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A B S T R A C T

The increasing complexity of software systems results in changes to these systems often unknowingly
causing unintended side effects. Particularly in the case of large open source projects with developers
new to the project, this leads to an increased review effort and a higher risk for errors. For this
reason, it is desired that possible side effects of a change can be detected and quantified as early as
possible.

With the cHash approach, there is a novel way to detect semantic changes to program code
and distinguish them from semantically irrelevant changes based on abstract syntax tree (AST)
hashing. In conjunction with the concept of the global reference graph (GRG), the dependencies
within a program can be modelled completely. Using the GRG, change impact analysis (CIA) can be
performed to estimate the impact of a change on the rest of the program. To better estimate the
severity of a change, various metrics are defined to quantify change impact. The main computational
effort in the presented CIA is performed by cHash, and thus by the compiler. The additional overhead
of computing the change metrics turns out to be low, making this approach a very efficient means of
impact analysis.

First the metrics were examined for their expressiveness using the development history of the
open source projects QEMU, CPython, OpenSSL and Lua. It was then investigated whether there is
a correlation between the size of a change and the social interaction around that change in an open
source project. The evidenced discrepancy in these two measurements suggests that developers
are often unaware of the possible impact of a change or do not discuss it properly. A comparison
with a third party metric showed that the change metrics presented can certainly match established
solutions.
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KU R Z FA S S U N G

Die steigende Komplexität von Softwaresystemen führt dazu, dass Änderungen an diesen Systemen
oftmals unbewusst unerwünschte Seiteneffekte auslösen. Insbesondere bei großen Open-Source
Projekten mit Entwicklern, die noch nicht so lange mit dem Projekt vertraut sind, führt das zu einem
erhöhten Review-Aufwand und einer höheren Fehlergefahr. Aus diesem Grund ist es wünschenswert,
die möglichen Seiteneffekte einer Änderung frühzeitig erkennen und quantifizieren zu können.

Mit dem cHash-Ansatz gibt es eine neuartige Möglichkeit, semantische Änderungen am Pro-
grammcode zu erkennen und von semantisch irrelevanten Änderungen zu unterscheiden, die auf
dem Hashing des Abstrakten Syntaxbaums (AST) aufbaut. Zusammen mit dem Konzept des Globalen
Referenzgraphen können die Abhängigkeiten innerhalb eines Programms vollständig abgebildet
werden. Mit dem Globalen Referenzgraphen können Änderungsanalysen durchgeführt werden,
die die Auswirkungen einer Änderung auf das komplette Programm abschätzen. Um die Größe
einer Änderung besser einschätzen zu können, werden verschiedene Metriken zum Quantifizieren
der Änderungsauswirkungen definiert. Der hauptsächliche Rechenaufwand bei der vorgestellten
Änderungsanalyse wird von cHash, und damit vom Compiler getragen. Der zusätzliche Aufwand
durch das Berechnen der Änderungsmetriken fällt gering aus, wodurch mit diesem Ansatz eine sehr
effiziente Art der Änderungsanalyse gefunden wurde.

Die Metriken wurden zunächst anhand der Entwicklungsgeschichte der Open-Source Projekte
QEMU, CPython, OpenSSL und Lua auf ihre Aussagekraft untersucht. Anschließend wurde überprüft,
ob ein Zusammenhang zwischen der Größe einer Änderung und der sozialen Interaktion um diese
Änderung in einem Open-Source Projekt besteht. Die nachgewiesene Diskrepanz dieser beiden
Messungen legt nahe, dass Entwicklern oftmals das Ausmaß einer Änderung nicht bewusst ist oder
diese nicht ausreichend diskutiert wird. Ein Vergleich mit der Metrik eines Drittanbieters ergab, dass
die vorgestellten Änderungsmetriken durchaus mit etablierten Lösungen mithalten können.
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1I N T R O D U C T I O N

Software maintenance is a crucial part of the software development lifecycle: A software product
rarely reaches a finished and final state. After their release, most projects are constantly evolved and
adapted to account for changing requirements, environments and new or old security vulnerabilities.
Consider, for example, the Linux kernel: After its initial release in 19911 it grew from roughly
8.400 lines of code to now over 22 million lines of code.2 Through this massive increase in size and
complexity, a developer can hardly always fully understand the possible side effects and consequences
a new change to the software could have. Therefore, to assist the software development and review
process, an entire research area has been established around change impact analysis. Since impact
analysis was first defined by Arnold and Bohner in 1993, a plethora of methods have been explored
with varying degrees of precision and complexity. The approaches can be static or dynamic and
range from call graph analysis over program slicing to ripple effect analysis [Li+13].

A common denominator across all those approaches is that they result in impact sets. Those
describe what parts of a program will possibly be affected by a change. During software development
and review, those impact sets can be used to assess the possible consequences of a change. However,
invoking an impact analysis program and inspecting the impact sets manually for each change can
quickly be seen as an additional burden to a developer, rather than an opportunity. Therefore, an
impact analysis approach that cleanly integrates with a projects build process, which is invoked
anyway during development, is desirable. The interpretation of the impact analysis can be greatly
simplified for the developer if the possible effects of a change are presented in a report using metrics
that quantify different aspects of a change. Impact analysis can be much more valuable if its results
lead to error prevention early in the development process, rather than in change review.

In this thesis, a new change impact analysis approach based on Dietrich et al.’s cHash compiler
plugin for abstract syntax tree (AST) hashing and Landsberg et al.’s concept of the global reference
graph is presented. The global reference graph is a unique representation of the semantic structure
of a program. Using graph-theoretic techniques, the impact sets of a change can be identified and
the extent of a change can be quantified. Because the approach is based on the non-intrusive C
compiler plugin cHash, this new kind of impact analysis can be easily integrated into existing build
systems. The main effort of impact analysis with cHash is offloaded to the compiler, hence this
approach adds only little overhead to the usual build process.

This thesis is structured as follows: In Chapter 2, an overview of the fundamentals is provided.
First, impact analysis is defined in more detail and alternative approaches are presented. Then, the
necessary terms and algorithms from graph theory are introduced. With the help of these principles,
the approaches of cHash and the global reference graph are explained. This is followed by an overview

1Original Linux kernel release: https://mirrors.edge.kernel.org/pub/linux/kernel/Historic/
2Lines of code, ignoring empty lines and comments, counted with cloc: https://github.com/AlDanial/cloc
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1 Introduction

of related work. Chapter 3 describes in detail, how the impact sets are generated leveraging cHash
and the global reference graph. Furthermore, various metrics for quantifying change impact are
introduced. Those metrics are analyzed and compared to other software measurements in Chapter 4.
The results of this thesis are discussed in Chapter 5.

2



2F U N DA M E N TA L S

This chapter explains the fundamentals of change impact analysis (CIA). A brief overview of
graph theory and related algorithms is given, which helps understand some concepts in this thesis.
Subsequently, the cHash approach and its connection to CIA are discussed. This is followed by the
explanation of Global AST Hashing, the foundation for this thesis. Finally, related work is addressed.

2.1 Change Impact Analysis

Software maintenance makes up for a big portion in the software development life cycle. Maintenance
modifications can be classified as either corrective, preventive, adaptive or perfective [ISO06] and
each of these changes could degrade the software’s quality if not carefully reviewed (e.g. by
introducing bugs, slowdowns or other unwanted side effects). Those changes either stem from
changing requirements or become necessary due to malfunctions in the software. Schneidewind
outlined several problems in software maintenance [Sch87]: It is difficult to detect whether a change
in code will affect the system. A given change may have unexpected side effects.

The research field of software change impact analysis investigates those questions from different
angles. Several techniques have been introduced to explore parts of the software that need to be
changed for a proposed modification. Other CIA methods reveal components that have changed
after modifying the software. CIA can therefore be used before and after applying changes. It helps
with understanding software and tracing the effects of change to it [Li+13].

2.1.1 Definition

A widely accepted definition for CIA was formulated by Arnold and Bohner: “Impact analysis (IA) is
the activity of identifying what to modify to accomplish a change, or of identifying the potential
consequences of a change.” [AB93]. Software change impact analysis is a part of the maintenance
process and should contain, among others, the following steps [ISO06]:

• Identify ripple effects.

• Determine the level of test and evaluation required.

• Estimate the size and magnitude of the modification.

• Consider the development history of a program.

CIA methods can be classified by the levels of project artifacts they take into consideration for their
analysis. Traceability-based approaches try to link high-level documents (such as requirements, use-
cases) to their resulting objects (such as source code) and help with understanding the relationship

3



2.1 Change Impact Analysis

between these artifacts [DLFO08]. These approaches are primarily concerned with the first step
in the CIA process and result in a change set (Figure 2.1). The change set, also known as starting
impact set (SIS), consists of all objects of the software that need to be changed in order to implement
a new requirement.

Figure 2.1 – Change Impact Analysis process [Li+13]

Contrary to this, dependence-based approaches analyze relations between software components
on the same level of abstraction. More recent examples mostly focus on source code analysis [Li+13].
On this level of abstraction, the CIA methods can directly estimate the impact of modifications on
the final product (second step in Figure 2.1).

The various CIA approaches have in common that they estimate an impact set (IS) from the
changes to be made or already implemented [Li+13]. Impact sets contain all elements of a program/
project (files, functions, variables, . . .) that are (possibly) subject to change. The SIS, as already
mentioned, contains all initially affected elements. The estimated impact set (EIS) is the result of
CIA approaches and contains objects that are thought to be indirectly affected after applying the
SIS [AB93]. After analyzing a change request, it is implemented. This may result in an actual impact
set (AIS) that differs from the EIS (third step in Figure 2.1).

EIS

AIS

SIS

System

Figure 2.2 – Exemplary system with the impact sets of a proposed change

If the CIA approach overestimates the EIS, the complement of AIS in EIS is called false positive
impact set (FPIS). The set of objects which appear in the AIS but are missing in the EIS is called false
negative impact set (FNIS) [Li+13]. It is safe to assume that the starting impact set always appears
in both the EIS and AIS. Figure 2.2 shows a program with a highly impactful proposed change (EIS
is half the systems size). The applied impact analysis presents an EIS that slightly deviates from the
AIS. An ideal CIA process would always estimate an IS that matches the actual impact set [AB93].

In practice we would accept an approach as in Figure 2.2. The FPIS is nontrivial, but it is only
slightly larger than the AIS. More importantly, the FNIS is empty and does not lead to programming

4



2.1 Change Impact Analysis

errors based on wrong assumptions about the AIS. The exemplary CIA is thus complete, but not
necessarily sound [RY20].

To compare the accuracy of the different CIA approaches, precision and recall, measures originally
used in information retrieval, were introduced [Hat+08]. Both rely on the previously defined false
positive or false negative IS and measure how severely a CIA approach misestimates the IS.

Precision indicates which fraction of the EIS was actually modified and appears in AIS. It is
defined as in Equation (2.1). The fewer false positives (small FPIS) found, the higher the precision.

P =
|EIS ∩ AIS|
|EIS|

(2.1)

Recall indicates the proportion of modified objects in AIS that is also found in EIS. It is defined
as in Equation (2.2). The fewer objects in the FNIS, the higher the recall.

R=
|EIS ∩ AIS|
|AIS|

(2.2)

For both measures, a value close to 1 is desirable to have high confidence in a CIA approach. Pre-
cision and recall are ways to quantify soundness and completeness and therefore useful for comparing
CIA approaches.

2.1.2 Common Methods

Change impact analysis methods can roughly be grouped into static and dynamic analysis and
each approach may be attributed with their own strengths and weaknesses [Li+13]. Traditional
static analysis builds upon dependency tracing in a dependency graph. Given a graph that correctly
represents all dependencies in a program, a static CIA method will estimate a complete IS. However,
not each dependency in the graph may actually change, so a static approach can produce a significant
FPIS. Dynamic approaches are based upon data that is collected during program execution. When
running a program, there is no guarantee that every possible code path will be taken. It is thus
not possible to observe every change, but every change that is observed is guaranteed to belong to
the AIS. Dynamic CIA can be considered sound, but the FNIS may not be empty [Hat+08]. In the
following, some common static approaches are presented, since the approach in this thesis can also
be classified as static.

Ripple effect is a measure of structural complexity. It can be used for understanding the relation-
ships in a module or program but also as a way to measure impact. The ripple effect of a variable is
computed by tracing its impact on the rest of a program. For each variable and each line it appears on
the right-hand side of an assignment it is tracked, which other variables it affects. From those traces
a 0− 1 matrix is constructed, which shows the dependencies between variables inside a module.
Subsequently, a 0− 1 matrix is generated in which the effect of each variable within a module on
other modules is captured. This way of conducting IA is complete, but can become computationally
very expensive for large modules and programs [Bla08].

Program slicing describes the process of removing parts of a program until it only contains
everything that is necessary for performing one specific behaviour of the initial program [Ton03].
If the slicing process is started at a specific variable or function, the remaining program can be seen
as the IS. It is not unusual for a single slice to contain up to 30 % of the initial program code. This
causes slicing approaches to have poor precision. Various approaches are being taken to make slicing
more accurate, including dynamic approaches and manual corrections. However, these approaches
are relatively complex [GHR09].

Recent CIA techniques focus on mining software repositories. These approaches allow tracing of
co-change between files and/or software objects. Dependencies between artifacts that are hard to
observe with conventional static analysis can be revealed with these approaches [Li+13].
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2.1 Change Impact Analysis

Static call graph analysis is one of the fundamental approaches to CIA. A static call graph
is a directed Graph G(F, C), where F is a set of nodes representing functions in the program.
Function calls are represented by the set C ⊆ F × F . The calling relationships are computed from
the source code of a program, in contrast to the dynamic call graph, where function calls are
traced throughout program execution. Given changes to the functions { fc0, . . . , fcn} ∈ F , the IS
is computed by considering the transitive closure (see Section 2.2.2) over { fc0, . . . , fcn} and froot

in G [BBSY05]. Call graphs have several disadvantages in relation to CIA. Not each return value of
a function call directly impacts its direct or indirect callers. Therefore, it can be assumed that this
approach will yield a large FPIS. Even worse, CIA with call graphs can lead to significant FNIS, since
changes to structures, global variables and other non-function program members are not considered
at all. To mitigate some of these issues, Badri et al. propose control call graphs, a combination of
control flow graphs and call graphs. The more precise information from the control call graph results
in the FPIS being smaller [BBSY05].

2.2 Graph Theory

The principles of graph theory play an important role in this thesis and graphs will be employed
for multiple purposes. This thesis’ title implies that abstract syntax trees (ASTs) will be the subject
of research. Those ASTs are composed into a global reference graph (see Section 2.4), which is
technically a directed graph. The data from different Git repositories is used for evaluation. A Git
project’s development history is represented as a directed acyclic graph. In the following section, a
brief overview over those data structures and algorithms to examine them is given.

2.2.1 Definitions

A Graph is a mathematical structure composed of nodes (or vertices) and edges (or lines). It is formally
noted as a pair G = (V, E) of sets. The nodes v are contained in V , the edges are contained as
pairs e = (vx , vy) (or e = vx vy) in E. In the following, nodes and edges may be referred to as v ∈ G
and e ∈ G (instead of v ∈ V (G) and e ∈ E(G)), to reduce verbosity [Die17].

1
2

5

7 3
4

6

Figure 2.3 – A Graph with the vertices V = {1, . . . , 7} and edges E = {(1,2), . . . } [Die17]

Figure 2.3 depicts a simple graph, yet containing interesting properties. It is nontrivial, since its
order |G|, the number of nodes, is greater than one.

This graph contains multiple paths P(V ′, E′), which are subgraphs containing nodes V ′ =
{v0, v1, . . . , vx} ∈ V and edges E′ = {v0v1, v1v2, . . . , vx−1vx} ∈ E. The length of a path is the number
of its edges. An example would be the path Pmagenta = {{2, 5, 7}, {(2, 5), (5, 7)}} of length 2, with the
edges highlighted in magenta. The graph also contains a circle Cbold = {{1, 2, 5}, {(1, 2), (2, 5), (5, 1)}},
which is a path P extended by an edge e = vx v0 connecting the endvertices. It is highlighted with
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2.2 Graph Theory

bold edges. The graph in Figure 2.3 is not connected, since there does not exist a path between
each pair of nodes in the graph. However, the graph contains three components V (C1) = {1, 2, 5, 7},
V (C2) = {3, 4} and V (C3) = {6}. Components are maximal connected subgraphs [Die17].

A graph is called a forest, if it contains no cycles and is therefore acyclic. A connected forest is
called a tree. In a tree, each node v with a degree of 1, the number of edges connected to v, is called
a leaf. In a rooted tree, a special node is called root [Die17]. Figure 2.4 shows a simple tree and the
same tree in its rooted representation. The leaves are colored green, the root is colored red.

1

2

5

9
3

4

6

7

8

(a) A simple tree

1

2 5 9

3 4 6 7

8

(b) The same tree with root node 1

Figure 2.4 – Tree and rooted tree

A prominent example for trees in computer science is the abstract syntax tree (AST), an inter-
mediate source code representation in compilers. The AST represents the hierarchical syntactic
structure of the source code. Its root is an expression, the children can be subexpressions and their
operands [ASU86].

A directed graph, short digraph, is a graph with oriented edges. The edges, sometimes also
called arcs, are now defined as e = (u, v), where the first node u is the tail and the second node v
is the head. Paths and cycles are defined similarly as in undirected graphs. A path must however
follow the direction of the edges. If a digraph contains no cycles, it is called directed acyclic
graph (DAG) [BJG09]. Considering a directed rooted tree, the root always has an in-degree (or
out-degree) of 0 [Die17].

AB

C

D

E

F

G

H

I

J

K

LM

Figure 2.5 – A simple directed acyclic graph

Figure 2.5 shows a DAG. It contains multiple paths, for example from A to M . This path does not
exist in the reversed direction, since there are no edges oriented in this direction. In an undirected
graph, the nodes {A, B, C , D, E, F, G} and {I , J , K , L} would form cycles. This is not the case for this
directed graph, since the participating edges are not oriented in a circular form.

2.2.2 Algorithms

In the following sections, some standard graph-related algorithms will be mentioned and used.
These will not be explained or discussed in detail, however, a brief overview is considered necessary.
The algorithms will not be implemented as part of this thesis, since there are libraries providing
those features in an efficient manner.3

3The NetworkX Python package: https://networkx.org/

7

https://networkx.org/


2.2 Graph Theory

Transitive Closure

A directed graph G is transitive, if for each pair of edges x y and yz, the edge xz is also in G [BJG09].
The transitive closure TC(G) is a transitive digraph containing the same nodes as the original

graph G. Each edge uv in TC(G) exists if and only if there is a path from u to v in G [BJG09]. The tran-
sitive closure can be computed in reasonable time using Warren and Warshall’s algorithm [War75].

Figure 2.6 shows a simple digraph G (solid black edges). The transitive closure TC(G) consists
of all edges, including the dashed grey edges.

A B C

D

E

Figure 2.6 – A directed graph and its transitive closure

Finding Shortest Paths

The distance dist(x , y) of nodes x to y in a graph G is the minimum length of an (x , y)-path, if such
a path exists. Otherwise, dist(x , y) = 0 [BJG09]. Figure 2.7 shows a digraph with multiple paths
from node A to D. Path ABC D has length 3, the two shortest paths ABD and AC D have length 2.
Therefore, dist(A, D) = 2.

A B C D

Figure 2.7 – A digraph with multiple paths from node A to D

Numerous algorithms have been proposed to find the shortest paths and distance between two
nodes in a (di-)graph, such as Dijkstra’s, the Bellman-Ford-Moore and the Floyd-Warshall Algorithm.
In the case of an unweighted directed graph, using a modified breadth-first search (BFS) has proven
to be sufficient [BJG09].

Tree and Graph Edit Distance

For many application domains, such as bioinformatics, pattern recognition or database research,
it is interesting to quantify the difference between two given graphs or trees [PA11]. This measure
of (dis-)similarity is known as tree edit distance (TED) or in the generalized form as graph edit
distance (GED).

Pawlik and Augsten define TED δ(F, G) (or GED) as the minimum-cost sequence of node edit
operations transforming graph F into G. The three basic operations consist of deleting, adding and
renaming a node. Each of those operations can be weighted with an individual cost [PA11]. Other
authors also include edge edit operations in the cost computation, which is especially interesting
with weighted edges [Ser19].

Figure 2.8 shows a tree and two steps of transformation. Given the edit costs cadd = cdelete =
crename = 1, each transformation a→ b and b→ c has an edit distance of 1. The first cost is caused
by inserting node C , the second is caused by renaming D into X .

8
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A

B E D

(a) A simple tree

A

B C D

E

(b) Insert node C

A

B C X

E

(c) Rename D into X

Figure 2.8 – Example trees and edit operations, from left to right [PA11]

Both GED and TED are expensive to compute. Fischer et al. state that an optimal GED algorithm
runs in exponential time in regards to the size of the graphs and therefore propose a suboptimal
approximation, which still requires quadratic time [FRB17].

The optimal TED algorithm has a cubic runtime in regards to the size of the trees. Pawlik and
Augsten have therefore presented the robust tree edit distance (RTED) algorithm and more recently
the all path tree edit distance (AP-TED) algorithm, which select the optimal strategy for computing
TED based on the shape of the input trees [PA11; PA15; PA16].

2.3 cHash

A common problem across software projects with compiled languages are long build times. Incremen-
tal changes to the source code lead to frequent compiler invocations, not all of which are necessary
and therefore considered redundant builds. Several approaches have been proposed for performing
incremental builds: Instead of recompiling each source file in a project, only those affected by a
change will be rebuilt, thus reducing redundant builds. In some sense, this problem is closely related
to change impact analysis: A build system must identify the SIS and from there determine the EIS,
i.e., all the objects that need to be rebuilt [AB93]. Such a build system is, however, subject to certain
constraints:

• It must be complete, so no necessary recompilation will be missed.

• The FPIS should be as small as possible, otherwise too much time will be spent on the
incremental builds, which diminishes the build system’s utility.

• Determining the EIS has to be faster than rebuilding an object file. Otherwise, rebuilding
every object file for each iteration would be cheaper, which defeats the purpose of a build
system.

The tool Make is, despite its age, still among the most commonly used build systems.4 The user-
provided makefile describes how to build a program (or any other kind of software product) and
what intermediate object files are required to build it. It also describes any dependencies between
the individual objects. Make derives its SIS based on timestamps. If a source file has been touched
more recently than its resulting object file, it belongs to the SIS. Using the dependencies described
in the makefile, Make works out the EIS. All objects contained in the EIS will be rebuilt according
to the user-provided rules [MO05]. This way of calculating the impact set is cheap and easy to
implement. However, since only touching a file is enough to trigger recompilations, when nothing
actually changed, a large FPIS has to be expected when using Make.5 This assumption is supported

4GNU-make: https://www.gnu.org/software/make/
5Unix-touch: https://man7.org/linux/man-pages/man1/touch.1.html
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2.3 cHash

by recent studies which show that up to 97 % of rebuilds are redundant when using classical Make
[Zha+15]. In addition, the EIS generated by Make cannot be guaranteed to be complete. Make
derives its impact set from the makefile, which in some cases is handwritten and may be subject to
oversights.

A more sophisticated tool for building the EIS, and therefore the list of objects to be rebuilt,
can be found in Ccache [RT]. This tool intervenes the compilation process after the preprocessing
stage. A hash is calculated over the preprocessed source code and the compilation is aborted if the
same hash can already be found in the tools internal cache. This can even speed up clean builds
significantly, since previous compilation results can be pulled from the cache. However, this approach
still produces a FPIS: Changes to syntactic and semantic constructs that do not result in a different
compiled object (e.g., additional declarations) will still lead to unnecessary recompilation [Die+17].

Dietrich et al. propose cHash, an approach that operates similar to Ccache, but mitigates
some of its imprecisions. Unlike Ccache, cHash calculates a hash over the AST. Therefore, the
compilation process is interrupted at a later stage, after preprocessing, parsing and semantic analysis.
This additional overhead must be worthwhile in regards to the spared redundant recompilations,
otherwise cHash would not be ideal for selecting recompilation candidates [Die+17].

1 struct unused {
2 struct unused * next;
3 };
4

5 struct obj {};
6

7 struct refcount {
8 int counter;
9 struct obj * ptr;

10 };
11

12 int
13 inc(struct refcount * e)
14 {
15 e->counter += 1;
16 return e->counter;
17 }

Listing 2.1 – C source
code [Die+17]

Figure 2.9 – The cHash approach: Each node recursively
gets assigned an individual hash [Die+17]

Listing 2.1 shows an excerpt of a C source module, Figure 2.9 shows its corresponding AST.
It consists of one function and three record definitions. The AST is no longer depicted as a real tree,
since reference-to and type-of relationships have been added as edges. Through those cross-tree
references, cyclic structures can appear in the AST, which now actually is a digraph [Die+17].

To calculate a hash over the whole AST, and therefore a hash for the corresponding source file,
cHash explores the graph with a depth-first search (DFS). Each node’s hash is a combined value of its
own class and the hash values of all of its referenced nodes. Since a node can be visited multiple times
with this approach, the following rules have been introduced: 1) If a node’s hash was calculated
before, reuse it. 2) If a node is encountered while currently visiting it, use a surrogate hash value
for it instead. A textual representation of the type name is used as the surrogate value [Die+17].

By exploring the AST with a DFS, components of the graph that are not linked to the root node
will be excluded from the hash calculation. Considering the example in Figure 2.9, the record
unused appears in an isolated component and is therefore not covered in the top-level AST hash.
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This behaviour is desired and an improvement over Ccache. Changes to source code, which do not
modify the AST and therefore do not impact the resulting binary, are excluded from recompilation.

In practice, cHash has originally been implemented as a plugin for the clang C compiler and later
been adapted to gcc.6 For hashing, the efficient MurMur3 function is used. Dietrich et al. state that
cHash’s semantic approach is at least 30.19 % more precise in detecting unnecessary recompilations
than Ccache [Die+17].

The cHash compiler plugin presented by Dietrich et al. is a central pillar for this thesis. It is used
to generate the local hashes for the global reference graph, which is further discussed in Sections 2.4
and 3.1.

2.4 Global AST Hashing

In modern software development, regression testing has become a standard practice to provide
reliable systems. By immediately testing even small changes to the software, unwanted behaviour
can be spotted early and fixed easily. However, always running the full test suite after each change
is computationally expensive and quickly becomes infeasible for large projects. Regression-test
selection (RTS) describes the approach of only selecting tests that are required to cover a given
change. Effectively, RTS boils down to impact analysis: Changes to the software-under-test (SUT)
are the SIS, tests selected for reexecution are the EIS. With TASTING, an approach for RTS based
on AST hashing has been presented [LDL21].

In TASTING, the semantic hashing of functions and ASTs first presented in cHash has been
reused to fingerprint each test-execution binary. (Test-)programs consist of multiple object files
linked into an executable binary. A compiler computes the AST for a single compilation unit, which
is compiled into an object file. To compute the semantic fingerprint for a whole program, Landsberg
et al. introduce the concept of a global reference graph (GRG), spanning over multiple source
files [LDL21].

This additional graph contains all relevant functions and global variables of a program, but
omits the detailed subtree of each expression. It can be generated with minimal intervention into a
projects normal build process: 1) The compiler is invoked with additional command line arguments
pointing to the cHash plugin. The plugin places an AST with semantic hashes into a separate section
in the resulting object file. 2) The linker is instructed to output a cross-reference table (CRT), which
describes the relationship between symbols across object file boundaries. 3) An additional program
is invoked, which extracts the fingerprinted AST from all involved object files of a program binary
and combines them to a global reference graph using the relationships found in the CRT [LDL21].

Since cHash only computes hashes for a single source file, the following terms were introduced:
Local hashes are the fingerprints generated by cHash. Global hashes are added to propagate the
node’s dependencies across source file boundaries into the root node of the global reference graph
(i.e., the main-function).

H( f0) = h( f0)⊕

 

⊕

f ∈l( f0)\SC( f0)

H( f )

!

︸ ︷︷ ︸

child functions

⊕

 

⊕

f ∈SC( f0)\{ f0}
h( f )

!

︸ ︷︷ ︸

recursive group

(2.3)

The global hash H( f ) (see Equation (2.3)) for a GRG node f (a function or global variable) is
defined recursively using the following functions: The local hash function h( f ) is defined in cHash.

6Integration of AST Hashing into the GCC compiler: https://www.sra.uni-hannover.de/Theses/2017/BA-cHash-g
cc-plugin.html
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2.4 Global AST Hashing

The link function l( f ) gives all successor nodes to f . The function SC( f ) calculates the strongly
connected subgraph for f . A node’s global hash is the hashed concatenation ⊕ of its own local
hash and the global hashes of all its child functions. Possible cycles in the reference graph caused
by recursion have to be treated with special care: If a child function fc is contained in the same
strongly connected subgraph SC( f0) as the current node f0, exclude it from the child functions part
of H( f0) and instead concatenate its local hash h( fc) as part of the recursive group. This avoids cyclic
dependencies during the global hash calculation [LDL21].

Types
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Abstract Syntax Tree

ch
ild
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Local AST Hashing

Global Reference Graph

calls
x.o

y.o

Global Hash Calculation
H(f) := 74 ← 74

H(g) := 98 ← 62 ⊕ H(f)
H(k) := 63 ← 15 ⊕ H(f) ⊕ H(GV)
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Figure 2.10 – Overview of the TASTING Approach for Global AST Hash Calculation [LDL21]

Figure 2.10 gives an overview over the global AST hash calculation. The left side depicts an
excerpt from an AST, similar to Figure 2.9, with the local hashes lh calculated as described for
cHash. On the right, an excerpt of the global reference graph can be seen. The object-spanning
relationship between function k() and f() has been deduced from the CRT. The global hashes gh

are calculated as described by Equation (2.3) [LDL21].
Assuming there are no hash-collisions, the TASTING approach can be used to predict if two

programs could behave differently: If the global hash of the programs root nodes (main) differ,
the underlying global reference graph and ASTs must be at least slightly different. Even though
calculating the fingerprints for each test adds overhead to the testing process, TASTING could
drastically reduce time spent on tests in two of three examined projects. As in cHash, the MurMur3
function was used for all hashing purposes. Since TASTING currently builds upon the cHash compiler
plugin, it is only available for projects written in the C programming language [LDL21]. However, the
concepts presented are flexible enough to be ported to similar languages. The current implementation
of the TASTING Approach for Global AST Hash Calculation, chash-global, is written in the Rust
programming language.7

The concept of the global reference graph and chash-global presented by Landsberg et al. will
be used in this thesis to deduce the impact sets of a change. In contrast to the possibly uncomplete
call graph analysis, the GRG as a unique representation of a program can be used to implement
complete IA.

7Rust: https://www.rust-lang.org/
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2.5 Related Work

Most research in the field of IA is concerned with estimating an impact set for a proposed software
change (see Section 2.1.2). Nevertheless, some approaches for quantifying change impact have
been presented.

Harding proposes Line Impact, a metric to measure the cognitive load required to author a Git
commit.8 It effectively weights the relevant lines of code that are modified in any given commit.
It has been shown that LineImpact correlates between 26 % and 63 % with difficulty estimations
assigned to tasks that are completed in a commit [Har21].

Füracker implemented a tool for global hash calculation that is very similar to the TASTING
approach, the latter being published four years later. The tool has been used to characterize the
development history of the Lua interpreter.9 He showed that in an average commit around 4.9 % of
local hashes have changed. A comparison to call graph analysis shows the great similarity between
both approaches. However, the global reference graph also reflects changes to global variables and
record data types [Fü17].

Some effort has been put into finding a relationship between change discussion and their corre-
sponding commits. Baysal and Malton use natural language processing (NLP) to find correlation
between source code change history and social interaction surrounding those changes. They con-
ducted their research on two different projects, Apache Ant10 and LSEdit11, with a very wide range
of releases and messages examined. One of their findings was that for Apache Ant, the number of
messages correlates with the extent of changes, whereas for LSEdit it does not correlate well.

Wu studied the concept of punctuated software evolution in open source projects. He concludes,
that software systems evolve through long periods of small incremental change and short periods of
sudden large changes [Wu06].

Chilowicz et al. and Feng et al. both use AST fingerprinting to detect code duplicates. They
present their approaches as superior over text-, token- or syntax-based duplicate detection. Their
goal is to detect plagiarism or common code modification antipatterns like intra-project copy-
pasting [CDR09; FCX13].

Sager et al. present Coogle (Code Google), a tool for detecting similar classes and methods within
a codebase. They use different tree similarity measures to detect code structures with a similar AST
representation. Among all the tree similarity measures studied, tree edit distance performed best,
but at the cost of high computational complexity [Sag+06].

8Git SCM: http://git-scm.com/
9Lua—the programming language: https://www.lua.org/

10Apache Ant: https://ant.apache.org/
11LSEdit: The Graphical Landscape Editor: https://www.swag.uwaterloo.ca/lsedit/index.html

13

http://git-scm.com/
https://www.lua.org/
https://ant.apache.org/
https://www.swag.uwaterloo.ca/lsedit/index.html




3A R C H I T E C T U R E

It was already suggested in Chapter 1 that it is desirable to be able to perform change impact
analysis efficiently and automatically. Think of large open source projects that are maintained and
developed by many people distributed all around the world, like the Linux kernel or the GNU Project.
The open development model of these projects allows anyone to submit improvements. However,
few of the contributors have a fully comprehensive understanding of the interdependencies of the
software to which they are submitting changes. It would therefore be valuable to have a tool that
can estimate the potential impact of a change. The impact of a change can then be quantified using
various metrics, allowing the developer to easily judge the results of the impact analysis. Unintended
side effects can thus be identified and eliminated early, before they lead to potential errors in the
software.

In order to quantify the impact of a change, this chapter first describes how cHash and the
concept of the global reference graph are used to perform impact analysis. This is done by describing
how the starting and estimated impact set are defined and derived from the GRG using local and
global hashes. The impact sets are then used to obtain metrics for measuring the impact of a change.
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Figure 3.1 – Change Impact Analysis Workflow
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3 Architecture

Figure 3.1 shows the three-step workflow just described. First, the program versions before and
after a change are compiled with the cHash plugin. From this, the GRGs are constructed, which are
used to derive the impact sets. Finally, various metrics are applied to the impact sets to quantify the
impact of the change.

3.1 Defining the Impact Set

The presented CIA approach is situated in the third step of the change impact analysis process
presented in Figure 2.1: The change is quantified after implementing a change request. Given
a program P and an advanced version P ′, we want to calculate change metrics for the change
C = P → P ′. Since determining the impact of change C based on program binaries for P and P ′ is
not feasible, we rely on the global reference graph as a surrogate for the programs semantic structure
(see Section 2.4). The GRG is a digraph G = (V, E, w) with the nodes V representing the programs
definitions (functions, global variables) and edges E representing their dependency relationship.
Function w(v) = (h(v), H(v)) describes a mapping between nodes and their weights, in this case the
local and global hash.

Using the local and global hash of each node, the impact sets of change C can be estimated. The
starting impact set, as defined in Section 2.1.1, should contain all functions that are changed directly
by the programmer. Therefore, if the local hash of node v has changed (h(vP) 6= h(vP ′)), it counts
towards the SIS. Nodes that have been added to or removed from P are also part of the SIS, which is
denoted as the symmetric difference 4 of two sets. Equation (3.1) shows the definition for the SIS.

SIS= {v ∈ GRGP ∩GRGP ′ |hGRGP
(v) 6= hGRGP′

(v)}
︸ ︷︷ ︸

local hash changed

∪ (GRGP4GRGP ′)
︸ ︷︷ ︸

new or deleted

(3.1)

All nodes that could be affected by a change to a node in the SIS become part of the estimated
impact set. Consider the example in Listings 3.1 and 3.2: Function decide is part of the SIS, since
it has been changed to now always return false. Function main, even though it has not changed
directly, becomes part of the EIS, since it depends on the behaviour of decide.

1 bool decide () { return true; }
2 /**/
3 int main() {
4 if (decide ()) do_this ();
5 else do_that ();
6 }

Listing 3.1 – Code example P

1 bool decide () { return false; }
2 /***/
3 int main() {
4 if (decide ()) do_this ();
5 else do_that ();
6 }

Listing 3.2 – Adapted code example P ′

As defined in Equation (2.3), a node’s global hash changes if its own or any of its successors
local hash changes. Therefore, if the global hash of a node has changed, it is part of the estimated
impact set. New or deleted nodes are also considered to be part of the EIS, since their global hash
changes from ∅→ H(v) or vice versa. The EIS is therefore per definition a superset of SIS. It can
be formally described as in Equation (3.2). Since the new or deleted nodes are also part of the SIS,
and the SIS is a subset of EIS, the symmetric difference of GRGs can be substituted by SIS.

EIS= {v ∈ GRGP ∩GRGP ′ |HGRGP
(v) 6= HGRGP′

(v)}
︸ ︷︷ ︸

global hash changed

∪ (GRGP4GRGP ′)
︸ ︷︷ ︸

new or deleted

(3.2)

= {v ∈ GRGP ∩GRGP ′ |HGRGP
(v) 6= HGRGP′

(v)} ∪ SIS
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Conducting impact analysis based on the GRG can be classified as dependence-based CIA. The
relation between source code definitions is analyzed, which are all located on the same level of
abstraction [Li+13]. The estimated impact sets are assumed to be complete, which will not be
formally proven. The estimation is based on cHash and and the global reference graph presented in
TASTING, for whose validity the respective authors have made strong arguments [Die+17; LDL21].
Note, that the impact sets are only defined by the nodes hashes, ignoring the edges. This is sufficient,
since an additional outgoing edge from a node n implies that n has changed internally (i.e., additional
function call), which is reflected by an updated local and global hash.

3.2 Constructing the Impact Set

As already stated, the starting and estimated impact sets will be generated by leveraging the concept
of the global reference graph presented by Landsberg et al. Constructing the impact sets consists
of two steps: 1) The GRG is built for two program versions P and P ′. 2) The IS is generated by
examining the GRGs. This section describes the process in detail.

3.2.1 Constructing the Global Reference Graph

In order to build the GRG with chash-global, the AST and local hashes for each translation unit
need to be extracted. This information is generated by employing the cHash approach. Each
translation unit is compiled as usual, but the compiler is invoked with the cHash-plugin. The AST,
enriched by the local hashes, is placed into a new section in the compiled object file by the compiler
plugin [LDL21]. This section is called .gnu.lto_chash.ElementHashes and is discarded during
the linking process, resulting in a program binary with the same characteristics as if it had been
built without cHash. The AST with hashes is encoded in the JSON data interchange format, which
is simple to parse for further inspection and transformation.12 Currently, embedding AST hashes
into object files is only supported by the cHash plugin for the clang C compiler.13 For each program
binary to be produced, the linker is instructed to also output a map-file containing the cross-reference
table, as described in Section 2.4.14

After compiling a project with cHash, chash-global is instructed to build the GRG.15 It is
possible to define a target program, for which the GRG will be generated. Otherwise, a combined
GRG is built for all map files. This would be the case if a project has multiple linking targets, for
example for the main executable and multiple unit test programs. It is also possible to select an
entry-point, the root node for the GRG. The default entry-point is main. Once the global reference
graph is built, it is output in the JSON format for further inspection.

12JavaScript Object Notation (JSON): https://www.json.org/json-en.html
13Additional required clang-options for AST hash embedding: -fplugin=path/to/chash-plugin -Xclang

-plugin-arg-clang-hash -Xclang -generate-info
14Additional required linker-options: -Map,binary_name.map,--cref
15Using the subcommand chash-global gen
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1 int val = 10;
2

3 int factorial(int n) {
4 if (n == 0)
5 return 1;
6 else
7 return n * factorial(n-1);
8 }
9

10 int main() {
11 printf("%d\n", factorial(val));
12 }

Listing 3.3 – A simple C program
computing the factorial of an integer

main
l#:6da0a4cc
g#:096c9a1d

factorial
l#:26f18848
g#:6628b536

printf
l#:00000000
g#:00000000

val
l#:04cd62c1
g#:04cd62c1

**ROOT**
l#:00000000
g#:390c472f

Figure 3.2 – The global reference graph
for the factorial program

Listing 3.3 shows a small C program that calculates the factorial of an integer recursively and
prints the result. The corresponding GRG with local (l#) and global (g#) node hashes can be seen in
Figure 3.2. This example has been chosen to introduce some properties of chash-global that have
not been discussed yet. The node **ROOT** is added to each GRG graph in order to have a defined
root node. This is necessary, since the entry point to a program may not always be a function with
the name main. It is also used in TASTING, where multiple test binaries are composed into a single
GRG in order to reuse the global hashes of object files used in multiple test programs. The node
**ROOT** is a synthetic node which always has a local hash zero. The function printf is part of the
C standard library (libc), which is not compiled as part of the program. Therefore, chash-global
assigns the local (and global) hash zero as a placeholder. The function factorial computes the
factorial of an integer recursively. This recursion is reflected by the self-loop in the graph. Note, that
the global hash of the self-referencing function factorial differs from its local hash, even though
this can not be explained with Equation (2.3). This difference is caused by implementation details of
chash-global and does not impact the outcome of the presented impact analysis approach: A node
only appears in an impact set if its global hash has changed through an edit to the source code,
a difference between the local and global hash of a node is not relevant for impact sets.

In the global reference graph, each node is named with a unique identifier so that it can be
referenced in another GRG when comparing those graphs.16 The identifier consists of the nodes
symbol, which includes the name, type ((static) function or variable, synthetic node) and path to
the source file the node is defined in. In addition to that, the identifier tracks the object file the node
was found in and the target, for which the object file was built.

By computing the global reference graph in this way, all semantic changes to a program are
signaled by a change to the root node’s global hash. However, some changes have no significant
impact on the programs behaviour. For example, many programs contain a version tag which is
automatically computed at compile time and often depends on a current source code management
(SCM) tag. The version tag is often represented as a global variable inside the GRG and a change
to it causes all functions using it to change their global hash as well. Such nodes can be excluded
from global hash computation by passing a list of ignored nodes to chash-global. Internally, these
nodes’ local hash will be replaced by zero.

In some cases, adding or removing a line from a source file can change the local hash of other,
seemingly unrelated functions in the same file. The cause of this is that the affected functions use
macros such as assert, which internally use the predefined macro __LINE__. In the preprocessing

16Not in Figure 3.2, for readability reasons.
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stage, __LINE__ is replaced by the line number it is placed on. When the line this macro is used on
shifts up- or downwards, its value and therefore the local hash of the depending function changes.
This macro is most frequently used for debugging and rarely has significant impact on a programs
actual behaviour. It can therefore be overwritten with a constant value when the program is compiled
for change impact analysis.17

3.2.2 Generating the Impact Set

Given two program versions P and P ′, the starting and estimated impact set for a change C = P → P ′

can now be calculated using the global reference graphs. For each node in both GRGs it is part of
the SIS if its local hash has changed, and part of the EIS if its global hash has changed. Nodes that
occur in only one of the graphs are part of both impact sets.

Generating the impact sets this way can be easily implemented with set operations. By using this
approach, valuable information about the relationship between the impacted nodes is lost. However,
information about the relationship between nodes will be useful for some of the metrics presented
later. Therefore, other approaches to determining impact sets from GRGs will be explored.

Graph Edit Distance

Graph edit distance appears to be a well suited algorithm for finding the impact sets, enriched by
the edit operations necessary to transform GRGP into GRGP ′ . Depending on the implementation
chosen for GED, not only does it return the edit cost to transform the graphs, but also an edit path
containing all edit operations (see Section 2.2.2). The implementation chosen for evaluation can be
found in the NetworkX Python package.

In order to reduce computational effort, several constraints can be submitted to the algorithm:
1) A pair of root nodes (**ROOT**) that has to be matched across both graphs. 2) Functions for
determining if two nodes should be matched. For this, the nodes unique identifier will be used.

While the GED algorithm works for simple test programs (such as in Listing 3.3), its exponential
behaviour quickly proves impractical for mid- to large-scale software projects. A test run of the
algorithm with two GRGs from the Lua interpreter, each with approximately 1020 nodes18, could
not be carried out completely, since the memory of the test machine (32 GiB) was not sufficient.
Therefore, another approach to compute the impact sets must be found.

Differential Graph

GED algorithms are not optimal for determining the difference between two GRGs, since the
algorithms were formulated generally for any kind of graph. To efficiently determine the difference
between two GRGs, one can take advantage of the properties of the graphs: Each node has a unique
identifier. If the global hash of an outermost node of a subgraph has not changed, the complete
subgraph has not changed. The proposed method that exploits these properties is called differential
graph (short: diffgraph) and has already been implemented in a draft version in chash-global.

Algorithm 3.1 shows how a differential graph for a change C = P → P ′ between two global
reference graphs is computed. The first loop takes all nodes from P ′ and checks via the unique
identifier if they also appear in P. If a node appears in both graphs, but its global hash has not
changed, it will not be part of the diffgraph, since neither it nor any node in a subgraph of the
current node has changed. If the nodes global hash has changed, it will be added to the diffgraph.

17Additional compiler option: -D__LINE__
18The smallest of the examined projects, see Chapter 4.
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3.2 Constructing the Impact Set

Require: Global reference graphs GRGP and GRGP ′

1: GRGdiff← {;,;}
2: for all v ∈ GRGP ′ do
3: changev ← unchanged
4: if v IN GRGP then
5: if H(vGRGP

) 6= H(vGRGP′
) then

6: if h(vGRGP
) 6= h(vGRGP′

) then
7: changev ← changed
8: end if
9: GRGdiff← GRGdiff ∪ {v}

10: end if
11: GRGP ← GRGP\{v}
12: else
13: changev ← added
14: GRGdiff← GRGdiff ∪ {v}
15: end if
16: end for
17: for all v ∈ GRGP do
18: changev ← removed
19: GRGdiff← GRGdiff ∪ {v}
20: end for
21: for all e(v1, v2) ∈ GRGP ∪GRGP ′ do
22: if {v1, v2} IN GRGdiff then
23: GRGdiff← GRGdiff ∪ {e}
24: end if
25: end for
26: return GRGdiff

Algorithm 3.1 – Diffgraph algorithm

If its local hash has changed, it will be additionally marked as changed. Then, the node is removed
from graph P. If a node cannot be found in GRGP , it is marked as added and then also placed in the
diffgraph.

The second loop adds all nodes to the diffgraph that were removed from P in the change C .
Since in the first loop all non-unique nodes were removed from GRGP , it now only contains nodes
that do not exist in GRGP ′ . Those nodes are added to the diffgraph with the mark removed.

Finally, in the third loop all edges that exist in either GRGP or GRGP ′ are added to the diffgraph.
This way, the relationship between nodes in both graphs is preserved. The entirety of the nodes in
the diffgraph forms the EIS. All nodes marked as deleted, added or modified form the SIS.

Figure 3.3 gives an overview of the results of the diffgraph calculation. Figure 3.3a shows the
GRG of the recursive factorial program from Listing 3.3, whereas Figure 3.3c shows another version
of the program in which the factorial is determined iteratively rather than recursively. The diffgraph
from both GRGs is shown in Figure 3.3b. It can be seen that the function main has been changed,
because it now uses the iterative instead of the recursive factorial function. Therefore, the two
functions are now shown as deleted and added, respectively. The other nodes (val and printf)
are not part of the diffgraph and therefore also not part of the impact sets, because their local and
global hash has not changed in the new version.
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main
l#:3b8fb09b
g#:854549e6

factorial_rec
l#:7ab14f40
g#:026baccf

printf
l#:00000000
g#:00000000

val
l#:04cd62c1
g#:04cd62c1

**ROOT**
l#:00000000
g#:a0480f53

(a) GRGP for program P calculating
factorial recursively

main
l#:80363e7b
g#:db9e6ebc

factorial_iter
l#:9a8d593b
g#:9a8d593b

factorial_rec
l#:7ab14f40
g#:026baccf

**ROOT**
l#:00000000
g#:d9b15d4e

(b) The diffgraph for change
C = P → P ′

main
l#:80363e7b
g#:db9e6ebc

factorial_iter
l#:9a8d593b
g#:9a8d593b

printf
l#:00000000
g#:00000000

val
l#:04cd62c1
g#:04cd62c1

**ROOT**
l#:00000000
g#:d9b15d4e

(c) GRGP′ for program P ′ calculating
factorial iteratively

Figure 3.3 – Two global reference graphs for different versions of a program computing the
factorial of an integer and their corresponding diffgraph. In the diffgraph, nodes are colored as
follows: added→ green; deleted→ red; changed→ yellow. Nodes that are exclusively part of
the EIS are colored black.

The diffgraph algorithm can be implemented in linear runtime: The GRGs are represented
internally as a hashmap, which means that each access to a node or edge has constant runtime. This
leaves the three sequential loops for runtime considerations, whose runtime depends linearly on
the size of the input graphs. These properties make the diffgraph algorithm the preferred choice
over GED.

Considerations on the Impact Sets

In this thesis, the diffgraph is used to determine the impact sets of a software change. This method
can be implemented efficiently by building upon the results from the cHash and TASTING papers.
In the following section, the peculiarities of the impact sets resulting from this decision will be
discussed.

By using local hashes for determining the SIS, this set itself is actually also only an estimate of
the initial change set. This is caused by the properties of cHash. Considering a change to the source
code, the SIS is not always immediately visible: Preprocessor macros and definitions (#define) are
not represented as nodes in the AST and GRG, since their textual replacement takes place before
the syntactic analysis, where the AST is generated and cHash intervenes. A single change to a macro
can therefore cause multiple functions using this macro to change their hash, which leads to an
unexpectedly large SIS. This was also described in Section 3.2.1, when the concerns related to the
__LINE__ macro were discussed.

Figure 3.3 illustrated another possible problem with the SIS. The function factorial_iter
may already exist in the program code for program version P. However, since it is only called in the
new version P ′, it appears in the related GRG for the first time. By only looking at the diffgraph, it
may appear as though the code for this function was first added in the change C .

The EIS found in the diffgraph can be compared to the impact set found with call graph analysis.
The resulting diffgraph contains all nodes that are contained in the transitive closure over all impacted
nodes (the SIS) and the root node of the GRG. However, the diffgraph method takes all changes
to the source code into consideration, that may change the behaviour of the examined program.
Therefore, in contrast to call graph analysis, the approach can be considered complete.

The EIS contains all nodes that could be affected by a change, whereas the AIS contains all
definitions that will be affected. To make a statement about the AIS, a more precise method than the
one presented in this thesis would be required. Therefore, nothing will be said about the precision
or recall of global reference graph analysis.
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3.2 Constructing the Impact Set

3.3 Program Wide Metrics

With the approach presented in Section 3.2 it is now possible to generate the impact set of a change
as a side result of the compilation process. However, since such impact sets can quickly become
incomprehensibly large, it is helpful to have metrics that can be used to evaluate the changes. The
following section presents simple yet meaningful ways to rank said impact sets.

3.3.1 Jaccard Distance

The Jaccard index is a measure of similarity between two sets. It is defined as the intersection over
the union of two sets A and B, see Equation (3.3) [Jac12].

Jidx(A, B) =
|A∩ B|
|A∪ B|

(3.3)

Analogously, Jaccard distance is defined as a measure of dissimilarity between two sets. It can be
described using the Jaccard index as in Equation (3.4).

Jdist(A, B) = 1− Jidx(A, B) =
|A∪ B| − |A∩ B|
|A∪ B|

(3.4)

In practice, sets A and B will contain the global hashes of the global reference graphs of two
program versions. The Jaccard distance can be used to relate the EIS of a change to the GRGs
of two program versions. Furthermore, this metric can be used to quickly compare the impact of
multiple changes. Jaccard distance (and index) are defined for values between zero and one. In
this application, a Jaccard distance close to zero indicates a small possible effect on the program
behavior, whereas a distance of one indicates a possibly strong change. The Jaccard distance is
therefore the normalized size of the estimated impact set.

Not only can this metric be used to quantify the size and impact of changes. If a series of
unrelated changes to a single program continuously scores high Jaccard distances, this may indicate
that the examined program has a tight internal coupling: In a tightly coupled program, the software
modules tend to have many dependencies, i.e. many edges in the GRG. When compared to a more
loosely coupled program, those additional edges in the GRG cause a large EIS and therefore a high
Jaccard distance more often.

Case Defining Condition Desired Trend Goal

System, EIS

|EIS|= |System| Condition should
never occur

|EIS|= |System|
in 5 % of impact analyses

EIS
System

|EIS|< |System| Condition should
always be met

|EIS|< |System|
in 70 % of impact analyses

EIS

System

|EIS| � |System| Condition should
always be met

|EIS| � |System|
in 25 % of impact analyses

Table 3.1 – Relationships between the EIS and whole system [AB93]

22



3.3 Program Wide Metrics

Arnold and Bohner studied the relationship between the EIS and the complete software system,
examining a similar relationship to Jaccard distance. A sufficiently sharp IA approach should yield
results similar to the desired trends and goals defined in Table 3.1 [AB93]. Conversely, given a good
IA approach, Table 3.1 can be used to classify changes to software according to their magnitude.

3.3.2 Changed Lines of Code

Lines of code, or source lines of code (SLOC) to be more precise, are a simple but popular metric
to measure the size and complexity of software projects. Since lines of code are the direct output
of programming, they are often used to measure the size or impact of a change [Ngu+07]. Even
though changed lines of code is not a measurement derived from the GRG or diffgraph, it is still
included in this thesis as a baseline metric.

Over time, many suggestions were made on how to correctly count SLOC. The main issue is how
to distinguish physical and logical lines of code: Physical lines include everything, including blank
lines or comments that do not contribute to the program. Logical lines represent a filtered view that
normalizes lines with little significance (blank lines, parentheses, etc.) and high significance (many
statements in one line) [Ngu+07].

Changes between two source files are usually determined with tools like diff.19 However, this
tool has some shortcomings: Changes are only indicated by added and/or deleted lines. There are
approaches to combine pairs of deleted and added lines to changed lines [CCDP07].

In this thesis, the changed lines of code metric is implemented as a simple basis of comparison
to the size of the SIS. This metric is only used to roughly classify the size of the changes. As already
mentioned, the amount of added and deleted lines will be extracted using diff. Since this tool
does not explicitly mark changed lines, the sum of added and deleted lines will be used as an
approximation of changed lines of code. When comparing two versions of a program, diff also
shows the changes to non-source files such as documentation. This measurement will be called
changed lines from now on.

Distinguishing changed lines from changed SLOC is a research field of its own and not in the
scope of this thesis. When comparing impact metrics to changed lines of code it is still desirable to
distinguish changed SLOC from changed lines. Therefore, the tool cloc will be used to distinguish
changed physical lines from changed lines of code (note: not logical lines of code!). The tool is
set up to only count changed, added and removed lines in C source and header files, ignoring
empty lines. Even though this is not the accurate name when considering other publications, this
measurement will be called changed SLOC in the following, since at least it only counts changed
lines in source files.

3.4 Node-Specific Metrics

By using the diffgraph as a richer representation of the SIS and EIS, interesting statements can be
derived about the affected nodes of a change. The possible research questions can be varied: How
much does a single node (function or variable) affect the entire program? How strongly does a
node depend on the rest of the program? How much does a single node change internally for a
given change to the entire program? The following section provides various metrics to answer these
questions.

19Unix diff: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
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3.4 Node-Specific Metrics

3.4.1 Position-Dependent Measurements

In a program, not all functions and objects are to be considered as equally important. Central data
structures and functions are used in many places of a program. A change to these elements can
cause unwanted side effects that affect the entire program. Other functions, such as main, are very
rarely called or used. Nevertheless, they also play an important role for the entire program, since
they often control central processes.

It can be helpful to identify such influential nodes in changes to examine them more closely
for unintended side effects. The influential nodes will be detected by examining the diffgraph of a
change. In this thesis, a node is classified as influential according to the following criteria:

• A node has many incoming edges: If a function or variable is called or accessed across many
functions, a change to this node could indirectly cause a changed behaviour in many of those
who access it.

• A node has incoming edges from nodes that are located in different translation units: If a
node has many incoming edges inside the same translation unit, its impact is likely only
concentrated on this translation unit. A node that is however accessed from many object files
is likely to be an important part of the overall program structure.

• A node is located close to the diffgraphs root: Functions and variables that are located close to
the main function are likely to be concerned with a programs core functionality or structure.

The validity of these assumptions will be examined in Chapter 4.
The presented metrics can be easily measured in the diffgraph. Since those measurements have

little meaning in isolation, other nodes have to be examined for comparison. Two approaches to
generating a scale for classifying the measured values are possible: 1) For each node in a global
reference graph, measure the aforementioned impact values. 2) For each node in the starting impact
sets across multiple changes, measure the impact values.

In this thesis, the second approach will be the preferred one. The goal of this metric is to get a
sense of the relative impact a changed (or added/deleted) node has on the entire program. Therefore,
the impact values will be compared across nodes appearing in starting impact sets.

The metric “number of incoming edges” may not be well suited for each node in a global reference
graph or diffgraph, since highly impactful functions may be encapsulated inside of other functions.
The number of incoming edges to such impactful functions may therefore be considerably lower than
the number of incoming edges of their encapsulating functions. Therefore, in addition to the already
mentioned metrics, a transitive closure will be calculated for each GRG. Using this transitive closure,
the number of directly and indirectly impacted nodes for each changed node can be determined.
This approach is very similar to generating an impact set using static call graphs. However, the
number of impacted nodes is calculated individually for each element of the SIS and not combined
into an EIS for all changed nodes.

The measurements proposed in this subsection can be used to answer the question on how
strongly a change to an individual node could impact the whole programs behaviour.

3.4.2 Similarity Measurements

The metrics proposed up to this point describe how severely a change to a source code definition
could impact a programs behaviour. However, besides the size of the SIS, not much has been said
about how much of a program has actually changed.

An ideal solution would represent the semantic structure of a node in its local (and global)
hash. The magnitude of a change could then be derived from the numerical distance of the hashes
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before and after the change. Currently, the chosen approach for generating impact sets, cHash,
uses a hashing algorithm which has high sensitivity and entropy to small changes. For several
reasons, it would not be practical to replace the current hashing algorithm: 1) The cHash and
TASTING approaches rely on the fact, that hash collisions are nearly impossible to occur, otherwise
the approaches would not be able to output correct impact sets. With a hashing algorithm that
is less sensitive to change, collisions can no longer be ruled out. 2) A hashing algorithm that
represents the internal structure of a node, which is itself a tree (AST), would be hard to find. The
multi-dimensional nature of a tree would have to be mapped into a single-dimensional value which
has to be similar to another hash value, if the underlying trees are similar.

In order to still be able to make a statement about the internal change of a node, the following
methods are presented.

Successor Similarity

Since the hash of a node does not convey information about its content, this information must be
obtained in some other way. In fact, the GRG and diffgraph already contain part of a nodes internal
structure: The outgoing edges of a node (in this case a function) can be used to determine which
other definitions are used by that node. When the set of child nodes changes, a degree of internal
change can be derived.

To measure this internal change, the Jaccard index is used again. This metric is applied to each
node that has been modified in a change, i.e. the SIS. For each node in the SIS, a set of child nodes
is obtained from the old and new GRG. These sets are then used to determine the Jaccard index
and/or distance between a nodes dependencies. In the case of added or deleted nodes, the missing
set will be replaced by an empty set.

The resulting metric is called successor similarity. An index of one means that a nodes depen-
dencies have stayed the same. A lower index indicates that a certain amount of dependencies has
changed. However, this metric cannot quantify a functions change in behaviour.

Sub-AST Tree Edit Distance

To get a more detailed insight into the internal structure of a node, additional information is required.
In principle, a node in the GRG or diffgraph is a proxy for a subordinate AST. The structure of
an AST changes only if the corresponding program code changes semantically. This property is
already exploited by cHash when generating the local hashes. In order to be able to quantify the
internal change of a node, the corresponding Sub-AST is compared before and after a change. For
this comparison, the tree edit distance algorithm, which was already described in Section 2.2.2,
is used. Note, that the TED algorithm is not applied to the GRG in this case, but only to the ASTs
which are represented as nodes in the GRG.

For each node in the SIS, the underlying AST is stored before and after applying a change. The
ASTs are extracted from the source code with the clang C compiler.20 The edit distance between
those Sub-ASTs resulting from the TED algorithm quantifies the influence of the change at the
examined nodes as an absolute value. Changes to variable names and their values, to instructions,
operations and their sequence and all other semantically relevant edits are tracked as either additions,
changes or removals of nodes in the AST. These measurements of change are called Sub-AST Tree
Edit Distance (Sub-AST TED).

The Sub-AST TED is a node-specific metric. However, by accumulating the edit distances for all
nodes in the SIS, Sub-AST TED can also be used as a program wide change metric.

20Dump the AST for a C source file as JSON: clang -Xclang -ast-dump=json -c <source>.c <includes>
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In the following chapter, the proposed impact analysis metrics are examined in more detail. First,
the program wide and position-dependent metrics are checked for their expressiveness, i.e., whether
they are sufficiently sensitive and sharp. Subsequently, the Jaccard distance is used to examine
whether similar patterns can be found in the development history of the open source projects QEMU,
CPython, OpenSSL and Lua. Furthermore, it is examined whether there is a correlation between the
impact of a change and the social interaction around this change. Last, the node-specific similarity
measures are examined and it is investigated whether they have any relationship with conventional
change measures.

To better assess the statistical relationship between different measurements, various correlation
coefficients are used in this thesis. Pearson’s r is used to estimate the linear relationship between
two variables. This coefficient is only useful for normally distributed datasets and will be applied if
a linear correlation is suspected in the datasets. For non-normally distributed data (with significant
outliers), Spearman’s rS and Kendall’s τ can be used. These do not measure whether the variables
are linearly related, but whether they can be described well by a monotonic function. For datasets
with repeating data points, Kendall’s τ provides a tighter estimate. Table 4.1 shows the keywords
used for interpreting different correlation coefficients [Ako18].

Correlation
Coefficient

Interpretation

1 −1 Perfect
0.9 −0.9 Very Strong
0.8 −0.8 Very Strong
0.7 −0.7 Moderate
0.6 −0.6 Moderate
0.5 −0.5 Fair
0.4 −0.4 Fair
0.3 −0.3 Fair
0.2 −0.2 Poor
0.1 −0.1 Poor
0 0 None

Table 4.1 – Interpretation of different correlation coefficients [Ako18]
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4.1 Generating Impact Metrics

This section describes the test setup and implementation used to investigate the proposed methods.
All of the projects studied in this chapter are managed with the SCM tool git, in which one commit
corresponds to one change. First, a description is given of how a set of changes is extracted from
these code repositories. Then, the generation of impact sets for each of these changes is described.
In the next step, the impact sets are used to quantify the severity of the changes. The metrics can
then be visualized and explored graphically.

Figure 3.1 gives an overview over the described change impact analysis workflow. The different
steps of impact analysis have been automated in a tool called impact-analyzer. The following
subsections explain the implementation of those steps.

Selecting Changes for Impact Analysis

A significant amount of modern open source projects use Git as their SCM tool. Since Git offers a
simple and uniform interface for accessing the development history, this thesis only studies projects
that are managed with this tool. Nevertheless, the approaches shown can also be applied to other
projects with similar SCM tools.

The development history of a project is represented in Git as a directed acyclic graph. Each
node represents an independent version of the software (commit), each outgoing edge a change
to this version, which results in a new commit. The development history can branch out to make
independent changes to different parts of the software. These branches can later be merged again,
the resulting commits with multiple incoming edges are called merge commits.

L M
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Figure 4.1 – An example of a Git development history

For the impact analysis in this thesis, only linear changes are examined. Merge commits are
excluded because they include multiple original program versions. The presented IA approach
can only determine the difference between two program versions, which is not compatible with
the semantics of merge commits. Figure 4.1 shows an example of a Git development history. All
incoming edges to merge commits are marked grey, those changes will not be considered for impact
analysis. The colored edges are part of linear commit series, where for each commit the GRG will be
constructed for further inspection. Note commit node I: For this commit, no GRG will be constructed,
since it is not part of a linear commit series. If a commit is known to not be compilable, it can also
be excluded from impact analysis.

The linear commit series relevant for impact analysis are stored in order, which is relevant when
generating the impact sets. The commit series can be automatically extracted from a Git repository
using the commits subcommand of impact-analyzer.

Generating Impact Sets

The process of building the global reference graphs and diffgraphs for a project can be automated
with the impact-analyzer subcommand gen (see Figure 3.1). At this point it is important that the
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commit series are stored in order. For each commit, the program and the GRG are built as described
in Section 3.2.1. If this is done in an orderly manner, the underlying build system can reuse more of
the already compiled object files, so the compilation processes takes less time.

Not each software project employs the same build system. For this reason, an interface was
created for configuring each project to be examined individually. For each project, the compiler
and linker arguments required for cHash and chash-global are configured and passed to the build
system. In addition, the commits that cannot be compiled are also stored in the configuration and
skipped when building the GRGs and diffgraphs.

Calculating Impact Metrics

After generating the GRGs and diffgraphs, all program wide and node specific metrics for each
change can be computed with the impact-analyzer subcommand stat (see Figure 3.1).

Change Metrics

Old Commit ID
New Commit ID
Size of Old GRG
Size of New GRG
SIS Size
EIS Size
Jaccard Index/Distance
Changed Lines of Code
Node Specific Metrics

Node Specific Metrics

Unique Node ID
Change Attribute
Position Dependent Measurements
Successor Similarity
Sub-AST TED

SIS
*

Figure 4.2 – A summary of all metrics for quantifying software change

Figure 4.2 shows a summary of all metrics that are used to quantify the change to a program
between two commits. In order to distinguish the measurements for each change, the commit IDs of
the original and resulting commit are stored. For each node in the SIS, its unique identifier is stored
together with the node specific metrics. All computations carried out on graphs, as described in
Sections 3.3 and 3.4, were implemented with the Python NetworkX package.

The measurements on changed lines of code are made using the cloc tool. The tool can be
configured to compare two Git revisions, i.e., commits, and output the changed, added and removed
lines as a report in machine-readable formats such as JSON.21

The TED algorithm chosen for the Sub-AST tree edit distance metric is AP-TED, with an im-
plementation by Pimentel [Pim17; PA16]. The cubic runtime encountered in the worst case for
TED is acceptable, since the AST of a function rarely becomes unmanageably large. However, it is
possible to set an upper limit for the size of the Sub-ASTs. The Sub-AST TED metric is then aborted
in individual cases with a warning.

Exploring the Metrics

The measurements from the previous steps can be evaluated graphically with the plot subcommand
of impact-analyzer. It is also possible to compare the measurements with datasets generated by
other studies on open source projects. The results of change impact quantification are discussed in
this chapter using graphs generated with plot.

21cloc --git --diff <rev1> <rev2> --include-lang=C,"C/C++ Header" --json --quiet
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4.2 Target Projects

The metrics are applied to several open source projects of different scales (QEMU, CPython, OpenSSL,
Lua; see Table 4.2) so that the conclusions are not distorted by the peculiarities of a single project.
As already mentioned in Section 2.4, the studies can only be performed on software written in the
C programming language. For each project, a range of recent changes has been selected. Since in
some projects the build system changes over time, commit ranges were chosen for the analyses in
which the build system remains stable. Accounting for changing build systems was not considered
necessary because the datasets examined contain enough changes.

Project Configuration Target Nodes in GRG Source Files Examined Changes

Lua 979 35 1,817
OpenSSL 9,791 722 1,927
CPython 11,281 229 1,295
QEMU x86-64 13,897 621 12,373

Table 4.2 – Overview over the examined projects and their average size over all commits

Table 4.2 shows all projects that were analyzed in this thesis. The number of nodes in the
respective GRGs ((static) functions and global variables) and the number of source files are an
average value over all examined commits. The reported amount of source files includes all source
files that contribute to the GRG. This amount is extracted from the unique identifiers in a GRG.
The examined commit ranges for each project can be seen in Appendix A.1. The projects were
chosen for multiple reasons: They represent a wide spectrum of software classes, i.e., hypervisor
(QEMU), interpreter (CPython and Lua) and library (OpenSSL). Lua in particular is a small and
quickly compiling project, which is ideal for rapid prototyping of new metrics. For QEMU and
CPython, additional datasets on social interaction and effort estimation were available, which will
be examined in Sections 4.4 and 4.5. This also explains the relatively large amount of changes
examined for QEMU: The dataset chosen to measure social interaction contains a similarly large
number of data points that should not be discarded.

The build systems of many projects can be configured to customize the resulting program. This
can involve debug or release configurations, additional features, or different target architectures.
Unless stated otherwise, all projects examined were compiled with their default configuration and
as a release build. The QEMU project was compiled for the x86-64 architecture only. As a result, it
must be taken into account that the presented IA approach is less sharp for this project: Changes
to architecture-specific code that do not affect x86-64 are not reflected in the GRG and therefore
ignored during impact analysis. The effects of only building for one architecture can be seen in
Table 4.3. For QEMU, less than half of the C source files are compiled into object files.

Figure 4.3 gives a visual overview of the average GRG sizes of the projects studied relative to the
average and median SIS (changed local hashes) and EIS (changed global hashes) across all changes.
The set sizes are scaled logarithmically, so the smaller sets stay visible. Several observations are
noteworthy: 1) The size of the authored changes (SIS) is similar across all projects. Only OpenSSL
tends to have smaller change increments. 2) Only for QEMU is the average size of the EIS not in the
same order of magnitude as the size of the overall system. 3) For QEMU, the impact sets lay one
order of magnitude apart, for Lua it is two orders and for CPython and OpenSSL the impact sets lay
three orders of magnitude apart. The deviation between average and median IS sizes result from
their irregular distribution, which is inspected in detail in the following sections.
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Project .c files .c files after build .o files after build .o
.c after build

Lua 35 35 34 97.14 %
OpenSSL 813 813 760 93.48 %
CPython 326 327 239 73.09 %
QEMU 2,307 2,556 1,139 44.56 %

Table 4.3 – Ratio of object and source files in the examined projects. The files were counted
with “find . -type f -not -path "./<test>/*" -name "*.<c/o>" | wc -l” for the
most recent of all examined commits. In some projects, additional source files are generated
during the build.
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Figure 4.3 – Mean and median impact set sizes compared to the systems size of four projects.
Changes with no impact (|SIS| = 0) are excluded. No impact is measured if the GRG is not
changed, e.g. in case of changes to the documentation or code that is not relevant to the GRG.

These differences in the sizes of the sets are particularly interesting with regard to Table 3.1.
Only in one out of four projects (QEMU) does the presented IA approach regularly deliver impact sets
that are significantly smaller than the overall system. Furthermore, only in QEMU are the EISs only
slightly larger than the SISs. In the following, it is discussed whether these differences result from
the fact that the selected IA approach is unsuitable according to Arnold and Bohner, or whether the
size of the EISs in Lua, OpenSSL and CPython result from strong ripple effects within those projects.

The goal of this thesis is not only to quantify the impact of a change correctly, but to do so
efficiently. In order to better understand the time required for impact analysis, a projects clean build
was compared with the average build times for all the commits examined. All tests were performed
on the same machine (96-Core Intel Xeon Gold 6252 @ 2.10 GHz). Figure 4.4 shows the build times
of the four projects. First of all, it is noticeable that for QEMU and CPython, the clean build takes
longer than the complete impact analysis. This is due to the fact that during the first build (but after
the configuration scripts have been run), additional dependencies have to be created, which cannot
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Figure 4.4 – Build and impact analysis times for four open source projects

be created in parallel. Therefore, in those cases, the clean build performs worse than the build with
cHash. Generating the GRG and other data required for IA creates a measurable overhead with
OpenSSL and Lua. Furthermore, it is noteworthy that the time required to generate and analyze
the Sub-ASTs is similar for all projects. This is because the amount of Sub-ASTs examined does not
depend on the size of the GRG, but on the SIS, which is similar across all projects. In practice, build
times with cHash could be lowered if it is directly integrated with the build systems. Currently, the
build times also include the time spent on configuring the projects to use cHash and chash-global.
However, the additional overhead for impact analysis is deemed acceptable.

4.3 Assessment of the Impact Quantification Metrics

Before comparing the impact analysis metrics to social interaction and effort estimates, the signifi-
cance of the impact quantification metrics is examined. The measured values are then used to explain
the relationships shown in Figure 4.3. In the following, only changes with |SIS|> 0 are considered.
This excludes changes which are only concerned with formatting or documentation updates.

First, it is examined whether the magnitude of the authored changes is subject to a natural
distribution. Figure 4.5 shows the empirical probability distribution for SIS sizes across multiple
changes and projects. The distribution can be described reasonably well with the Pareto probability
density function, as in Equation (4.1) [Sch12]. Other natural datasets, such as the distribution of
words in spoken languages or the number of inhabitants in cities, also follow similar laws [Tao09].
Thus, it can be assumed that most of the changes are man-made and that the measurements are not
distorted by automatically generated changes. The SIS sizes are not distributed normally, therefore
Pearson’s r is not suitable for comparing them with other measurements.

f (x) =

¨

αxαmin
xα+1

xmin=1
= α

xα+1 x ≥ xmin

0 x < xmin

(4.1)
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(a) QEMU. n|SIS|>0 = 2,076; α= 0.33
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(b) CPython. n|SIS|>0 = 304; α= 0.39
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(c) OpenSSL. n|SIS|>0 = 868; α= 0.46
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(d) Lua. n|SIS|>0 = 1,385; α= 0.32

Figure 4.5 – The empirical probability for the size of the starting impact set across multiple
changes for different software projects. The plots are truncated at |SIS| = 25, with some outliers
beyond that. Changes with no impact (|SIS|= 0) are excluded.

4.3.1 Relationship Between the Metrics

Before the impact quantification metrics are compared with other change measurements or used
in practice, it is verified that the metrics are not in a linear relationship with each other. If two
measurements are highly correlated, the usefulness of one of the two metrics may be questioned,
as both would interpret a change in the same way. The relationship between the SIS and EIS is
considered first, as these are the most common measurements in impact analysis. Figure 4.6 shows
the relationship between the size of starting impact sets (|SIS|) and the corresponding Jaccard
distance for each change. The variables are clearly not linearly dependent. Changes that initially
affect only a few nodes in the GRG can therefore also potentially have a major impact on the entire
program. However, the measured coefficients indicate that they correlate fairly when described by
some monotonic function. This can be explained by the fact that a larger SIS naturally affects more
nodes in the GRG transitively, resulting in a larger EIS.

Nevertheless, it would be difficult to find a monotonic function that explains the strong clustering
of low- and high-impact changes. In all projects, it can be observed that there are changes that affect
the entire software only up to a certain threshold. With some distance, other changes accumulate
that result in a much larger EIS. The measured Jaccard distance in both clusters is only weakly
dependent on |SIS|, as shown by the average |SIS| for the clusters from the graphs. For OpenSSL,

33



4.3 Assessment of the Impact Quantification Metrics

100 101 102 103

|SIS|

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

D
is

ta
nc

e

mean(|SIS|) = 109.89

mean(|SIS|) = 10.13

(a) QEMU. rS = 0.51; τ= 0.38

100 101 102 103

|SIS|

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

D
is

ta
nc

e

mean(|SIS|) = 41.50

mean(|SIS|) = 10.46

(b) CPython. rS = 0.25; τ= 0.19
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(c) OpenSSL. rS = 0.34; τ= 0.25
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(d) Lua. rS = 0.48; τ= 0.36

Figure 4.6 – The relationship between the size of starting impact sets and the Jaccard distance
(basically the normalized size of the EIS, see Section 3.3.1) for different projects. The relation-
ship is visibly nonlinear, so only Spearman’s rS and Kendall’s τ are presented. |SIS| is scaled
logarithmically so the dataset can be observed well across all orders of magnitude. Low- and
high-impact changes are colored differently.

the average |SIS| for the high impact cluster is even lower than in the low impact one. The strong
separation between low- and high-impact changes can have several causes. In the following, high-
impact changes and possible reasons for their classification are examined: 1) Changes to record
data types. These are not part of the GRG, but affect nodes that depend on them, such as functions
that access structs. 2) Changes to macros. These are also not part of the GRG, since they are
substituted by the preprocessor before syntax analysis, but may affect a large portion of the program.
3) Changes to high-impact nodes. Those are functions or variables that have a high score on any of
the node-specific position-dependent measurements.

The reasons for a change being classified as high impact are studied more closely with Lua. The
results are also applicable to the other projects, which are not shown here in order to keep the
chapter shorter. It is first checked whether changes to structs lead to a change being rated with a
high Jaccard distance. Figure 4.7 shows the relationship between |SIS| and Jaccard distance for Lua,
as seen in Figure 4.6d, but grouped by changes that do and do not modify a record data type. The
number of high impact changes relative to all changes is slightly larger for changes which modify a
record data type. Nevertheless, changes that do not affect record data types still result in a large
number of high impact commits. It can thus be assumed that changes to record data types are not
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Figure 4.7 – The relationship between |SIS| and Jaccard distance for Lua, grouped by changes
that do or do not modify record data types. The number of high impact changes relative to all
changes is slightly larger for changes which modify a record data type:
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the (sole) reason for high impact changes. The same is true for changes to macros: Both macros
and record data types are not captured in the GRG. A change to these will possibly result in a large
SIS, as described in Section 3.2.2. Since SIS and EIS are not linearly correlated, changes to structs
or macros are not the cause for a large EIS (or high Jaccard distance).

It is now checked whether individual high impact nodes (functions/variables) in the GRG are
responsible for particularly large EIS. Figure 4.8 shows the dependency of the Jaccard distance for a
change on the different position-dependent metrics presented in Section 3.4.1. For each change
only the most impactful node, according to the metric, is displayed. The other nodes are ignored, as
the purpose is to check whether a single node potentially overshadows the impact of all other nodes.
The plots show a clear trend: The size of the EIS is mostly independent from the measurements that
can be directly taken from the diffgraph. This can be explained by the fact that the measurements
only describe the local dependencies of a node in the diffgraph. The distance of a node from the
root also does not seem to be decisive. A deep-lying node does not necessarily influence many
other nodes: It can be a chain of function calls that is not branched any further. The best (near
perfect) correlation can be found in the largest size of a changed nodes transitive closure. This was
to be expected, but still has some interesting implications: A single node can indeed overshadow
the influence of all other nodes in a change. It remains to be tested whether a combination of the
position-dependent metrics (without transitive closure) can explain the influence of individual nodes
on the GRG. However, since no particularly good correlation was found for any of the metrics, this
was not pursued further.

Although the transitive closure is able to explain the size of the EIS well, it also has a serious
disadvantage, which only became apparent when testing with projects other than Lua: The algorithm
for calculating the transitive closure has a runtime complexity of O(n3) with the Floyd-Warshall
algorithm, and O(n2.376) with the best algorithm employing matrix multiplication [BJG09]. While
the computation for Lua (979 nodes) runs in only 3.75 s on the test machine, the computation for
CPython (11,281 nodes) already amounts to 11.86 m. Thus this metric, in contrast to the GED, is
practically computable, but far from this thesis’ goal of an efficient impact analysis. Nevertheless,
the data obtained was used to get an overview of the most influential source files containing the
most influential GRG nodes of the different projects, which can be seen in Table 4.4 for CPython.
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Figure 4.8 – The relationship between the Jaccard distance (|EIS|) and different position-
dependent measurements (see Section 3.4.1) for the most impactful node in a change. The data
is pulled from the Lua project.

Those high impact nodes are all nodes with a large enough transitive closure to be contained in the
high impact cluster, as in Figure 4.8d.

Filename High impact nodes Source file description

Python/ast_unparse.c 36 AST unparser
Python/symtable.c 30 Symbol Table handling
Python/pylifecycle.c 18 Python interpreter top-level routines
Python/initconfig.c 16 Python initialization
Python/hamt.c 11 Implementation of an immutable mapping
. . . . . .

33 of 229 files contain
high impact nodes

166 of 11,281 nodes
have high impact

Table 4.4 – Overview of the most influential source files for CPython. The files are sorted by the
number of high-impact nodes (large transitive closure) they contain.

Table 4.4 shows that the most influential nodes of a project’s GRG are bundled in just a few files.
Moreover, only a small portion of the nodes are even classified as high impact nodes. In the example
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shown, all source files contribute to the core functionality of the program. Thus, it can be assumed
that nodes that trigger a large EIS are actually crucial to the functionality of a program. Generally,
these observations also apply to the other examined projects.

4.3.2 Comparing Open Source Projects

The presented impact metrics can be used to study the structure and development behaviour of
different projects. In addition to a statement about the internal structure of these programs, it can
also be checked whether the IA approach presented is sufficiently sharp, i.e., whether the EIS is
not constantly being overestimated too aggressively. Figure 4.3 already gave an overview of the
scales of change in different projects. However, it was not clear from the mean values of the change
sizes how the changes are actually distributed. The figures in Section 4.3.1 showed that changes of
similar scales occur in clusters, but not how frequently such changes actually occur. The empirical
distribution of Jaccard distances across multiple changes in different projects is shown in Figure 4.9.
It is interesting to observe that in Lua, OpenSSL and CPython about half of the changes have a
small to medium EIS and the other half cause a large EIS. In QEMU, this distribution is much
more gradual and only a small portion of the changes are high impact, with the largest EIS still
significantly smaller than in the other projects.
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Figure 4.9 – The empirical distribution of change impact measured with Jaccard distance for
different open source projects.

If QEMU is ignored in the evaluation, the chosen impact analysis approach could be accused,
according to Arnold and Bohner, of generating unnecessarily large EISs and thus of being un-
sharp [AB93]. However, QEMU is a good counterexample to defend the approach, since for this
project the distribution of the EIS sizes satisfies the requirements of Table 3.1. Low internal coupling
is a desired quality for software systems since it improves understandability, testability, maintainabil-
ity and reliability [OHK93]. The size of EISs is a good measure for this property, since it measures
the dependencies between the SIS and all other definitions of a program. This allows the statement
to be inverted: The chosen impact analysis approach is sharp and results in high Jaccard distances
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because the other three projects are not as robust to change as QEMU. Even small changes often
have a potentially large impact on those programs.
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Figure 4.10 – The empirical distribution of changed SLOC (see Section 3.3.2) for changes with
|SIS|> 0 across different open source projects.

In order to rule out the possibility that the differences in the sizes of the EISs result from changes
of different sizes to the projects, the changed SLOC were compared as a basic metric for each
project. Figure 4.10 shows that the number of changed lines of code tends to be similar across
all projects. Only CPython is an outlier here: The amount of large changes results from the fact
that some source files (such as parser.c) are generated automatically. As a result, source files can
change significantly even after minor adjustments. It is also notable that there are changes that seem
to occur without changing lines of code. This is because the employed SLOC metric only counts
changes to C source and header files. In some projects, other files also contribute to the GRG, e.g. by
creating intermediate source files in the build process.

The time spans examined for the various projects extend over several years. Therefore, the
impact analysis datasets are also suitable for conducting long-term analyses of the projects. With the
data obtained during IA, an attempt was made to reproduce Wu’s studies on punctuated software
evolution. According to this theory, software evolves in long periods of small changes to the
architecture and short periods of large changes. Wu examined three different open source projects:
OpenSSH, PostgreSQL and Linux. The studies were carried out using the evolution spectrograph: The
size of a project (measured by the number of files) was plotted over discrete time steps (commits to
the SCM). The intensity of a change was measured by comparing the Fan In/Out of dependencies
of the files. Wu concluded that punctuated software evolution can indeed be observed in the
projects studied. He noted, however, that the results may be biased by the coarse granularity of his
studies [Wu06].

The presented impact analysis approach can be used to repeat those studies with much finer
granularity. The time steps are still measured using commits. The size of a project is measured by
the number of nodes in a GRG. The intensity of a change is measured with the size of a commits SIS.
Figure 4.11 shows the new interpretation of the evolution spectrograph. It is possible to observe
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Figure 4.11 – Evolution Spectrographs to discover Punctuated Software Evolution in different
open source projects. The size of a project is traced over time. The intensity of changes is
visualized using different colors: Small SIS→ green; Mid sized SIS→ yellow; Large SIS→ red.

longer periods of green and yellow (small) and short bursts of red (large) changes. Upon closer
inspection, large changes do not necessarily lead to an increase in the projects size. Increases in
project size are however always caused by commits with a large SIS. The separation between the
high and low impact periods is not as pronounced as in Wu’s doctoral thesis. There may be several
reasons for this: 1) The chosen IA approach is more fine-grained than the pure consideration of
file dependencies and thus does not react as strongly to newly added or deleted files. 2) The time
periods observed in this thesis contain less commits than the ones observed by Wu. This means that
longer development cycles cannot be observed as well.

Figure 4.11 only shows the evolution spectrographs for OpenSSL and Lua. Both projects have
a very linear development history with only few branches and merge commits. CPython’s and
QEMU’s development history are disrupted by many merge commits, which makes it hard to display
their development history in a linear fashion. Therefore, they are excluded from the evolution
spectrograph analysis. Note, that the number of nodes in the GRG in both plots is not zero-based.
This view was chosen to show the development histories in more detail.

This brief venture into the study of long-term trends within projects was made to demonstrate
that the results of IA can also be used for such studies. However, the additional precision of these
analyses comes at the price of having to perform IA for each change, which can take several hours
or even days for longer development histories.

4.4 Correlating Mailing List Discussions and Impact Metrics

The significance of the individual impact metrics is difficult to validate in isolation. The evaluations
to this point have attempted to contextualize what the individual metrics say about different projects.
The metrics can be used to compare the severity of a single change with other changes to the same
software. To further investigate the metrics, it is useful to compare them to other datasets that
quantify the magnitude of a change. There are some approaches to such comparisons: One is to
take other established change metrics as a baseline. This is done in Section 4.5. Another method
is to have experts evaluate the severity of a change. Expert opinion is one of the more common
methods of assessing the complexity of a system [RMT09]. The experts of a system, in this case
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the developers, can judge the dependencies within a system and therefore the potential impact of a
change well.

Expert opinions can be obtained in numerous ways: A common approach are interviews or
surveys. This is not feasible for this thesis, since multiple developers would have to rate thousands
of commits for their complexity to gather a statistically significant dataset of rated changes.

Another approach is to use the results of effort estimates as a baseline. At the beginning of
a development cycle, developers provide estimates on how complex a task is. A more involved
change often has a higher impact on the software, so these estimates can also be seen as a kind
of a priori impact quantification. In software engineering, methods such as planning poker are
common. Molokken-Ostvold and Haugen show that such approaches can indeed provide accurate
estimates of effort [MOH07]. In the context of this thesis, however, no suitable open source C project
could be found in which a sufficient number of effort estimates are available.

Nevertheless, in order to obtain an expert opinion on changes investigated with the metrics
shown, the following hypothesis is formulated: The intensity of social interactions that arise around
a proposed software change is directly correlated with the severity of the change. This is supported
by Baysal and Malton, who have shown that discussions and changes are correlated to some
degree [BM07]. The assumption is justified as follows: Small, stylistic changes do not require much
discussion. In the case of more profound architectural changes or new features, it is expected that
they will be discussed at greater length with regard to their correctness and necessity.

Social interaction on open source software can take different forms. Platforms such as GitHub
allow issues to be raised about proposed improvements. These can be commented on and reacted
to with different emoji. In this thesis, a different data source is chosen: Various open source projects
like QEMU or the Linux kernel use mailing lists to discuss changes to the code. The emails on the
lists are examined as an indicator of social interaction. For this purpose, data collected by Ramsauer
et al.’s patch stack analysis (PaStA) tool is used.22 PaStA is able to mine software repositories and
associated mailing lists and to establish relationships between commits and message threads that
otherwise could not be easily found [RLM16; RLM19].

Variable Explanation

Commit ID
The Git commit hash is necessary to link email data to the impact
metrics of a change.

Total Mails
The number of all mails related to the commit from all email threads,
excluding automated messages sent by bots.

Total Authors The number of authors participating in a discussion, excluding bots.
First Message

The date of the first and last message across all related email threads.
Last Message

Table 4.5 – PaStA email dataset

For the proof of concept of correlating mailing list data with impact metrics, the QEMU project
was chosen. QEMU is a reasonably sized project and its mailing list has already been mined by the
PaStA authors. Table 4.5 shows the variables that were extracted from the email threads to each
commit. Each of these values is intended to measure the intensity of social interaction. The number
of mails is the most direct measure of the size of a discussion. A closely related measurement is the
number of authors. However, this value allows filtering long discussions between two authors. It is
weighted more heavily when many people have an opinion on a topic. The length of time between

22PaStA on GitHub: https://github.com/lfd/PaStA
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the first and last message provides another interesting insight: If a change is discussed for a long
time between the first submission and the acknowledgement, this may indicate that the change has
to go through several iterations and may therefore be more complex.
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Figure 4.12 – Correlation of the email dataset variables with themselves

Before examining the email data for correlation with the impact metrics, it is checked whether
the email data strongly correlates with itself. If two of the variables are too similar, one is probably
unnecessary. Figure 4.12 shows the comparison of the number of emails to the amount of authors
and the duration of the discussions. The number of messages and authors per discussion correlate
moderately to very strongly. This is to be expected, since there must be at least as many messages
as authors. The number of mails and the duration of the discussion only correlate fairly well. As
already mentioned, this may be due to the fact that there may be a varying time of improvement and
correction between the first submission of a change and the final accepting message. The impact
metrics will be mostly compared to the amount of messages per commit.

First, the relationship between mailing list discussion and the size of the EIS, represented by the
Jaccard distance, is examined. The Jaccard distance best reflects the potential impact of a change
on the overall program architecture. According to the hypothesis mentioned at the beginning of
this section, developers have the best knowledge of the internal relationships and architecture of a
project. As a result, they should be sensitive to and strongly discuss potentially major structural
changes. Figure 4.13 shows that |EIS| does not correlate in any way, neither linearly nor in any
other monotonic way, with the intensity of a discussion on a change. It could be questioned whether
the Jaccard distance is an appropriate measure of the potential impact of a change on the whole
project. Especially with regard to high impact changes, Jaccard distance can be described as very
sensitive, see Section 4.3.1. However, even if the high impact changes are excluded, the correlation
does not improve at all.

The EIS generated by the GRG approach is an overestimate of the actual impact of a change,
as described earlier. Thus, the difference from the AIS may be too large to classify a change as
significant to the software’s architecture. The measurement that actually measures the magnitude
of a change with near certainty is the SIS. For this, the former hypothesis has to be rephrased: The
more parts of a program are changed simultaneously, the higher the probability of making a mistake.
This assumption is supported by Eyolfson et al. who claim that stable commits, which tend to be
small, contain fewer bugs [ETL14]. It is therefore expected that smaller changes will be discussed
less because they are less prone to errors.
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Figure 4.13 – Relationship between |EIS| and mailing list discussion intensity
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Figure 4.14 – Relationship between |SIS| and mailing list discussion intensity

However, Figure 4.14 shows that this hypothesis cannot be statistically supported either. The size
of the SIS is not correlated with the amount of social interaction in any meaningful way. As described
in Section 3.2.2, the SIS may become unexpectedly large if a record data type has been changed. To
rule out the possibility that changes to such structures might distort the correlation between the
datasets, the correlations between SIS or EIS and the email data were re-examined, ignoring changes
affecting record data types. The results of this new analysis can be seen in Figure 4.15. Compared to
before, the correlation has actually worsened, indicating that the intensity of a discussion is indeed
not related to the impact sets.

The direct impact of a change cannot only be quantified by the size of the SIS: The changed
SLOC and the node-specific similarity measures Successor Similarity and Sub-AST TED also give an
indication of how large a change is. However, even with these metrics, the hypothesis could not be
proven. The evaluation of these metrics in relation to the email data is not explicitly shown in this
thesis.

To better understand the relationship between the impact metrics and email data, a random
sample of changes was examined manually. Changes with particularly large and small Jaccard
distances and changes with particularly large numbers of messages were inspected. Detailed reports
can be found in Appendix A.2. Table 4.6 provides an overview of particularly noticeable properties
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Figure 4.15 – Relationship between |SIS| or |EIS| and mailing list discussion intensity, ignoring
changes affecting record data types

of changes and their discussion on the mailing list. First of all, it is noticeable that the impact metrics
do not always reflect all changes to the source code. This may be due to the fact that the edited
source code is not yet in use. However, it is more likely that the configuration for which QEMU
is compiled (x86-64) does not use the code. This misestimation of change impact is due to the
evaluation methodology and could be fixed by compiling QEMU for all possible configurations, which
was not in the scope of this thesis. However, the resulting extremely high additional compilation
effort conflicts with the requirement for efficient impact quantification.

Description Amount

Individually examined changes 47

Not all source code changes captured by metrics 7
Changes with delayed impact 2
Discussion smaller than expected (author’s opinion) 2
Discussion larger than expected (author’s opinion) 5

Table 4.6 – Summary of individually examined changes

The impact of some changes is delayed and cannot be measured directly with the chosen approach.
Two examples of this have been identified: One was a new framework that was introduced, which
was discussed heavily at the time. However, since the new functionalities were not used until a
later commit in the patch series, no major change in the GRG was detected. In another example, a
function was marked as deprecated. This initially has no impact on the program behavior, but on
how the software is developed in the future. Such influences are not measurable with the chosen
approach, as they only affect the program after a longer period of time. Nevertheless, it is advisable
and necessary for the developers to discuss such changes in detail.

Up to this point, a number of reasons have been given for rejecting the working hypothesis that
“large change impact causes large social interaction and vice versa”. Of course, this may be because
there is in fact no correlation between the two variables. On the other hand, it may also be because
the chosen metrics for change and social interaction do not represent these two variables correctly.
Each of the change impact metrics represents only a portion of the change. EIS and SIS are actually
overestimates of the parts of the program that may be impacted. Sub-AST TED, Successor Similarity,
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and changed SLOC reflect how large a portion of the program was actually changed. A complete
and sound impact quantification would have to combine all of these measurements without over- or
underestimation.

Measuring social interaction via mailing list discussion may not be ideal either. A not negligible
share of the examined commits entail unexpectedly long discussions. It is doubtful that all of
these discussions of this length are necessary, or whether the amount of information transferred is
actually as great as the measurement suggests. Colloquially, this phenomenon is called bikeshedding,
according to which less complex matters are discussed for longer than necessary because everyone
can easily form their own opinion [Mcf17]. It has also been observed that changes have been
submitted as part of a larger patch series, and the discussion of those commits has not been captured
by PaStA because it has been linked to another commit from that patch series.

Assume that the impact quantification metrics presented correctly represent the magnitude of a
change and that the intensity of the discussions has been correctly estimated after all: The developers
of (open source) projects could use the metrics as a guideline for their review process. Thus, the
unnecessary effort caused by bikeshedding discussions might be better spent on actually impactful
changes instead.

4.5 Correlating LineImpact and Impact Metrics

Finally, the node-specific metrics of successor similarity and Sub-AST TED will be examined. In
contrast to the metrics evaluated so far, which measure the potential impact of a change on the
entire program, these two metrics measure the internal changes of a node in the GRG. For each
change, both metrics are computed for all nodes that are directly impacted, i.e. all nodes that are
contained in the SIS.
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Figure 4.16 – The empirical distribution of successor similarity and Sub-AST TED for different
open source projects. For each project, the measurements of all nodes from all SISs across all
changes were plotted.

First of all, both metrics are checked for their significance. Figure 4.16 shows the empirical
distribution of successor similarity and Sub-AST TED across all nodes in all SISs across all changes.
For Lua, OpenSSL and QEMU, about 78 % of all nodes in the SIS have a successor similarity = 1, so
no change was detected. In contrast, only around 55 % of those nodes have a Sub-AST TED = 0.
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This makes successor similarity much worse at determining whether the behavior of a node in
the GRG has actually changed. To avoid any possible misunderstandings: The content of a node
(function) does not really have to change for it to appear in the SIS. It is sufficient that for example a
record data type changes on which this node depends, so that its local and global hash also changes.
This explains the case that a node has Sub-AST TED= 0 and it still appears in the SIS.

Similar to Figure 4.10, CPython is also out of the ordinary in Figure 4.16. Nevertheless, successor
similarity (34 % of nodes at 1) and Sub-AST TED (12 % of nodes at 0) behave similarly for CPython
as for the other projects. Again, successor similarity performs worse in distinguishing changes from
non-changes to nodes. The reason that CPython behaves so dissimilarly to the other projects is
again due to the fact that part of the source code is generated automatically in CPython. This means
that the proportion of modified nodes is higher overall. In the following, only Sub-AST TED will be
examined in more detail as it results in a finer grained impact analysis on node level.

Sub-AST TED is in principle a similar measure of change as SLOC. Both measure an absolute
amount of change to a source file. However, the SLOC measurement is less precise, since trivial
changes such as new comments, empty lines, etc. are also captured. Sub-AST TED makes use of a
similar property as cHash: Trivial changes are not part of the AST and are therefore not counted.
Figure 4.17 shows the comparison of SLOC and Sub-AST TED. In this and all following figures,
Sub-AST TED is summed for all affected elements in the SIS. In some cases, Sub-AST TED is not
calculated for all elements of the SIS because the Sub-AST of some functions is too large to calculate
TED in a reasonable time. To avoid distorting the evaluation too much, no changes with incompletely
processed Sub-AST TED are included in the plots. The doubly logarithmic plot shows a cohesion
between the two variables, but Pearson’s r indicates only a fair linear correlation.
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Figure 4.17 – Relationship between changed SLOC and Sub-AST TED for CPython. Changes with
no impact (|SIS|= 0) and/or with an incomplete Sub-AST TED result are excluded. r = 0.447;
rS = 0.744; τ= 0.607; Fair linear, moderate monotonic correlation

The problem is that the simple measurement of the changed SLOC contains too much noise.
As already mentioned in Section 2.5, Harding therefore proposes the metric LineImpact. It filters
the relevant changed lines of code by ignoring empty, duplicated, copy-pasted and churned lines,
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leaving only 5 % of changed lines for impact analysis [Har18]. The effect of this filtering can be
seen in Figure 4.18. LineImpact is compared to all changed lines in a Git commit and the coarsely
filtered SLOC, as described in Section 3.3.2. Both measurements clearly still correlate fairly well. It
is however remarkable that LineImpact classifies a large amount of changes with zero impact, which
is due to the strict filtering. CPython was chosen as the dataset for these analyses. LineImpact is a
commercial product, therefore the impact data could not be generated freely for any open source
project. The author of LineImpact kindly provided the dataset for CPython.
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Figure 4.18 – LineImpact in relation to changed lines and SLOC for CPython, as defined in
Section 3.3.2
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Figure 4.19 – Relationship between LineImpact and Sub-AST TED for CPython. Changes with
no impact (|SIS|= 0) and/or with an incomplete Sub-AST TED result are excluded. r = 0.566;
rS = 0.356; τ= 0.267; Moderate linear, fair monotonic correlation

The relationship between LineImpact and Sub-AST TED is shown in Figure 4.19. In contrast to
the changed SLOC, the linear correlation has improved, but the monotonic correlation has worsened.

46



4.5 Correlating LineImpact and Impact Metrics

The improvement of the linear correlation is due to the fact that LineImpact also ignores trivial
changes. The decrease in the monotonic correlation is caused by the many changes that have
LineImpact = 0. A random selection of those changes was inspected manually, the results can
be seen in Table A.5. Some of the changes actually should be rated with LineImpact = 0, since
they are simply copy-paste edit operations, whereas for others the reasons for the rating cannot be
understood with the help of Harding’s publications. Since the source code for LineImpact is closed
source, the cause of this underestimation cannot be investigated in the context of this thesis.

A perfect correlation between Sub-AST TED and LineImpact can and should not be expected,
as the goals of the metrics only partially overlap. The goal of Sub-AST TED (and the other change
impact metrics) is to make the impact of a change clear to a developer. In particular, if a change has
a large impact even though only a few SLOC have been changed, the developer should be made
aware of this. LineImpact pursues a different goal: It wants to estimate the effort that a developer
had to invest for a change. That is why, among other things, copy-paste edits are weighted so
low. LineImpact wants to be a non-gameable metric that allows project managers to gauge the
effort of their team. In contrast to other effort estimates such as “changed lines of code” or “SCM
commits per day” it should be more difficult to pretend to be working hard when measured with
LineImpact [Har21]. For this use case, Sub-AST TED would be completely unsuitable, as it possibly
reacts strongly to copy-paste and other effortless source code modifications.
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5C O N C LU S I O N

In this thesis, a new change impact analysis approach based on the concept of the global reference
graph was introduced. The global reference graph of a program before and after a change are
combined into a diffgraph using the differential graph algorithm. From the diffgraph, the software
parts directly and indirectly affected by a change, i.e., the starting and estimated impact set, can be
identified by whether their local or global hash has changed. In contrast to other impact analysis
approaches based on transitive closure, the diffgraph and thus the impact sets can be computed
in O(n), which makes this method particularly efficient. Various metrics are derived from the
diffgraph that can be used to easily interpret the impact sets and quantify the change. Among all
proposed metrics, Jaccard distance and Sub-AST TED have proven to be most suitable for quantifying
the impact of a change on the overall structure of a program and on the behaviour of a function,
respectively.

The evaluation has shown that the presented impact analysis approach can provide valuable
insight into the interdependencies of a project. The metrics go beyond the traditional impact analysis
goals of estimating accurate impact sets and can help a developer with interpreting the possible
consequences of a proposed change. As already mentioned, the impact quantification can also
serve as an indicator for guiding review discussions. Compared to the LineImpact metric, Sub-AST
TED delivers similar results with a linear correlation coefficient r = 0.566. However, it would be
advisable to repeat the measurements for social interaction and LineImpact with additional datasets
for other open source projects in order to further validate and solidify the conclusions drawn from
the analyses.

Change impact analysis based on the GRG and diffgraph meets all four essential requirements
for CIA defined by ISO/IEC [ISO06]: It detects all possible ripple effects on other software modules,
since it is based on the complete cHash approach. It is able to determine the level of testing required,
since it is based on the TASTING approach, which correctly identifies the set of automated software
tests to be reexecuted after a change [LDL21]. In addition, the amount of evaluation required is
determined by the impact quantification metrics. This is closely coupled to the third requirement,
the presented CIA approach estimates the size and magnitude of a modification. Lastly, it can be
said that the approach takes into account the development history of the projects studied. Even
more, some metrics, such as Jaccard distance, only become valuable if the development history is
taken into account, as they need a context to properly classify changes.

In addition, the presented CIA approach also has some features that are not strictly required by
ISO/IEC: The impact analysis is simple and efficient, as it can be seamlessly integrated into the build
processes of most C projects. The evaluation shows that the performance penalty due to impact
analysis during the compilation process is bearable in most projects, especially when compared to
other impact analysis approaches: In the worst case, Lua, compilation and impact quantification
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triple the buildtimes to 3.4 s compared to a clean build. However, this is still quicker than simply
computing the transitive closure, which on its own already takes 3.75 s. For larger Projects like
CPython, this difference becomes even more apparent. The additional overhead of impact analysis
can possibly be compensated for by taking advantage of the accelerated compilation and reduced
test times provided by cHash and TASTING.

In the future, impact quantification could be extended to more programming languages than C.
The concept of the GRG can be applied to any programming language that can be represented
by an AST. However, extending to more languages is not the responsibility of the IA approach,
but rather of cHash, which would be desirable to have available for more programming languages
anyway. Other impact quantification such as LineImpact is mostly language independent, which
cannot be achieved in this case without rewriting cHash for each language.

A weakness of the GRG for impact analysis is that record data types and preprocessor macros are
not part of the graph. Therefore, especially the SIS is in many cases an overestimation. It would be
easy to include structs in the GRG, since only chash-global would have to be adjusted. However,
there are also approaches on how not to lose the information about macros in the preprocessing
stage.23

The impact metrics specifically for QEMU suffered from the fact that only a small part of the
software was studied, since code that does not contribute to the GRG is excluded from IA. Therefore,
in the future, it remains to be explored how to apply impact quantification to highly configurable
systems.

I would like to take this opportunity to thank Ralf Ramsauer for his advice and support on obtaining
the email dataset from PaStA. I also want to thank Bill Harding, who quickly and without much fuss
provided me with the dataset on LineImpact. My thanks finally go to Tobias Landsberg, who, as the
supervisor of this thesis, always quickly had a good answer to all my questions.

23Pending thesis at the Institute for Systems Engineering: “Preprocessed information: Extend the C preprocessor with
source code markers”: https://www.sra.uni-hannover.de/Theses/2021/BA-ARA-cpp.html
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AA P P E N D I X

A.1 Commit Series

Project Commit Range

QEMU 4250da10..1d806cef
CPython -
OpenSSL dceb99a5..f123043f
Lua 8d9ea59d..439e45a2

Table A.1 – Examined commit series for each project. The Git-DAGs were extracted using
git log --pretty=’format:%H %P’ <commit-range>

CPython employs a rebase-oriented workflow, therefore it’s commit history is in constant change.
The compiled commits were not selected from a commit range, but rather from the commits that were
available in the LineImpact dataset and the currently cloned CPython repository at the same time.
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A.1 Commit Series

A.2 Comments on Changes

C
om

m
it

ID
M

ails
Sub-A

ST
TED

Jaccard
D

istance
K

ind
of

C
hange

C
om

m
ent

on
M

ails
O

ther

7b733862
0

6301
0.519

split
m

ain
into

three
subfunctions

large
discussion

expected,found
only

one
m

es-
sage

4749079c
3

477
0.535

changes
to

structs,
new

&
m

odified
functions,

new
m

acros
short

discussion,
but

rest
of

thread
has

longer
discussion

high
im

pact
is

expected

2880ffb0
4

22
0.482

new
globalvariables,incorporated

in
som

e
func-

tions
low

discussion
expected

164c374b
4

64
0.521

refactor
object-freeing

function
part

of
larger

patch
series

(26).
could

not
find

replies
to

initialm
essage

this
function

is
heavily

used,but
hidden

behind
m

ultiple
layers

ofabstraction.
prim

e
exam

ple
for

surprisingly
im

pactfulfunction
269bd5d8

4
0

0.511
change

m
em

ber
of

often
used

struct,touch
files

for
m

any
different

targets
part

of
large

patch
series

(39),
possibly

longer
discussion

in
other

subthreads
b56668bb

5
0

0.520
rem

ovalof
unused

struct
m

em
ber,

adapt
som

e
functions

to
this

low
discussion

expected,
since

it
is

an
unused

m
em

ber
w

e
only

track
the

struct
changing,not

the
func-

tion.
this

is
caused

by
only

building
for

one
spe-

cific
configuration,w

here
the

function
is

likely
unused.potentialw

eaknessforcia
approach

(but
is

to
be

expected)
7b3cb803

6
160

0.517
refactor

m
ultiple

frequently
used

functions
num

ber
of

m
ails

seem
s

fitting
cbf97d5b

7
0

0.504
m

odify
Python-C

-code
generation

of
an

often
used

tem
plate

num
ber

of
m

ails
seem

s
fitting

9c09a251
7

111
0.519

m
odify

C
PU

State
struct

and
functions

that
use

it
m

edium
discussion

expected
and

found
som

e
m

odified
functions

appear
to

be
m

issing
from

the
built

configuration
and

therefore
are

not
m

easured
w

ith
Sub-A

ST
TED

e957ad8a
9

14
0.506

refactor
a

function,only
a

stylistic
change

relatively
high

discussion
unexpected,as

it
does

notlook
like

a
large

change
(sem

antically).could
not

find
discussion

online
0c0fcc20

10
156

0.525
m

odify
globalC

PU
State

struct,m
odify

som
e

func-
tions

am
ount

ofm
ails

looks
ok,probably

none
m

issed
again,som

e
functions

do
not

appear
in

the
im

-
pactset.

m
odification

to
cpustate

likely
responsi-

ble
for

high
Jaccard

distance
a26fc6f5

11
21

0.516
changes

to
struct

M
em

T
xA

ttrs
and

som
e

func-
tions

using
it

seem
s

to
have

found
the

correct
discussion

high
Jaccard

distance
likely

caused
by

change
to

struct.
change

to
function

notdetected
atall,but

function
has

changed
in

other
com

m
its
→

this
function

w
as

notpartofthe
targetin

this
com

m
it,

but
in

others
it

w
as

2f3a57ee
13

0
0.493

m
odifications

to
struct

and
functions

high
discussion

expected
(and

found)
Sub-A

ST
TED

m
etric

show
s

nothing,since
only

really
m

odified
function

does
not

appear
to

be
used

in
this

configuration.
high

Jaccard
distance

is
caused

by
C

PU
State

struct
22dc8663

15
16

0.484
really

sim
ple

m
odification

to
one

function
discussion

seem
s

too
large

forthis
sim

ple
change.

otherpatches
in

this
series

seem
to

be
in

response
to

this
first

patch,so
this

m
ight

skew
the

data

m
odified

function
is

used
in

m
any

places,
this

explains
high

Jaccard
distance

Table
A

.2
–

Q
EM

U
.

C
om

m
ents

on
a

random
selection

of
com

m
its

w
ith

high
Jaccard

distance

52



A.2 Comments on Changes

C
om

m
it

ID
M

ai
ls

Su
b-

A
ST

TE
D

Ja
cc

ar
d

D
is

ta
nc

e
K

in
d

of
C

ha
ng

e
C

om
m

en
t

on
M

ai
ls

O
th

er

e1
d3
22
c4

0
0

0.
00

8
ch

an
ge

ve
rs

io
n

ta
g

no
di

sc
us

si
on

re
qu

ir
ed

0f
09
98
f6

1
35

0.
05

7
m

in
or

fu
nc

ti
on

re
fa

ct
or

in
g

sm
al

ld
is

cu
ss

io
n

ex
pe

ct
ed

c3
8c
1c
14

2
16

0.
00

8
m

in
or

fu
nc

ti
on

m
od

ifi
ca

ti
on

42
0a
e1
fc

3
50

2
0.

02
3

re
fa

ct
or

by
pu

lli
ng

ou
t

co
de

in
to

st
at

ic
fu

nc
ti

on
s

no
t

m
uc

h
di

sc
us

si
on

ex
pe

ct
ed

82
e8
70
ba

3
37

0.
00

1
re

fa
ct

or
it

er
at

or
in

fu
nc

ti
on

am
ou

nt
of

m
ai

ls
se

em
s

ok
d8
fa
84
42

4
27

0.
01

8
re

fa
ct

or
m

ag
ic

nu
m

be
rs

w
it

h
ge

tt
er

s
am

ou
nt

of
m

ai
ls

se
em

s
ok

71
2f
80
7e

4
0

0.
00

4
re

ve
rt

a
m

in
or

co
m

m
it

co
ul

d
no

t
fin

d
m

es
sa

ge
s

on
lin

e
7f
fc
b7
3d

5
0

0.
00

1
m

ov
e

ar
ou

nd
he

ad
er

s
di

sc
us

si
on

se
em

s
to

o
la

rg
e

fo
r

th
is

m
in

or
ch

an
ge

a8
57
d9
1d

5
16

0.
02

0
ch

an
ge

m
ul

ti
pl

e
de

bu
g

m
ac

ro
ca

lls
di

sc
us

si
on

se
em

s
ok

,
si

nc
e

m
an

y
fil

es
w

er
e

to
uc

he
d

in
te

re
st

in
gl

y,
m

an
y

ch
an

ge
d

fu
nc

ti
on

s
do

no
t

le
ad

to
a

hi
gh

Ja
cc

ar
d

di
st

an
ce

,
co

nt
ra

ry
to

a
si

ng
le

st
ru

ct
38
84
1d
cd

6
82

0.
01

8
ad

d
ne

w
in

it
ia

liz
er

fu
nc

ti
on

di
sc

us
si

on
se

em
s

ok
c3
e9
55
51

7
41

9
0.

00
1

m
ov

e
pa

rs
er

fu
nc

ti
on

to
ot

he
r

m
od

ul
e

di
sc

us
si

on
se

em
s

ok
,m

ay
be

ev
en

a
bi

t
la

rg
e

hi
gh

Su
b-

A
ST

TE
D

:
ne

w
fu

nc
ti

on
&

he
av

ily
m

od
-

ifi
ed

fu
nc

ti
on

;l
ow

Ja
cc

ar
d

di
st

an
ce

:
pa

rs
in

g
ha

p-
pe

ns
ne

ar
m

ai
n,

lo
w

im
pa

ct
se

t
6f
d5
be
f1

8
15

8
0.

02
9

ch
an

ge
re

tu
rn

va
lu

e
of

vo
id

fu
nc

ti
on

s
to

bo
ol

(e
rr

or
-v

al
ue

)
nu

m
be

r
of

m
es

sa
ge

s
se

em
s

ok
.

ho
w

ev
er

,c
ou

ld
no

t
fin

d
di

sc
us

si
on

th
re

ad
on

lin
e

84
8c
70
92

8
30

8
0.

00
9

re
fa

ct
or

in
g,

re
pl

ac
e

oc
cu

rr
en

ce
s

of
on

e
fu

nc
ti

on
w

it
h

ne
w

fu
nc

ti
on

co
ul

d
fin

d
di

sc
us

si
on

d7
74
17
43

9
1

0.
00

1
ch

an
ge

of
st

ru
ct

an
d

on
e

in
vo

ki
ng

fu
nc

ti
on

co
ul

d
no

t
fin

d
m

uc
h

di
sc

us
si

on
ar

ou
nd

th
is

co
m

-
m

it
on

lin
e

th
is

st
ru

ct
is

le
ss

fr
eq

ue
nt

ly
us

ed

36
ad
ac
49

11
62

0.
00

1
ch

an
ge

st
ru

ct
an

d
fu

nc
ti

on
s

us
in

g
it

hi
gh

di
sc

us
si

on
ex

pe
ct

ed
an

d
fo

un
d

th
is

st
ru

ct
se

em
s

to
ha

ve
a

sm
al

li
m

pa
ct

on
th

e
re

st
of

th
e

sy
st

em
4d
b6
ce
b0

13
24

0.
00

9
re

fa
ct

or
se

m
an

ti
cs

of
st

at
us

fla
gs

di
sc

us
si

on
fo

un
d

se
m

an
ti

c
ch

an
ge

w
ar

ra
nt

s
lo

ng
er

di
sc

us
si

on
,

ev
en

if
th

e
m

ea
su

re
d

im
pa

ct
is

lo
w

64
5a
e7
d8

17
13

6
0.

01
9

re
fa

ct
or

:
re

tu
rn

st
ri

ng
in

al
lo

ca
te

d
bu

ff
er

in
st

ea
d

of
pr

ov
id

ed
bu

ff
er

co
ul

d
no

t
fin

d
th

e
di

sc
us

si
on

on
lin

e
hi

gh
Su

b-
A

ST
TE

D
,

si
nc

e
m

an
y

fu
nc

ti
on

s
ar

e
to

uc
he

d.
ho

w
ev

er
,t

he
di

sc
us

si
on

se
em

s
to

o
la

rg
e

fo
r

th
is

ch
an

ge
4b
b4
a2
73

32
6

0.
00

1
de

pr
ec

at
e

a
fu

nc
ti

on
co

ul
d

no
t

fin
d

th
e

re
la

te
d

di
sc

us
si

on
de

pr
ec

at
io

n
ha

s
ve

ry
lo

w
im

pa
ct

,
di

sc
us

si
on

is
to

o
la

rg
e

Ta
bl

e
A

.3
–

Q
EM

U
.

C
om

m
en

ts
on

a
ra

nd
om

se
le

ct
io

n
of

co
m

m
it

s
w

it
h

sm
al

lJ
ac

ca
rd

di
st

an
ce

53



A.2 Comments on Changes

C
om

m
it

ID
M

ails
Sub-A

ST
TED

Jaccard
D

istance
K

ind
of

C
hange

C
om

m
ent

on
M

ails
O

ther

46517dd4
41

2
0.038

m
ove

around
includes,so

recom
pilations

happen
less

frequently.
m

any
files

touched!
large

discussion
w

as
found

discussion
m

ostly
around

breaking
build

chains

a783f8ad
42

0
0.001

add
fram

ew
ork

for
later

change,thatw
illuse

the
fram

ew
ork

could
not

find
discussion

online

e4d7019e
43

29
0.019

sm
allfix

could
not

find
the

large
discussion

80f5c011
43

18
0.019

sm
allfix,changes

to
testing

could
find

som
e

discussion
discussion

m
ostly

revolves
around

tests
cdf80365

43
7

0.002
deprecation,sm

allchange
to

code
could

find
large

discussion
discussion

revolves
around

sem
antic

change
of

deprecation
862b4a29

47
6

0.047
large

change:
add

display
em

ulation
m

odule
large

discussion
seem

s
ok

changes
are

notpartofcom
pilation

target,there-
fore

the
change

w
as

m
easured

as
being

sm
all

e4ec5ad4
49

95
0.193

add
replay

behaviour,touch
m

any
files

large
discussion

found
discussion

and
jaccard

seem
to

m
atch

c8bb23cb
51

341
0.028

add
som

e
functions,changes

to
struct

large
discussion

found
large

discussion
around

new
functions

bd227060
59

60
0.020

perform
ance

optim
izations

large
discussion

found
8de702cb

60
2

0.000
add

capabilities
to

read
characters

from
console

w
hen

sem
ihosting

could
not

find
discussion

online
m

ost
of

the
new

code
not

com
piled

in
selected

configuration
119906af

60
109

0.015
changes

to
m

m
ap

m
any

m
essages

found
m

m
ap

seem
s

to
be

a
sensitive

topic
9b12dfa0

76
540

0.012
add

new
com

m
and

line
option,add

large
func-

tion
to

support
it

large
discussion

expected
and

found

557d2bdc
80

604
0.021

add
encryption

key
m

anagem
ent,m

any
new

and
changed

functions
large

discussion
expected

and
found

b8968c87
80

196
0.025

add
functionality

concerning
bitm

aps
m

any
m

essages
found

0b6786a9
122

212
0.019

som
e

functions
refactored

could
not

find
a

large
discussion

online
num

ber
of

m
ails

seem
s

too
high

Table
A

.4
–

Q
EM

U
.

C
om

m
ents

on
a

random
selection

of
com

m
its

w
ith

m
any

related
em

ails

54



A.2 Comments on Changes

C
om

m
it

ID
Su

b-
A

ST
TE

D
Li

ne
Im

pa
ct

K
in

d
of

C
ha

ng
e

C
om

m
en

t

1b
94
0e
b4

0
0.

0
M

ar
k

fu
nc

ti
on

as
ex

te
rn

N
o

im
pa

ct
ex

pe
ct

ed
fr

om
bo

th
m

et
ri

cs
d8
0f
42
65

2
0.

0
Fi

x
es

ca
pe

ch
ar

ac
te

rs
in

st
ri

ng
s

16
ef
0f
9f

2
0.

0
In

cr
ea

se
ve

rs
io

n
ta

g
Li

ne
Im

pa
ct

ok
48
96
99
ca

4
0.

0
So

m
e

re
fa

ct
or

in
g

Li
ne

Im
pa

ct
lo

w
er

th
an

ex
pe

ct
ed

1a
67
2a
59

9
0.

0
C

as
t

va
ri

ab
le

to
vo

id
Li

ne
Im

pa
ct

ok
82
34
60
da

20
0.

0
Fi

x
fu

nc
ti

on
be

ha
vi

ou
r

Li
ne

Im
pa

ct
lo

w
er

th
an

ex
pe

ct
ed

fe
84
7a
62

32
0.

0
M

ov
e

co
de

Li
ne

Im
pa

ct
ok

29
8e
e6
57

46
0.

0
Fi

x
fu

nc
ti

on
be

ha
vi

ou
r

Li
ne

Im
pa

ct
lo

w
er

th
an

ex
pe

ct
ed

00
71
0e
63

62
0.

0
M

ul
ti

pl
e

m
ac

ro
fla

gs
up

da
te

d
Li

ne
Im

pa
ct

sh
ou

ld
be

lo
w

du
e

to
co

py
&

pa
st

e,
bu

t
no

t
0

3f
81
e9
62

93
0.

0
Fi

x
fu

nc
ti

on
be

ha
vi

ou
r

Li
ne

Im
pa

ct
lo

w
er

th
an

ex
pe

ct
ed

ac
8f
72
cd

19
0

0.
0

M
ul

ti
pl

e
si

m
ila

r
ne

w
m

ac
ro

us
es

Li
ne

Im
pa

ct
sh

ou
ld

be
lo

w
du

e
to

co
py

&
pa

st
e,

bu
t

no
t

0
56
44
c7
b3

73
8

0.
0

C
ha

ng
e

fu
nc

ti
on

si
gn

at
ur

es
,m

ov
e

co
de

Li
ne

Im
pa

ct
lo

w
er

th
an

ex
pe

ct
ed

Ta
bl

e
A

.5
–

C
Py

th
on

.
C

om
m

en
ts

on
a

ra
nd

om
se

le
ct

io
n

of
co

m
m

it
s

w
it

h
Li

ne
Im

pa
ct
=

0

55





L I S T O F A C R O N Y M S

AIS Actual Impact Set

AP-TED All Path Tree Edit Distance

AST Abstract Syntax Tree

BFS Breadth-First Search

CIA Change Impact Analysis

CRT Cross-Reference Table

DAG Directed Acyclic Graph

DFS Depth-First Search

EIS Estimated Impact Set

FNIS False Negative Impact Set

FPIS False Positive Impact Set

GED Graph Edit Distance

GRG Global Reference Graph

IA Impact Analysis

IS Impact Set

JSON JavaScript Object Notation

NLP Natural Language Processing

PaStA Patch Stack Analysis

RTED Robust Tree Edit Distance

RTS Regression-Test Selection

SCM Source Code Management

SIS Starting Impact Set

SLOC Source Lines of Code

SUT Software-Under-Test

TED Tree Edit Distance
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