generic or specialized system calls are generated for
the application. These components, described in detail from subsection 3.3.2 to 3.3.5, generate
the code required for linking the application with the library kernel.

3.3.1 IR Code Modification

The C++ AUTOSAR generator step uses the LLVM API to iterate through the functions and basic
blocks defined in the application (see Listing 2.5). At the beginning of the main function, a call to
arch_startup is inserted to initialize the hardware before executing the first system call. Instead
of this code insertion, the system initialization could also be done at the first system call, but
that would require additional logic inside multiple system calls that could potentially be the first

25

3.3 Code Generator Implementation

one. Furthermore, the ARA generator step modifies each Task function at function entry and exit.
For each Task, a call to kickoff is prepended to enable interrupts at the start of each function.
Compared to a stack modification to jump to this kickoff function, the insertion approach has
multiple advantages. The call insertion at the IR level is independent of the calling convention,
does not require hardware-specific assembly code, and allows for the insertion of specialized
kickoff variants as well. At the end of AUTOSAR Task functions, the specification requires a call
to Terminate/ChainTask. If a function returns without such calls, the E_OS_MISSINGEND error is raised
to prevent returning to an invalid location.

The most important IR modification is call-site-specific system call replacement. By appending
a call-site-specific number to the call instruction of supported system calls, each call site can
be implemented by a specialized function. Because the creation of ABBs in a previous analysis
step first splits the LLVM basic blocks directly before and after a system call, one system call
site is represented exactly by one basic block and one ABB. Although the multicore analysis
works mostly on ABBs, in the domain of IR code, the basic block is the preferred identifier
because its usage is straightforward and it is decoupled from the graph representation. For
example, the test application in Appendix A contains a call to ActivateTask, which is specialized to
AUTOSAR_ActivateTask_BB18. Currently, all system calls regarding the OS objects can be specialized,
including SetEvent for IPI Avoidance and GetSpinlock for Lock Elision.

Instead of iterating over the functions and their basic blocks in the IR code, the links between
ABB and IR code in the ARA control flow graph could be used for system call replacement
and code insertion, too. However, it is easier to directly use the LLVM API for code insertion
and modification compared to obtaining the required information from the ARA graph, so the
MACAW generator modifies the IR code without depending on the ARA graph data.

3.3.2 AUTOSAR OS Generation

After the modification of the application’s IR code, the application-specific AUTOSAR code is
generated into the autosar.cc file (see Figure 3.1).

In the architecture-independent part, the system objects from the system description file are
created. This includes the initialization of Tasks with their scheduling options such as priority,
the core they are running on, and a task identifier. If the system description contains Alarms, the
required objects with the related Counter and initial alarm configuration are allocated. Events and
Spinlocks are generated as constant integer identifiers that are used by the scheduling functions.
To enable bitmasking, these identifiers are enumerated by one-hot coded integers, so they are
limited to 32 instances on the implemented architecture. Additionally, Spinlock identifiers are
backed by objects allowing the actual busy-waiting functionality.

Next to the data objects, the system hooks like StartupHook and ShutdownHook are generated,
which call the corresponding user hooks if they are defined.

A large part of the generated OS code is created from the scheduler and tasklist templates
introduced in dOSEK. These templates contain the framework logic for priority-based scheduling
for a fixed number of tasks and provide an interface for system calls to interact with the scheduler.
For example, the interface for activating a task consists of two operations. First, the activated
task is marked as ready in the static tasklist of the scheduler, then the dispatcher switches the
context to the task with the highest priority.

26

3.3 Code Generator Implementation

3.3.3 Architecture Specific Code

In addition to the generic AUTOSAR instances, architecture-specific code must be generated. To
reduce the memory footprint, MACAW supports and extends stack sharing for Basic Tasks, as
introduced by dOSEK. Since tasks are statically assigned to specific cores, each core must have
its own shared stack for Basic Tasks. Only if the task requires Events, the generator creates an
Extended Task with a separate stack. The TCB for each Task is instantiated with its dedicated stack,
task function pointer, and task identifier corresponding to the generic task instance. Unlike real
architectures, the POSIX virtual architecture does not require an additional linker script.

Besides the TCBs, each architecture handles ISRs differently. For the POSIX architecture,
interrupts do not need to be acknowledged manually by the ISR, and new interrupts do not
need to be blocked during interrupt handling because the POSIX signals already provide that
functionality. Therefore, the generated ISR wrappers for POSIX only call the corresponding
user-defined ISR that contains the actual routine. Two artificial ISRs for IPI handling are added
to the list of interrupt handlers to trigger actions for SIGUSR1 and SIGUSR2 (previously described in
Table 3.1). Each generated ISR is initialized during the StartOS system call and registered with
the guardian for dispatching.

3.3.4 Generic System Calls

The system call generator component is responsible for the call-site-specific implementation of
system calls. Although the system calls are specific to call sites already because dOSEK does
not handle the system call parameters at runtime, the generic system call generator does not
specialize interactions based on analysis results. These generic system calls provide a baseline
for the evaluation in chapter 4, where the impact of call-site-specific optimizations is evaluated.

The generation of system calls follows a fixed pattern. When system calls are called from tasks,
interrupts need to be disabled to prevent preemption. Then, the system call implementation is
generated, surrounded by a SystemEnterHook/SystemLeaveHook pair. Although these hooks are not
part of the OSEK standard, they were introduced in dOSEK to implement common functionality
and therefore simplify the generation of system calls. If interrupts were disabled, they are
enabled again, and a StatusType is returned. The Listing 3.5 displays the generated system call
for an ActivateTask system call (Appendix A). In this case, the call site is a task and not an ISR,
so interrupts are blocked. Because the activated task must run on a different core, an IPI is
triggered instead of rescheduling on the current core.

As the system call arguments for a certain call site are known at code generation time, the
MACAW RTOS generator inserts required parameters like the task to activate and the target
core statically. This static system call generation is the foundation for interaction specialization
described in the following subsection.

3.3.5 Specialized System Calls

System call specializations can be enabled or disabled by configuring the ARA step. If there are
no specializations for a given system call possible, the generator defaults to the generic system
call.

As described in section 2.7, the MSTG contains local states and SPs that synchronize multiple
cores. For each ABB and therefore for each system call, one or more local states may be available
in the MSTG. Cross-core system calls and locking operations lead to a SP following the respective
system call.

27

3.3 Code Generator Implementation

1 extern "C" StatusType AUTOSAR_ActivateTask_BB18(TaskType arg0) {

2 StatusType result = E_OK;

3 // Callsite: T00

4 Machine :: disable_interrupts ();

5 // Hook: SystemEnterHook

6 { debug_core << __FUNCTION__ << endl; }

7 {

8 scheduler_ [1]. SetReady_impl(OS_T10_task);

9 Machine :: trigger_interrupt (10, 1, true);

10 }

11 // Hook: SystemLeaveHook

12 {

13 if (result != E_OK) {

14 CALL_HOOK(ErrorHook , result);

15 }

16 }

17 __OS_enable_irq_after_kernel ();

18 return result;

19 }

Listing 3.5 – Generated system call

Specialization of Cross-Core System Calls

The GetEvent, ActivateTask, and ChainTask system calls can be specialized using the results from IPI
Avoidance. When an MSTG SP that follows a cross-core system call does not lead to rescheduling
on the affected core, then the IPI is unnecessary. If multiple local states are available for the
given system call, the IPI can be avoided only if it is unnecessary in all possible states. The system
call can then be specialized by skipping the trigger_interrupt call as displayed in Listing 3.5. This
optimization is applied where possible to the system call implementations automatically when
the generator flag ipi_avoidance is set.

Specialization of Locking Operations

For GetSpinlock/TryToGetSpinlock/ReleaseSpinlock specialization, the Lock Elision analysis step shall
provide the information if a locking operation can be elided. The previous implementation only
checks whether a GetSpinlock leads to any spinning state on the same core. Because another
core could also call GetSpinlock before the first one has released the lock, the first locking
operation cannot be elided in this case, although it is initially not leading to a spinning state.
To correctly elide a locking operation, the MSTG states must be traversed. For each state, it
must be checked whether other cores are interacting with the same lock between the first
GetSpinlock/TryToGetSpinlock and the matching ReleaseSpinlock.

To visualize the lock elision algorithm, Listing 3.6 and Figure 3.3 show a test application
with two cores contending for the same lock and the corresponding (reduced) MSTG. While
the nodes in the MSTG represent SPs between both cores, red edges display system calls and
subsume local states implicitly, and the green edge stands for a spinning state.

28

3.3 Code Generator Implementation

1 void main() {

2 StatusType rv;

3 switch (GetCoreID ()) {

4 case OS_CORE_ID_MASTER:

5 StartCore(OS_CORE_ID_1 , &rv);

6 default:

7 StartOS (0);

8 }

9 }

10

11 /* core 0 */

12 TASK(T00) {

13 GetSpinlock(S1);

14 ActivateTask(T10);

15 /* other task may try to lock */

16 ReleaseSpinlock(S1);

17 ShutdownOS(E_OK);

18 }

19

20 /* core 1 */

21 TASK(T10) {

22 GetSpinlock(S1);

23 ReleaseSpinlock(S1);

24 ShutdownOS(E_OK);

25 }

Listing 3.6 – Test application

1 CPU 0 CPU 1

8 CPU 0 CPU 1

GL

13 CPU 0 CPU 1

AT

21 CPU 0 CPU 1

RL

23 CPU 0 CPU 1

GL

27 CPU 0 CPU 1

GL

31 CPU 0 CPU 1

RL

36 CPU 0 CPU 1

RL RL

Figure 3.3 – MSTG of test application

After the task T00 gets the lock (line 13, GL, 1→ 8), it activates task T10 on the second core
(line 14, AT, 8→ 13). While task T00 releases the lock (line 16, RL, 13→ 21 or 23→ 31), the
second task is accessing the same spinlock simultaneously (line 22, GL), which may already be
unlocked (21→ 27) or still locked (13→ 23).

The following algorithm can determine whether Lock Elision is possible. If the spinlock is
already held by any application while the given state is attempting to lock, the locking operation
can never be elided. After this initial requirement, the MSTG must be partially searched to
analyze the interactions related to the given spinlock operation. Starting from the initial SP after
the given state of a GetSpinlock/TryToGetSpinlock call (SP 8), all following SPs before the release
(blue nodes) must be visited. For each visited SP, the predecessor states must be examined. If a
predecessor state is not a system call related to the given spinlock, it is ignored. When another
core interacts with the spinlock before it is released, the locking operation cannot be elided in
the given state (as in SP 31). However, if a ReleaseSpinlock is executed on the same core for the
given spinlock (RL, 13→ 21), the subtree must not be searched further, and the ABB is stored
for the specialization of ReleaseSpinlock. Finally, when the spinlock has not been released in the
current path, all following SPs are added to the queue.

The MSTG is built using the graph-tool library, which provides various search algorithms like
Breadth First Search (BFS). These search algorithms do not allow stopping the exploration of a
subtree, instead, they only support stopping the complete search [PP]. Therefore, an adapted
BFS on the MSTG is required for this algorithm. The (simplified) implementation of this MSTG
search is depicted in Listing 3.7.

29

3.3 Code Generator Implementation

1 def can_elide(state , cpu_id)

2 visited = []

3 elide = True

4 queue = list(get_next_states(state))

5 spinlock = get_syscall_args_spinlock(state)

6 release_abb = None

7

8 for initial_sp in queue: # check if lock is already held

9 if lock_held(initial_sp , spinlock):

10 elide=False

11

12 while queue:

13 curr_sp = queue.pop(0) # FIFO -> BFS

14 visited.append(curr_sp)

15 stop_search_subtree = False

16

17 for p in get_predecessor_states(curr_sp):

18 if not get_syscall_args_spinlock(p) == spinlock:

19 continue # irrelevant predecessor

20

21 # Find ReleaseSpinlock on same cpu id with same spinlock

22 if cpu_id == get_cpuid(p) and syscall_name(p) == "ReleaseSpinlock":

23 stop_search_subtree = True

24 release_abb = get_abb(p) # store where the lock is released

25

26 if cpu_id != get_cpuid(p): # interaction on any other cpu

27 elide = False

28

29 if not stop_search_subtree:

30 for next_sp in get_successor_sps(curr_sp):

31 if next_sp not in visited and next_sp not in queue:

32 queue.append(next_sp)

33

34 return elide , release_abb

Listing 3.7 – MSTG search for Lock Elision

Just like the cross-core system call specialization, all possible states regarding a certain call
site for spinlock operations must be analyzed. Only if the lock can be elided in every possible
state and the generator flag lock_elision is set, the call site will be specialized. For a specialized
call site, the actual locking operation in GetSpinlock/TryToGetSpinlock and the unlocking operation
in the corresponding ReleaseSpinlock will be omitted. Still, in order to correctly handle unreleased
locks and prevent deadlocks, the bitmask of occupied spinlocks needs to be updated, and the
system call cannot be removed completely.

30

3.4 Conclusion

3.4 Conclusion

Figure 3.4 gives an overview of all components of the MACAW RTOS generator that were
explained in detail in the previous sections. These components are compiled together into the
final system image that can be executed on an x86 Linux host.

modified application IR code

System call rules

Call-site-specific system call implementation

StartOS IPI Handler Alarm template

Arch rules

ISR wrappers

Stacks, TCBs

OS rules

Scheduler template Hooks Alarms

Tasklist template Events Spinlocks

AUTOSAR libraries (os, arch_generic, arch_posix, test)

Figure 3.4 – MACAW RTOS generator overview

In summary, MACAW modifies the application IR code by inserting startup and error handling
calls and renaming each system call site. Fundamental AUTOSAR functionality is implemented
in the application-independent kernel libraries. MACAW automatically generates application-
specific code, such as system call implementations and static instances, based on the system
description. The system call generator can leverage static knowledge from previous analysis
steps for the Specialization of Interactions in the system calls. Also, in the development process
of the system synthesis, multiple fixes and extensions to improve other ARA steps and the
AUTOSAR OS model were added.

31

4A N A LY S I S

In this chapter, the implemented components of the MACAW RTOS generator are discussed and
evaluated. The kernel libraries and system generation are compared to those of other systems
like dOSEK and Trampoline RTOS, using their respective test cases.

With MACAW, the specialization of cross-core system calls and elision of locking operations
can be achieved. While these specializations improve the timing parameters such as delay
and jitter of real-time applications, they come at the cost of increased memory footprint. The
AUTOSAR kernel libraries integrated into ARA are based on dOSEK but do not support all
features of it. Porting the dependability extensions like arithmetic encoding of OS objects in
dOSEK is not in the scope of this work and only the POSIX platform is supported. Although the
decision to use POSIX as a virtual platform simplified multiple aspects of the development, it
limits the applicability of the implemented system. Exact measurements of performance and
timing improvements of the complete application on this platform, especially when executed on a
non-real-time scheduling x86 architecture, are affected by jitter, thus requiring microbenchmarks
and suitable metrics for the system evaluation.

Next to the optimization goals, conformance to the OSEK/AUTOSAR standards is required
for the interoperability and reuse of the AUTOSAR test applications in ARA. In the following
section, the extent to which the MACAW RTOS conforms to the OSEK/AUTOSAR standards is
discussed.

4.1 AUTOSAR Test Applications

MACAW implements the crucial AUTOSAR services required for scheduling and multicore han-
dling and supports most OSEK and AUTOSAR applications. Specifically, all dOSEK features,
including Events, Alarms, ISRs, and Timers/Counters, are adapted to a multicore operating system.
The multicore extensions to the AUTOSAR API, such as the StartCore service, synchronized startup
and shutdown, as well as Spinlocks, are implemented in MACAW. For actual AUTOSAR confor-
mance, additional primitives like ScheduleTables and protection checks need to be implemented
into the ARA OS model and the system generator, hence MACAW is “AUTOSAR Compatible.”

For functional testing, the following paragraphs list multiple sets of test applications for the
system generator. An overview of the complete Meson test suite, including over 100 working
test cases, is given in Appendix B.

33

4.1 AUTOSAR Test Applications

dOSEK Tests

The test cases from dOSEK are used as a baseline for the correct code generation of single-core
applications, as they cover the OSEK primitives like Events and Alarms, as well as the implemented
PCP with Resources. All functional test cases that succeed on dOSEK are also generated and
executed correctly on MACAW.

Trampoline RTOS Tests

The multicore tests from Trampoline RTOS check for a variety of features, including correct
error handling, cross-core system calls, and startup sequences. The system description of these
tests was ported to ARA, and the Trampoline test functionality, including assertions, is redirected
to the already implemented test framework described previously (paragraph Test Code). After
these adaptations, many multicore Trampoline RTOS tests can be built and executed successfully.
The tests listed in Table 4.1 are not part of the test suite because the ARA OS model and the
MACAW RTOS synthesis are missing certain functionality. Remarkably, test applications with
many interrupts, like mc_alarms_s1, are complex to analyze without further modifications or timing
restrictions, leading to a combinatorial explosion during the state enumeration.

Trampoline test case Limitation / missing function

mc_appTermination_s1,2 TerminateApplication

mc_reschedule_s1 Schedule

mc_taskTermination_s1,2 Timing protection
mc_autostart_s3, sched_tables_s1 ScheduleTable

mc_alarms_s1 Too complex (number of interrupts in MultiSSE)
mc_spinlock_s1 Too complex, timing protection, spinlock ordering (1)

(1) A modified mc_spinlock_s1 test without timing protection and unused ISR is working. The test
evaluates 20 separate assertions, of which two are failing due to unsupported spinlock ordering.

Table 4.1 – Unsupported Trampoline test cases

MACAW Tests

Next to the dOSEK and Trampoline RTOS tests, I have added further multicore tests specifically
for IPIs, core handling, and spinlocks. These tests partially overlap with features tested by
Trampoline but also exploit other edge cases like hooks or IPI synchronicity and are suitable
for testing specialized system calls. Compared to the Trampoline tests, where the test suite is
limited to only two cores, this test suite can support up to 16 cores.

MultiSSE Tests

Although the test cases for MultiSSE can be used to validate some aspects of the generator,
the tests require multiple modifications, including an updated startup sequence, insertion of
the test framework functions, and additional evaluation logic. But those tests do not check
for any functionality beyond the test coverage of the other tests, so they are not part of the
Meson test suite. Nevertheless, when the startup sequence is fixed, these applications compile

34

4.1 AUTOSAR Test Applications

and execute correctly. A subset of these tests is used to examine the specialized system calls in
subsection 4.2.2.

In summary, all implemented AUTOSAR features are working as expected, and the application
support of the implemented MACAW RTOS generator is comparable to other AUTOSAR imple-
mentations like Trampoline, with only a few limitations setting it apart. The objective to extend
the dOSEK system with multicore functionality to enable cross-core system call specialization
leveraging the static knowledge from the MultiSSE has been accomplished. In the next section,
the performance advantages of the implemented system call specializations are evaluated and
discussed.

4.2 Evaluation of the System Call Specialization

In this section, the specialization of the system calls is evaluated regarding their performance
advantages compared to the generic system calls. Due to the global locking in every system call,
the Trampoline AUTOSAR implementation is unsuitable for such a comparison. However, along
with more granular locking, that system could also benefit from Lock Elision on the system call
interface.

4.2.1 Microbenchmarks

In general, the performance gains of Lock Elision and IPI Avoidance are highly dependent on
the implementation and the platform. Especially when cheap-when-successful instructions are
used for locking operations, the performance gain is expected to be low. For the POSIX virtual
platform, the microbenchmarks in Appendix C are used to measure the delays of an IPI and
spinlock operations. Table 4.2 displays the results of these measurements.

The tests were compiled using clang-14 for i386, like MACAW, and executed on an Intel Xeon
W3670 at 3.2 GHz running Ubuntu 22.04. Because the measurement of timing is influenced
by jitter, scheduling, and system load, each benchmark is executed ten million times, and the
median is calculated. Using this method, test runs where scheduling on the host interrupts the
test execution are excluded, and the measured delays are nearly constant across multiple runs.

Benchmark Delay median

None 66 ns
IPI 1776 ns
IPI (synchronous) 2504 ns
Spinlock 91 ns
getpid 312 ns

Table 4.2 – Results for POSIX IPI and spinlock microbenchmarks in Appendix C

As a baseline, the delay between two directly consecutive system calls to clock_gettime is
66 ns. IPIs implemented using POSIX signals take about 1.7 µs, and about 2.5 µs if an additional
synchronization flag is used to signal IPI completion. With this synchronization flag, the

35

4.2 Evaluation of the System Call Specialization

interrupt overhead on the receiving core is considered on top of the delay of the signaling itself.
Remarkably, the calls to pthread_spin_lock and pthread_spin_unlock together only take 91 ns. The
spinlock operations in glibc use a cheap atomic decrement operation and do not require system
calls, so they cause a very low delay. For reference, the Linux getpid system call is added to
the comparison, as it always requires a kernelspace transition since the result is not cached in
glibc [Mic].

After many execution cycles, these benchmarks provide a comparable and consistent timing
result. In real applications, the delay of a single operation may have much higher delays
because of cache misses or microarchitectural side effects. These microbenchmarks therefore
only provide an estimation of the optimization potential on the POSIX platform. IPI Avoidance
can lead to a measurable reduction in delay and jitter, whereas Lock Elision does not improve the
performance noticeably on this platform. On other platforms, the delays can be very different,
thus architecture-independent metrics to evaluate the system call specialization are discussed in
the next subsection.

Next to the microbenchmarks, I have measured the runtime delay between StartupHook and
ShutdownHook of some test applications. Although each measurement is repeated 1000 times, the
jitter is still in the order of hundreds of nanoseconds, so the runtime measurements in Table 4.3
are rounded to microseconds. As expected, only tests where at least one IPI is avoided show a
measurable performance improvement over the generic implementation. The first IPI between
two cores is by far the slowest, delays of consecutive IPIs are close to the values given by the
microbenchmarks. Because this is probably a consequence of the lazy allocation of control
structures in the kernel, the performance improvement for ipi_g does not reflect the benefits
resulting from IPI Avoidance. The timing improvements of spinlock elision cannot be measured
exactly because the jitter is too high. For the ipi_d,f test applications, the avoidance of one IPI
reduces the average execution time by roughly 3 µs as expected from the microbenchmarks.

Application Generic Specialized Description

ipi2_g 22 µs 7 µs 1 / 1 IPIs avoided
ipi2_f 22 µs 19 µs 1 / 2 IPIs avoided
ipi2_d 26 µs 23 µs 1 / 3 IPIs avoided
spinlock_a 29 µs 29 µs 0 / 1 IPIs avoided,

4 / 8 locking operations elided

Table 4.3 – Comparison of test application runtime with specialized and generic system calls

4.2.2 Performance Impact Metrics

To analyze the possible impact of the system call specialization platform independently, the
actual number of performed specializations must be examined. For this purpose, it would
be possible to evaluate the results of the ARA analysis steps IPI Avoidance and Lock Elision.
Using this approach, the outcome of the MultiSSE is analyzed by counting states where IPIs
can be avoided for ActivateTask and GetSpinlock calls that do not lead to a spinning state [EFL23].
Another option is to execute relevant test applications and use tracing tools like ltrace to count
the number of calls to the pthread library or printf-tracing.

As both options do not directly count the call site specializations, the preferred approach for
this work is to count the specializations directly during the system generation phase. All call

36

4.2 Evaluation of the System Call Specialization

sites for cross-core ActivateTask, ChainTask, SetEvent system calls, as well as the spinlock opera-
tions GetSpinlock, TryToGetSpinlock, and ReleaseSpinlock, are counted. Additionally, the number of
specialized variants for these system calls is noted. As a result, in the multicore test applications
including MACAW, Trampoline, and MultiSSE (locks/2cores, locks/3cores, paper) test cases, 76
out of 274 system calls (≈ 28%) are replaced with a specialized variant. In Figure 4.1, the
number of specialized system calls compared to generic system calls are grouped by test sets.
Specialization is not possible for the Trampoline tests, as they are testing only very specific
features with two tasks on two cores, making interaction specializations not applicable. On
the other hand, the MultiSSE tests for spinlocks on two or three cores allow for many spinlock
specializations, while the paper tests include both specialization types. Further, the MACAW
RTOS tests (ipi, spinlock) show both possible specializations.

trampoline 2cores 3cores ipi spinlock paper
0

20

40

60

80

100

Sy
st

em
 c

al
ls

32
27

100

34
30

51

0

13

29

6
13 15

generic
specialized

Figure 4.1 – Specialized system calls for test applications

The results show that a noticeable number of spinlock operations in the test cases are
specialized, while IPIs are specialized less frequently. Although this is a direct consequence of
what the test applications are targeting, this is an expected result in general. With cross-core
system calls that require an IPI, a direct interaction with the receiving core is intended by the
caller and can only be avoided in rare cases. On the other hand, spinlock interactions are less
direct, and the operations are required only when other cores are simultaneously accessing the
same spinlock, making Lock Elision possible on many occasions.

37

4.3 Result Discussion

4.3 Result Discussion

The previous section covers performance improvements by eliding costly operations, but other
nonfunctional properties like memory usage are affected by specialization as well. As the
implemented system calls are generated and statically specialized per call site, they increase the
memory footprint of the system linearly with each system call [Hof+15]. With this memory
overhead in mind, the removal of data structures for locks that are never used to free up
memory does not improve the overall system memory usage. To reduce this memory usage, not-
specialized system calls could use a common, generic, and non-static system call implementation,
like Trampoline RTOS. However, this is currently not supported without additional changes to
the dOSEK task template, as the system call generation requires the insertion of static knowledge
for each system call. Additionally, the specialization of system calls is limited to skipping only
certain operations, not removing the entire system call, because it may contain other side effects.
Only if functional requirements are relaxed to exclude incorrect application behavior like double-
locking or missing lock releases, an aggressive specialization can remove the complete system
call and reduce memory usage. The system analysis could employ additional steps to check for
such conditions and allow for the elision of the whole system call. If memory protection is in
place, this kind of specialization would also remove the overhead of kernelspace transitions,
further improving the effectiveness of the optimization.

Another important factor is the mutual influence of the MultiSSE pre-calculated timings with
the system call specialization. If the MultiSSE leverages static timing knowledge, the optimized
system calls may reduce the best-case execution times for single ABBs, which must be considered
in the timing calculation.

Regarding performance improvements or jitter reduction, the defined metric shows signifi-
cant potential for system call specialization for the test applications. As real-world multicore
AUTOSAR applications are rarely available, improvements by specialization remain to be ana-
lyzed in such cases. In general, the applicability of cross-core system call specialization is not
limited to the use case of AUTOSAR timing improvements, the concept can be applied to other
statically defined RTOSs as well.

38

5C O N C LU S I O N

In this thesis, I have created an AUTOSAR-compatible RTOS generator, supporting interaction-
based specialization of multicore applications. By utilizing the results from the MultiSSE analysis,
MACAW can specialize system calls per call site to eliminate costly operations and improve the
timing parameters of the system. The MultiSSE analysis builds an MSTG that is evaluated to
determine whether certain system calls require IPIs or locking operations.

MACAW is based on the dOSEK project, which supports only single-core OSEK applica-
tions [Hof+15]. I have implemented the multicore features like spinlocks, core startup, and
synchronization defined by the AUTOSAR standard for the POSIX virtual platform. Cores are
modeled as POSIX threads, signals represent interrupts, and the resulting AUTOSAR image can
be executed on x86 GNU/Linux systems. With thread placement on different host CPUs and
real-time scheduling, the generated system can achieve actual real-time behavior and parallel
computation on physical cores. To mitigate locking on the system call interface, each core
schedules independently, and cross-core operations like thread activation on a different core use
atomic operations. While the kernel libraries are independent of the whole-system approach, the
generator with system call specializations depends on the ARA analysis steps like the MultiSSE.
The multicore states in the MSTG enable optimization through Specialization of Interactions if
the resulting system call semantics remain unchanged. With Lock Elision and IPI Avoidance, two
possible types of multicore specializations are available and can be applied to every AUTOSAR
application by the MACAW generator automatically. As one part of the application-specific
system generator, the LLVM IR code of the application is modified to call the statically specialized
variant for each supported system call.

As a result, it is possible to improve the timing behavior of statically defined real-time
applications with a reduction in delay and jitter. The test results suggest that spinlocks can be
elided in many applications, but the performance impact is low, at least on the POSIX platform.
On the other hand, avoiding an unnecessary IPI can reduce the delay in the order of microseconds,
which is clearly measurable even in a jitter-influenced environment. In a subset of available and
relevant multicore test applications, 28 % of cross-core system calls can be specialized. Although
a few features are missing, MACAW supports the key functionality of the AUTOSAR specification
and can handle most test applications present in the ARA repository. The currently implemented
system only supports the POSIX platform, future work could extend the platform support to an
ARM-based microcontroller as this is a more realistic scenario for automotive control systems.
Also, more AUTOSAR features like memory protection could be added to MACAW, and the
benefit of removing the complete system call can be analyzed.

39

L I S T O F A C R O N Y M S

ABB Atomic Basic Block
API Application Programming Interface
ARA Automated Real-time system Analyzer
AST Abstract Syntax Tree
AUTOSAR AUTomotive Open System ARchitecture
BFS Breadth First Search
CAS Compare and Swap
CFG Control Flow Graph
dOSEK Dependability-Oriented Static Embedded Kernel
ECU Electronic Control Unit
glibc GNU C Library
IOC Inter-OS-Application Communicator
IoT Internet of Things
IPI Inter-Processor Interrupt
IR Intermediate Representation
ISR Interrupt Service Routine
MACAW Multicore AUTOSAR Compatible Application-specific Whole-system-

optimizer
MPU Memory Protection Unit
MSTG Multicore State Transition Graph
NPTL Native POSIX Thread Library
OIL OSEK Implementation Language
OSEK Open Systems and their Interfaces for the Electronics in Motor

Vehicles (Offene Systeme und deren Schnittstellen für die Elektronik
in Kraftfahrzeugen)

PCP Priority Ceiling Protocol
POSIX Portable Operating System Interface
RISC Reduced Instruction Set Computer
RTOS Real-Time Operating System
SIA Static Instance Analysis
SMP Symmetric Multiprocessing
SP Synchronization Point
SSE System State Enumeration
SWFRT Software Free Running Timer
TCB Task Control Block

41

L I S T O F F I G U R E S

2.1 Operating system components between applications and hardware [Loh20, adapted] 3
2.2 Multicore system with caching [SGG18, adapted] . 5
2.3 Application development example in OSEK [OSE04b] 7
2.4 POSIX system call interface in GNU/Linux . 11
2.5 LLVM toolchain for C code . 12
2.6 Whole-system optimization with ARA [ENL22] . 16
2.7 MultiSSE example initial system state (synchronization point) [EFL23] 17

3.1 AUTOSAR image generation with ARA . 20
3.2 Multicore synchronization points [AUT22, adapted] 22
3.3 MSTG of test application . 29
3.4 MACAW RTOS generator overview . 31

4.1 Specialized system calls for test applications . 37

43

L I S T O F TA B L E S

2.1 AUTOSAR system call interface subset [AUT22; OSE05] 9

3.1 POSIX signals employed in MACAW . 24

4.1 Unsupported Trampoline test cases . 34
4.2 Results for POSIX IPI and spinlock microbenchmarks 35
4.3 Comparison of test application runtime with specialized and generic system calls 36

45

L I S T O F L I S T I N G S

2.1 OIL configuration . 7
2.2 OSEK application . 7
2.3 POSIX thread, spinlock and signal interfaces [IEE17] 10
2.4 Atomic instruction in C, x86 assembly and LLVM IR 12
2.5 Accessing basic blocks with the LLVM C++ API [LLVb] 13

3.1 Startup sequence for two cores . 22
3.2 Synchronization of multiple cores . 23
3.3 Interrupt trigger mechanism . 24
3.4 Test execution result . 25
3.5 Generated system call . 28
3.6 Test application . 29
3.7 MSTG search for Lock Elision . 30

A.1 Test application for IPIs . 53

B.1 Test Suite results . 55

C.1 Microbenchmark application . 59

47

R E F E R E N C E S

[Ama] Amazon Web Services. FreeRTOS. URL: freertos.org (visited on 03/24/2023).

[Aud+95] Neil C. Audsley et al. “Real-Time System Scheduling.” In: Predictably Dependable
Computing Systems. Springer Berlin Heidelberg, 1995, pp. 41–52. DOI: 10.1007/978-
3-642-79789-7_3.

[AUT] AUTOSAR GbR. AUTOSAR. URL: https://www.autosar.org (visited on 02/20/2023).

[AUT22] AUTOSAR. Specification of Operating System. R22-11. Nov. 2022. URL: https://
www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf (visited on
06/12/2023).

[Bec+06] Jean-Luc Bechennec et al. “Trampoline An Open Source Implementation of the
OSEK/VDX RTOS Specification.” In: 2006 IEEE Conference on Emerging Technologies
and Factory Automation. 2006, pp. 62–69. DOI: 10.1109/ETFA.2006.355432.

[Coo17] Jim Cooling. Real-time Operating Systems. Book 1 - The Theory. The Engineering of
Real-Time Embedded Systems Series. 2017.

[DHL15] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. “Cross-Kernel Control-
Flow-Graph Analysis for Event-Driven Real-Time Systems.” In: Proceedings of the
16th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, Tools
and Theory for Embedded Systems. Ed. by ACM. Portland, Oregon, USA, 2015, pp. 1–
10. DOI: 10.1145/2670529.2754963.

[DL17] Christian Dietrich and Daniel Lohmann. “OSEK-V: Application-Specific RTOS Instan-
tiation in Hardware.” In: Proceedings of the 2017 ACM SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems (LCTES ’17) (Barcelona,
Spain). New York, NY, USA: ACM Press, 2017. DOI: 10.1145/3078633.3078637.

[DL18] Christian Dietrich and Daniel Lohmann. “Semi-Extended Tasks: Efficient Stack
Sharing Among Blocking Threads.” In: Proceedings of the 39th IEEE Real-Time
Systems Symposium 2018. Ed. by Sebastian Altmeyer. Nashville, Tennessee, USA:
IEEE Computer Society Press, 2018. DOI: 10.1109/RTSS.2018.00049.

[DM03] Ulrich Drepper and Ingo Molnar. The Native POSIX Thread Library for Linux. Red Hat.
Feb. 2003. URL: https://static.redhat.com/legacy/whitepapers/developer/POSIX_
Linux_Threading.pdf (visited on 02/20/2023).

[EFL23] Gerion Entrup, Björn Fiedler, and Daniel Lohmann. “MultiSSE: Static Syscall Elision
and Specialization for Event-Triggered Multi-Core RTOS.” In: Proceedings of the 29th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’23).
May 2023.

49

freertos.org
https://doi.org/10.1007/978-3-642-79789-7_3
https://doi.org/10.1007/978-3-642-79789-7_3
https://www.autosar.org
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_SWS_OS.pdf
https://doi.org/10.1109/ETFA.2006.355432
https://doi.org/10.1145/2670529.2754963
https://doi.org/10.1145/3078633.3078637
https://doi.org/10.1109/RTSS.2018.00049
https://static.redhat.com/legacy/whitepapers/developer/POSIX_Linux_Threading.pdf
https://static.redhat.com/legacy/whitepapers/developer/POSIX_Linux_Threading.pdf

References

[ENL22] Gerion Entrup, Jan Neugebauer, and Daniel Lohmann. “RTOS-Independent Interac-
tion Analysis in ARA.” In: Proceedings of the 16th Annual Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT ’22) (Modena,
Italy). July 2022.

[ESD19] Gerion Entrup, Benedikt Steinmeier, and Christian Dietrich. “ARA: Automatic
Instance-Level Analysis in Real-Time Systems.” In: Proceedings of the 15th An-
nual Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT ’19) (Stuttgart, Germany). July 2019.

[Evi] Evidence Srl. Erika Enterprise RTOS v3. URL: https://www.erika-enterprise.com

(visited on 03/25/2023).

[Fie+18] Björn Fiedler et al. “Levels of Specialization in Real-Time Operating Systems.”
In: Proceedings of the 14th Annual Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT ’18) (Barcelona, Spain). 2018.

[Fie+21] Björn Fiedler et al. “ARA: Static Initialization of Dynamically-Created System Ob-
jects.” In: Proceedings of the 27th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’21) (Virtual Event). May 2021, pp. 400–412. DOI:
10.1109/RTAS52030.2021.00039.

[Fre] Free Software Foundation, Inc. RTL (GNU Compiler Collection (GCC) Internals).
12.2. URL: https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gccint/RTL.html (visited
on 02/25/2023).

[HBR21] Imane Haur, Jean-Luc Béchennec, and Olivier Henri Roux. “Formal schedulability
analysis based on multi-core RTOS model.” In: RTNS ’2021. The 29th International
Conference on Real-Time Networks and Systems. Nantes, France, Apr. 2021. DOI:
10.1145/3453417.3453437.

[Hof+15] Martin Hoffmann et al. “dOSEK: The Design and Implementation of a Dependability-
Oriented Static Embedded Kernel.” In: Proceedings of the 21st IEEE International
Symposium on Real-Time and Embedded Technology and Applications (RTAS ’15).
Washington, DC, USA: IEEE Computer Society Press, 2015, pp. 259 –270. DOI:
10.1109/RTAS.2015.7108449.

[IEE17] IEEE. Portable Operating System Interface (POSIX(TM)) Base Specifications, Issue
7. IEEE Std 1003.1-2017. 2017. DOI: 10.1109/IEEESTD.2018.8277153. URL: https:
//pubs.opengroup.org/onlinepubs/9699919799/.

[Lat11] Chris Lattner. The Architecture of Open Source Applications: LLVM. 2011. URL: https:
//www.aosabook.org/en/llvm.html (visited on 02/25/2023).

[LLVa] LLVM. LLVM Language Reference Manual. 14.0. URL: https://releases.llvm.org/14.
0.0/docs/LangRef.html (visited on 02/25/2023).

[LLVb] LLVM. LLVM Programmers Manual. 14.0. URL: https://releases.llvm.org/14.0.0/
docs/ProgrammersManual.html (visited on 02/25/2023).

[Loh20] Daniel Lohmann. Betriebssystembau. 2020.

[Mic] Michael Kerrisk. Linux manual page. URL: https://man7.org/linux/man-pages

(visited on 03/27/2023).

[OSE04a] OSEK/VDX. Communication. 3.0.3. July 2004. URL: https://www.osek-vdx.org/

mirror/OSEKCOM303.pdf (visited on 03/25/2023).

50

https://www.erika-enterprise.com
https://doi.org/10.1109/RTAS52030.2021.00039
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gccint/RTL.html
https://doi.org/10.1145/3453417.3453437
https://doi.org/10.1109/RTAS.2015.7108449
https://doi.org/10.1109/IEEESTD.2018.8277153
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.aosabook.org/en/llvm.html
https://www.aosabook.org/en/llvm.html
https://releases.llvm.org/14.0.0/docs/LangRef.html
https://releases.llvm.org/14.0.0/docs/LangRef.html
https://releases.llvm.org/14.0.0/docs/ProgrammersManual.html
https://releases.llvm.org/14.0.0/docs/ProgrammersManual.html
https://man7.org/linux/man-pages
https://www.osek-vdx.org/mirror/OSEKCOM303.pdf
https://www.osek-vdx.org/mirror/OSEKCOM303.pdf

References

[OSE04b] OSEK/VDX. System Generation. OIL: OSEK Implementation Language. 2.5. July 2004.
URL: https://www.osek-vdx.org/mirror/oil25.pdf (visited on 02/20/2023).

[OSE05] OSEK/VDX. Operating System Specification. 2.2.3. Feb. 2005. URL: https://www.osek-
vdx.org/mirror/os223.pdf (visited on 02/20/2023).

[PP] Tiago de Paula Peixoto. graph_tool.search - Search algorithms. 2.5.3. URL: https:
//graph-tool.skewed.de/static/doc/search_module.html (visited on 04/16/2023).

[SGG18] A. Silberschatz, G. Gagne, and P.B. Galvin. Operating System Concepts. 10th ed.
Wiley, 2018.

[Sta18] William Stallings. Operating Systems. Internals and Design Principles. 9th ed. Pearson
Education Limited, 2018.

[Tig+17] Kabland Toussaint Gautier Tigori et al. “Formal Model-Based Synthesis of Application-
Specific Static RTOS.” In: ACM Trans. Embed. Comput. Syst. 16.4 (2017). ISSN:
1539-9087. DOI: 10.1145/3015777.

[Zep] Zephyr Project. Zephyr Project Documentation. URL: https://docs.zephyrproject.org
(visited on 03/24/2023).

51

https://www.osek-vdx.org/mirror/oil25.pdf
https://www.osek-vdx.org/mirror/os223.pdf
https://www.osek-vdx.org/mirror/os223.pdf
https://graph-tool.skewed.de/static/doc/search_module.html
https://graph-tool.skewed.de/static/doc/search_module.html
https://doi.org/10.1145/3015777
https://docs.zephyrproject.org

AI P I T E S T A P P L I CAT I O N

1 #include "autosar/os.h"

2 #include "test/test.h"

3

4 DeclareTask(T00);

5 DeclareTask(T10);

6 DeclareTask(T20);

7 DeclareTask(T30);

8

9 DeclareEvent(E1, 1);

10

11 void start()

12 {

13 StatusType rv;

14 switch(GetCoreID ()) {

15 case OS_CORE_ID_MASTER:

16 StartCore(OS_CORE_ID_1 , &rv);

17 StartCore(OS_CORE_ID_2 , &rv);

18 StartCore(OS_CORE_ID_3 , &rv);

19 default:

20 StartOS (0);

21 }

22 }

23

24 TEST_MAKE_OS_MAIN(start())

25

26 TASK(T00) {

27 test_trace('0');

28 ActivateTask(T10);

29 WaitEvent(E1);

30 test_trace('E');

31 ShutdownAllCores(E_OK);

32 }

33

34 TASK(T10) {

35 test_trace('1');

36 ChainTask(T20);

37

38 }

53

IPI Test Application

39

40 TASK(T20) {

41 test_trace('2');

42 ChainTask(T30);

43 }

44

45 TASK(T30) {

46 test_trace('3');

47 SetEvent(T00 , E1);

48 TerminateTask ();

49 }

50

51 void ShutdownHook(StatusType status) {

52 (void) status;

53 /* The testcase has finished , check the output */

54 if (GetCoreID () == OS_CORE_ID_0) {

55 test_trace_assert("0123E");

56 test_finish ();

57 }

58 }

Listing A.1 – Test application for IPIs

54

BM A CAW G E N E R AT O R T E S T S U I T E

1 autosar_generator_autosar_singlecore_bcc1_alarm2_a OK

2 autosar_generator_autosar_singlecore_bcc1_alarm2_c OK

3 autosar_generator_autosar_singlecore_bcc1_alarm2_b OK

4 autosar_generator_autosar_singlecore_bcc1_alarm1_c OK

5 autosar_generator_autosar_singlecore_bcc1_alarm1_a OK

6 autosar_generator_autosar_singlecore_bcc1_alarm1_b OK

7 autosar_generator_autosar_singlecore_bcc1_alarm1_e OK

8 autosar_generator_autosar_singlecore_bcc1_alarm1_d OK

9 autosar_generator_autosar_singlecore_bcc1_complex1_a OK

10 autosar_generator_autosar_singlecore_bcc1_counter1_a OK

11 autosar_generator_autosar_singlecore_bcc1_complex2_a OK

12 autosar_generator_autosar_singlecore_bcc1_isr2_a OK

13 autosar_generator_autosar_singlecore_bcc1_isr2_b OK

14 autosar_generator_autosar_singlecore_bcc1_isr2_c OK

15 autosar_generator_autosar_singlecore_bcc1_isr2_d OK

16 autosar_generator_autosar_singlecore_bcc1_isr2_e OK

17 autosar_generator_autosar_singlecore_bcc1_resource1_a OK

18 autosar_generator_autosar_singlecore_bcc1_resource1_b OK

19 autosar_generator_autosar_singlecore_bcc1_resource1_c OK

20 autosar_generator_autosar_singlecore_bcc1_resource1_d OK

21 autosar_generator_autosar_singlecore_bcc1_complex1_b OK

22 autosar_generator_autosar_singlecore_bcc1_complex1_c OK

23 autosar_generator_autosar_singlecore_bcc1_complex1_d OK

24 autosar_generator_autosar_singlecore_bcc1_resource1_e OK

25 autosar_generator_autosar_singlecore_bcc1_resource1_f OK

26 autosar_generator_autosar_singlecore_bcc1_resource1_g OK

27 autosar_generator_autosar_singlecore_bcc1_resource1_j OK

28 autosar_generator_autosar_singlecore_bcc1_resource1_h OK

29 autosar_generator_autosar_singlecore_bcc1_resource1_k OK

30 autosar_generator_autosar_singlecore_bcc1_resource1_l OK

31 autosar_generator_autosar_singlecore_bcc1_resource2_a OK

32 autosar_generator_autosar_singlecore_bcc1_sse1_a OK

33 autosar_generator_autosar_singlecore_bcc1_sse1_c OK

34 autosar_generator_autosar_singlecore_bcc1_sse1_b OK

35 autosar_generator_autosar_singlecore_bcc1_resource2_b OK

36 autosar_generator_autosar_singlecore_bcc1_task1_a OK

37 autosar_generator_autosar_singlecore_bcc1_alarm1_f OK

38 autosar_generator_autosar_singlecore_bcc1_alarm3_a OK

55

MACAW Generator Test Suite

39 autosar_generator_autosar_singlecore_bcc1_alarm3_e OK

40 autosar_generator_autosar_singlecore_bcc1_task1_b OK

41 autosar_generator_autosar_singlecore_bcc1_task1_d OK

42 autosar_generator_autosar_singlecore_bcc1_task1_c OK

43 autosar_generator_autosar_singlecore_bcc1_task1_f OK

44 autosar_generator_autosar_singlecore_bcc1_task1_e OK

45 autosar_generator_autosar_singlecore_bcc1_task1_g OK

46 autosar_generator_autosar_singlecore_bcc1_task2_a OK

47 autosar_generator_autosar_singlecore_bcc1_task2_b OK

48 autosar_generator_autosar_singlecore_ecc1_bt1_a OK

49 autosar_generator_autosar_singlecore_bcc1_task2_c OK

50 autosar_generator_autosar_singlecore_ecc1_bt1_b OK

51 autosar_generator_autosar_singlecore_ecc1_bt1_e OK

52 autosar_generator_autosar_singlecore_ecc1_bt1_c OK

53 autosar_generator_autosar_singlecore_ecc1_bt1_f OK

54 autosar_generator_autosar_singlecore_ecc1_bt1_d OK

55 autosar_generator_autosar_singlecore_ecc1_bt1_g OK

56 autosar_generator_autosar_singlecore_ecc1_bt1_h OK

57 autosar_generator_autosar_singlecore_ecc1_event1_a OK

58 autosar_generator_autosar_singlecore_ecc1_event1_d OK

59 autosar_generator_autosar_singlecore_ecc1_event1_c OK

60 autosar_generator_autosar_singlecore_ecc1_event1_b OK

61 autosar_generator_autosar_singlecore_ecc1_event1_f OK

62 autosar_generator_autosar_singlecore_ecc1_event1_e OK

63 autosar_generator_autosar_singlecore_ecc1_event1_g OK

64 autosar_generator_autosar_singlecore_ecc1_eventisr1_c OK

65 autosar_generator_autosar_singlecore_ecc1_eventisr1_d OK

66 autosar_generator_autosar_singlecore_ecc1_eventisr1_e OK

67 autosar_generator_autosar_singlecore_ecc1_eventisr1_f OK

68 autosar_generator_autosar_singlecore_sched_a OK

69 autosar_generator_autosar_singlecore_ecc1_eventisr1_a OK

70 autosar_generator_autosar_singlecore_ecc1_eventisr1_b OK

71 autosar_generator_autosar_singlecore_bcc1_alarm3_b OK

72 autosar_generator_autosar_singlecore_bcc1_alarm3_d OK

73 autosar_generator_autosar_singlecore_bcc1_alarm3_c OK

74 autosar_generator_autosar_multicore_trampoline_mc_autostart_s1 OK

75 autosar_generator_autosar_multicore_trampoline_mc_autostart_s2 OK

76 autosar_generator_autosar_multicore_trampoline_mc_coreid_s1 OK

77 autosar_generator_autosar_multicore_trampoline_mc_eventSetting_s1 OK

78 autosar_generator_autosar_multicore_trampoline_mc_events_s1 OK

79 autosar_generator_autosar_multicore_trampoline_mc_scheduling_s1 OK

80 autosar_generator_autosar_multicore_trampoline_mc_startOs_s1 OK

81 autosar_generator_autosar_multicore_trampoline_mc_startup_s1 OK

82 autosar_generator_autosar_multicore_trampoline_mc_taskActivation_s1 OK

83 autosar_generator_autosar_multicore_trampoline_mc_taskChaining_s1 OK

84 autosar_generator_autosar_multicore_andreas_ipi_a OK

85 autosar_generator_autosar_multicore_andreas_ipi_b OK

86 autosar_generator_autosar_multicore_andreas_ipi_c OK

87 autosar_generator_autosar_multicore_andreas_ipi_d OK

88 autosar_generator_autosar_multicore_andreas_ipi_e OK

89 autosar_generator_autosar_multicore_andreas_ipi_f OK

90 autosar_generator_autosar_multicore_andreas_ipi_g OK

56

MACAW Generator Test Suite

91 autosar_generator_autosar_multicore_andreas_ipi2_a OK

92 autosar_generator_autosar_multicore_andreas_ipi2_b OK

93 autosar_generator_autosar_multicore_andreas_ipi2_c OK

94 autosar_generator_autosar_multicore_andreas_ipi2_d OK

95 autosar_generator_autosar_multicore_andreas_ipi2_e OK

96 autosar_generator_autosar_multicore_andreas_ipi2_f OK

97 autosar_generator_autosar_multicore_andreas_ipi2_g OK

98 autosar_generator_autosar_multicore_andreas_spinlock_a OK

99 autosar_generator_autosar_multicore_andreas_spinlock_b OK

100 autosar_generator_autosar_multicore_andreas_spinlock_c OK

101 autosar_generator_autosar_multicore_andreas_spinlock_e OK

102 autosar_generator_autosar_multicore_andreas_spinlock_f OK

103 autosar_generator_autosar_multicore_andreas_cores_4 OK

104 autosar_generator_autosar_multicore_andreas_cores_12 OK

105 autosar_generator_autosar_multicore_andreas_cores_16 OK

106

107 Ok: 105

108 Expected Fail: 0

109 Fail: 0

110 Unexpected Pass: 0

111 Skipped: 0

112 Timeout: 0

Listing B.1 – Test Suite results

57

CP O S I X M I C R O B E N C H M A R K S

1 typedef enum {

2 NONE = 0,

3 IPI = 1,

4 IPI_SYNC = 2,

5 SPINLOCK = 3,

6 GETPID = 4,

7 } MODE_t;

8

9 _Atomic(int) ctr = 0;

10 _Atomic(bool) finished = false;

11 _Atomic(bool) exit_flag = false;

12 pthread_t t0, t1;

13 pthread_spinlock_t lock;

14 struct timespec start , end;

15 MODE_t MODE = 0;

16 #define REPEAT 10000000

17 unsigned int diff[REPEAT];

18

19 void test_start(int i) {

20 clock_gettime(CLOCK_REALTIME , &start); // start test

21 }

22

23 void test_end(int i) {

24 clock_gettime(CLOCK_REALTIME , &end); // end test

25 if (end.tv_nsec < start.tv_nsec)

26 end.tv_nsec += 1e9; // handle seconds

27 diff[i] = end.tv_nsec - start.tv_nsec;

28 }

29

30 int compare (const void * a, const void * b) {

31 return *(int*)a - *(int*)b;

32 }

33

34 void test_print () {

35 qsort (diff , REPEAT , sizeof (unsigned int), compare);

36 printf("median: %u ns\n", diff[REPEAT /2]);

37 }

38

59

POSIX Microbenchmarks

39 void thread_sync () { while (++ctr < 2); }

40

41 void handler(int signum) { finished = true; }

42

43 void thread_0 () {

44 thread_sync (); // sync both threads

45 while (! exit_flag);

46 }

47

48 void thread_1 () {

49 thread_sync (); // sync both threads

50 for (int i = 0; i < REPEAT; i++) {

51 switch (MODE) {

52 case NONE:

53 test_start(i);

54 test_end(i);

55 break;

56 case IPI:

57 test_start(i);

58 pthread_kill(t0, SIGUSR1);

59 test_end(i);

60 break;

61 case IPI_SYNC:

62 finished = false;

63 test_start(i);

64 pthread_kill(t0, SIGUSR1);

65 while (! finished);

66 test_end(i);

67 break;

68 case SPINLOCK:

69 test_start(i);

70 pthread_spin_lock (&lock);

71 pthread_spin_unlock (&lock);

72 test_end(i);

73 break;

74 case GETPID:

75 test_start(i);

76 getpid ();

77 test_end(i);

78 break;

79 }

80 }

81 exit_flag = true;

82 }

83

84 int main(int argc , char* argv []) {

85 /* init signal handler , spinlock , threads */

86 test_print ();

87 }

Listing C.1 – Microbenchmark application

60

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Operating System Design
	2.2 Embedded Operating Systems
	2.2.1 Priority-Based Scheduling
	2.2.2 Multicore Systems

	2.3 OSEK and AUTOSAR Standards
	2.3.1 OSEK System Specification
	2.3.2 AUTOSAR Classic Platform

	2.4 POSIX on Linux
	2.5 Compiler and Code Toolchain
	2.5.1 LLVM Intermediate Representation
	2.5.2 Automatic Source Code Modification
	2.5.3 RTOS Specialization

	2.6 dOSEK System Analysis and Synthesis
	2.7 MultiSSE: Whole-System Analysis and Optimization with ARA
	2.8 Related Work

	3 Architecture
	3.1 Architecture and Framework
	3.2 AUTOSAR Kernel Libraries Implementation
	3.3 Code Generator Implementation
	3.3.1 IR Code Modification
	3.3.2 AUTOSAR OS Generation
	3.3.3 Architecture Specific Code
	3.3.4 Generic System Calls
	3.3.5 Specialized System Calls

	3.4 Conclusion

	4 Analysis
	4.1 AUTOSAR Test Applications
	4.2 Evaluation of the System Call Specialization
	4.2.1 Microbenchmarks
	4.2.2 Performance Impact Metrics

	4.3 Result Discussion

	5 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

	A IPI Test Application
	B MACAW Generator Test Suite
	C POSIX Microbenchmarks

