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A B S T R A C T

Variability is the key concept to facilitate multivariance in computer applications. Static variability is
applied at compile-time and allows developers to decide which parts of their software should be part
of the final executable. Its benefit is a tailored binary file which only includes the data necessary
to perform its tasks while omitting other data parts. A drawback is that not every decision can be
made at compile-time which is why dynamic variability allows to defer that decision to the runtime
of the application. During execution, it alters its behavior based upon its internal state to provide
the desired variability. While this is a benefit, it also increases the runtime latency as the program
has to evaluate its internal state each and every time. Even if the internal state has not changed.

This thesis bridges the gap between static and dynamic variability and tries to combine the
benefits of both approaches while reducing their individual drawbacks. During this thesis a linker
has been extended to allow building and embedding tailored application views inside the executable.
With the help of a runtime library the threads can individually switch to these specialized views to
benefit from static variability. The library creates dedicated Address-Space Views which contain the
views to which the application threads can dynamically switch to during execution, thus combining
static with dynamic variability. The evaluation shows that the established method can be applied to
real-world applications. Additionally, it can provide a significant positive performance impact in
certain scenarios. Individual tailored views also allow to harden security in multithreaded computer
applications by locally restricting the code a thread can execute.
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KU R Z FA S S U N G

Variabilität ist das Schlüsselkonzept, um Multivarianz in Computeranwendungen zu ermöglichen.
Statische Variabilität wird zur Übersetzungszeit angewandt und ermöglicht es Entwicklern zu ent-
scheiden, welche Teile ihrer Software Teil der finalen Anwendung werden sollen. Ihr Vorteil ist ein
zugeschnittenes Programm, welches nur die Daten enthält, die es zur Ausführung benötigt, während
es andere Daten weglässt. Ein Nachteil ist, dass nicht jede Entscheidung zur Übersetzungszeit getrof-
fen werden kann, weshalb dynamische Variabilität es erlaubt, diese Entscheidung auf die Laufzeit der
Anwendung zu verlagern. Während ihrer Ausführung passt sie ihr Verhalten gemäß ihres internen
Zustandes an, um die gewünschte Variabilität zu gewährleisten. Obwohl das ein Vorteil ist, erhöht
es ebenfalls die Laufzeitlatenz, weil das Programm seinen internen Zustand stets erneut auswerten
muss. Auch, wenn sich dieser nicht geändert hat.

Diese Abschlussarbeit schließt die Lücke zwischen statischer und dynamischer Variabilität und
versucht, die Vorteile beider Ansätze zu vereinen, während sie ihre individuellen Nachteile mini-
miert. Der in dieser Arbeit erweiterter Binder ermöglicht es, zugeschnittene Sichten der Anwendung
zu erzeugen, die zusätzlich in der Anwendung abgelegt werden. Mittels einer Laufzeitumgebung
können Fäden während der Ausführung des Programms individuell zu diesen spezialisierten Sichten
wechseln und so von den Vorteilen statischer Variabilität profitieren. Dabei erzeugt die Laufzeitum-
gebung dedizierte Adressraumsichten, welche die zugeschnittenen Sichten enthalten, zu welchen
während der Ausführung gewechselt werden kann und verbindet so statischer mit dynamischer
Variabilität. Die Evaluation zeigt, dass die erarbeitete Methodik auf Anwendungen aus der realen
Welt angewandt werden kann. Zusätzlich dazu kann sie dabei einen signifikanten, positiven Ein-
fluss auf die Performanz der Anwendung haben. Weiterhin erlauben es individuell zugeschnittene
Sichten außerdem, die Sicherheit in mehrfädigen Computeranwendungen zu verstärken, indem der
ausführbare Code eines Fadens und somit sein Handlungsspielraum lokal eingeschränkt wird.
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1I N T R O D U C T I O N

Modern computer applications provide a huge amount of configurability. Static variability allows
developers to configure their applications while the source code is translated into binary code. The
results of different configurations are different executables of the same code base which are tailored
to the exact needs of their use-cases. The benefits depend on the configurations taken, but can be
faster execution, smaller binary and memory size or increased portability. A big problem of static
variability is, that it does not cover the whole space of decisions a developer or application can make.
Some decisions can only be made while the application is running, for example to check if a mouse
is installed on the target system. For such use-cases dynamic variability defers that evaluation to the
runtime of the application to allow it to configure itself properly for every target platform. Dynamic
variability can be expensive if certain decisions are evaluated all over again even though the system’s
internal state did not change. Taken the example above an application typically needs to check if
a mouse is installed only once, however it is in charge of re-evaluating that condition every time
it wants to access the mouse to ensure it is available. A more desirable approach would be to roll
out two versions of that application - one providing mouse support and one which is keyboard-only,
because that reduces image size and runtime latency overhead by omitting conditional checks
and application code. Since the set of different application versions rises exponentially with the
occurrence of new configuration options the developers will stick to the non-tailored version which
configures itself at runtime.

This thesis tries to combine both approaches to allow developers to create tailored versions of
the application, but let the application decide at runtime which version it will use. The idea is to
embed these different versions, further called views, in the executable in order to switch between
these views during its runtime. Developers should be able to describe certain program code as
multivariant code to generate views during the building of the application. A linker will be extended
to process multivariant object files which contain the different versions the programmers of the
target program. It will make use of memory overlaying where multiple application sections are linked
and relocated towards the same virtual addresses. The result of memory overlaying are sections
which reside at the same memory location and can be swapped in and out by a memory overlay
manager. That overlay manager will be developed during the course of this thesis too, and it makes
use of Address-Space Views (ASVs) to create distinguished application views. Address-Space Views
allow threads of the same process to diverge in their execution code and provide the technical
interface of applying runtime multivariance in this approach. Since these views give developers the
option to restrict the code of certain threads they can additionally be leveraged to increase security
as Section 5.3.2 and Section 5.5 will explain.

Both, the extended linker and the developed runtime overlay manager, are evaluated in synthetic
test cases as well as in the real-world application memcached.
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1 Introduction

This thesis is structured as followed. Chapter 2 explains the concept of the Executable and
Linkable Format (ELF) and introduces the reader into sections and segments. In order to properly
build the sections the linker makes use of symbols and relocations which are discussed afterwards.
Memory overlaying represents the final part of the application building process and examines how
multiple program parts can be structurally lied on top of each other. After that the fundamentals
shed light on the functionality of ASVs to let the reader understand the technical concept behind
the developed runtime application multivariance. Related work closes the chapter by comparing
existing research to this thesis in order to figure out similarities and differences. In Chapter 3 the
architecture of this work is described as the linker’s source code base has been extended to link and
deploy multivariant executables. The building of a runtime overlay manager completes the chapter
and reveals how ASVs are configured to include the different tailored versions of the target program.
To measure the effects of the taken approach Chapter 4 evaluates the developed architecture in
several synthetic test cases as well as in memcached. Chapter 5 discusses the measurements and
explains the limitations of this thesis and gives several suggestions on how to continue the project
in future work. In the last chapter the reader will be presented a conclusion highlighting the main
takeaways and lessons learned to summarize how the established approach bridged the gap between
static and dynamic variability.
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2F U N DA M E N TA L S

To fully understand how the concept of multivariance in computer applications has been established
within this thesis, the reader will be introduced into several basic topics which describe what ELF
files are and how they are built, how memory overlaying at the linker- and runtime-level works
and how specific Address-Space Views are utilized to facilitate this runtime memory overlaying.
After that related work is presented which describes similarities and differences between this thesis
and other existing research. The summary recapitulates lessons learned within the fundamentals to
depict the most important parts of all concepts.

2.1 The Executable and Linkable Format

When a computer application is loaded into the main memory to start its execution the entity
which loads the executable, namely the loader, has to be provided with some information about
the executable in order to prepare its execution. The loader has to know which parts of the binary
must be loaded, needs to allocate enough memory, has to resolve dynamic runtime dependencies
to other shared objects and must transfer control to the application properly. In order to pass this
information to the loader a common language, a format, is necessary which the loader is able to
parse and understand.

The Executable and Linkable Format describes how to organize the aforementioned information
in an application. The compiler and linker both use it to store the application’s data in an image file
in order to pass it to the loader. As the name suggests ELF files do not only represent executable
binary files. It does also describe object files which are parts of the main application that cannot run
on their own and have to be linked together or dynamic libraries such as shared objects[18, p. 7].
The ELF is a very common executable file type under Unix operating systems, but it is not limited to
a specific system or processor architecture[6]. In order to determine the type of a file a common
technique is to place so-called magic bytes, often at the beginning of a file[19]. These magic bytes
should uniquely identify the format of the current file and therefore hinting how to parse it. Keep
in mind that these magic bytes are only recommendations - a file can have the magic bytes of an
ELF but must not be formatted as such, although it is common sense that file formats match their
respective magic bytes.

While the loader parses the executable it will find further metadata within the file itself describing
its contents. They are composed as the ELF header and the most important properties are the
required architecture, a starting address and file offsets for different tables such as the Program
Header Table (PHT) or the Section Header Table (SHT)[12]. These two tables are of special interest as
they have been expanded within this thesis to support a new approach of multivariant applications.

3



2.1 The Executable and Linkable Format

Each of these tables holds information about different entities of the program. The SHT holds
information about sections while the PHT contains information about segments.

2.1.1 Sections

A section is an aggregation of related data in a compound manner. Simply spoken sections incorporate
data which belongs together. When a program is developed it consists of multiple types of information
- there is actual code to execute, data that this code refers to and other resources. Therefore, the
program includes sections where the actual code is placed and other sections where the actual data
is placed. It is a separation of concern and every section has its own meaning within the application.

All these sections come with different attributes describing its contents. This is necessary to
further distinguish the aforementioned types of information. When a developer writes code it
is common upon programming languages to allow constant and non-constant data. Given this
practical example, this type of information has to be transported and retained during the runtime
of the application. Therefore, the ELF must be able to represent constant and non-constant data.
Section attributes allow to model this behavior and thus additionally classify its content, as they
transport this information to the loader which allocates memory with respect to these attributes.
Other attributes describing sections are its address during the runtime, the file offset within the ELF
or its size. The ELF does not enforce specific names for sections, however a common set of names
have been established which include:

• .text: Aggregates data about program code to execute

• .init: Aggregates data about program code to execute for initialization

• .data: Aggregates globally defined data

• .rodata: Aggregates globally defined constant data

Even though sections transport information to the loader it’s not the section itself which is of
particular interest to the latter. For the successful execution of the application section information
on their own is not relevant. In fact the information about sections is not used by the loader at
all later on. So what is the reason for sections after all? They still aggregate related data. But the
sections themselves are then aggregated to segments. The chain of thought is illustrated in Figure 2.1.
Sections aggregate data of equal semantic meaning and segments aggregate sections. The entity
which aggregates sections in segments is called the linker. How the linker does that and how it
decides which sections belong to which segments will be explained in Section 2.2.

2.1.2 Segments

Segments are the part of organizational structure which tells the loader how and what to load into
the main memory in order to prepare the execution of the application. This is the information that
the loader uses and why the section information on its own is irrelevant to the loader. Segments
have attributes being similar to those of the corresponding sections. These include, but are not
limited to, access rights such as read, write and execute, a size, a file offset, a virtual address and
others. In other words segments only really do describe a continuous space of memory and sections
are part of that memory space. The loader is able to get the information about all those segments
and therefore makes several decisions. It allocates memory space big enough to fit the size of the
segment, tries to load the specific segment at the specific Virtual Address (VA) and sets the virtual
memory page access bits according to the access rights specified in the segment.

4



2.1 The Executable and Linkable Format

Code Data Constant dataCode CodeDataData DataConstant data

.text .init.data.rodata .rodata2

Figure 2.1 – Chain of thought for related data, sections and segments. Data that belongs
together is aggregated into sections. Sections are then aggregated into segments. Segments do
typically not have a name associated. Clouds represent types of data, circles represent sections
and squares represent segments.

That means that all sections inside a segment share the same access rights which is why the
linker places sections of equal access rights into the same segment and creates new segments for
those requiring other types of access. This explains why the loader does not care about sections
directly. Its only task is to acquire memory, place the segments appropriately in memory, eventually
resolving some dynamic dependencies and transfer control to the program. Figure 2.2 summarizes
and displays the relationship between sections and segments and gives an example of how they are
laid out within a typical ELF file.

r/x

ELF Header

Program Header
Table

Section Header 
Table

r/w

r

ELF file

.text-Section

.init-Section

Content of a
read/execute segment

Code

Code

Code

Content of a .text
section

Figure 2.2 – An overview of an ELF and its content. It starts with a header further describing
its different types of data such as the PHT and the SHT. The PHT holds information about all
segments in the ELF. Segments do not have a name associated, but can be distinguished by
their access rights: r = read, w= write, x = execute. Within a segment different sections are
placed. These sections aggregate information of equal semantic meaning such as code or data
for example.

5



2.2 Building an application: Compiler and Linker

2.2 Building an application: Compiler and Linker

At this point the reader got a basic introduction into what an ELF file is and how it is typically
structured. Since one key aspect of this thesis is the expansion of ELF files to introduce a new
mechanism of multivariant applications, it is crucial to understand how these files are actually build.

To build a computer application one possibility is to write code in a programming language and
let a compiler translate that code into another language which the computer, or more precisely the
execution unit of the computing system, is able to understand. The whole space of compilers is out
of the scope of this thesis, but it will depict one part of compilers which describes how applications
written in languages such as C or C++ can be translated into executable files.

Typically, the application’s source code base consists of one or more files containing the code
the application should execute at runtime. To build the application the compiler processes each
file individually and translates it into an object file. This object file can be seen as a module of
the application: It forms one part of the final program, but does not describe it completely on its
own which is why it cannot be run. But all object files together fully describe the application so
in conjunction they form the executable. The process of combining, or linking, object files is done
by the linker and we will discuss it in a moment. The structure of such an object file depends on
the system architecture to which it is compiled. For Unix systems they are organized as ELF files as
explained in Section 2.1 and therefore object files contain sections as well. However, they do not
contain segments for the whole reason that they are not executable, because the loader will not
load them directly.

In essence the compiler takes all source code files of the application and translates them into
object files. These object files are not executable on their own and have to be linked together by the
linker to form the final executable binary as Figure 2.3 illustrates.

foo.c

bar.c

main.c

foo.o

main.o

bar.o

main

Compile

Compile

Compile

Link

Lin
k

Link

Figure 2.3 – Basic visualization of generating an executable file out of multiple input source
code files. Every file is translated into an object file by a compiler and then linked together by a
linker to produce the output executable.
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2.2 Building an application: Compiler and Linker

So far so good, but the mindful reader will question how the compiler deals with references
across multiple source code files. What does the compiler do when a function is defined in foo.c. but
main.c wants to call it? We just examined that the compiler translates source code files file-by-file
into object files. In fact, the compiler cannot be aware of the definition of a function within in another
source code. In C/C++ this problem is addressed by the concept of declarations and definitions. A
declaration of a data object (be it a function or just plain data) is the description of the existence of
this data object. Simply spoken a declaration tells the compiler that there is this data object, but it
does not actually say how it looks like e.g. does not define its value. The programmer just mentions
the pure existence. A definition, however, is a declaration plus the information of how the data object
really looks like. To circumvent the problem examined before the developer can define a function
inside of foo.c and declare it in main.c. That way the compiler knows about the function in main.c,
however it does still not know where it is defined, so a real call to that function will not succeed.

This is the introduction into the second entity of application building: the linker. The linker gets
all object files as an input and creates the final output binary. Therefore, it works with all the data
of the application whereas the compiler only operates on one part of the application, namely the
source code of the file it currently processes. In the example above that means that the linker has
access to the main.o file with the declaration of a function and the foo.o file with the definition of
that same function. Because of that it is able to link the references in main.o of this function to its
actual definition in foo.o. In essence it is the task of the linker to resolve references across multiple
parts of the application to build an executable file. In the first step these references are unresolved
within the individual object files. The compiler then places symbols and relocations within these files,
so that the linker can find all those references and resolve them appropriately.

2.2.1 Symbols

Symbols allow the compiler to transport the information of unresolved references across the ap-
plication’s modules. They are organized in a symbol table and contain both, symbol definitions
and symbol declarations[8]. The term symbolic definition describes the aforementioned function
definition in one object file and symbolic reference describes the declaration of that function in another
one. The symbol table gathers information about all symbols in a relocatable file, it aggregates
data of equal semantic meaning. This is a concept which has been introduced already, and the
outcome has been a section in which that data is placed into. Symbols are no exception to that and
the common name of their section is .symtab. When the linker wants to find the symbol tables of
the object files it goes a straightforward path. With the help of the ELF header and a specific magic
value the symbol table can be found and that is shown in Figure 2.4.

During linking the linker iterates over every entry within the symbol table of an object file and
connects references to their definitions. Since both of these types are hold in the same single symbol
table, the linker has to identify them properly and this is done by the symbol section header index
which denotes the section in which that symbol is defined. If a symbol has an index of the magic
value SHN_UNDEF the linker knows that this symbol is not defined within its object file, hence it is a
reference and not a definition, so it must resolve this dependency. It then searches for an object file
in which this symbol is actually defined e.g. in which the section header index is a real index into an
object files section. In order to find such a symbol these symbols have to be linkable, or bindable,
to other object files. This property is defined by the binding of a symbol and while there are many
different bindings the most basic decision is made between local and global symbols. Local symbols
are symbols that are only bindable within the module which defines them. That means that if one
module of the application defines a local symbol and another module references that symbol then
the linker will abort since the symbol definition is only visible within the first module itself. Tables
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2.2 Building an application: Compiler and Linker

ELF Header

main.o

Section Header Table

.text-Section

.data-Section

.symtab-Section

Section Header
Table Entry

Section Header Table Entry

sh_name

sh_type

...

sh_offset

sh_type == SHT_SYMTAB

Figure 2.4 – Visualization of a symbol table lookup. The linker can parse the ELF Header to
find the SHT. Every entry within the SHT holds a type which identifies its content. The magic
value of SHT_SYMTAB tells the linker that this section holds the symbol table. The attribute
sh_offset holds the file offset within the binary where the symbol table is stored.

turn if the symbol is a global symbol. Those symbols are globally bindable and other modules are
able and allowed to reference them. This procedure is clear for use-cases where one module defines
and zero or more other modules reference these symbols. Problems arise when the linker finds two
or more equal symbol definitions for a given data object. A symbol’s equality to another symbol
is decided by its name. Imagine foo.c and bar.c both defining a function called sum. When main.c
calls sum the linker does not know to which of the functions implementations it should link to. In
such a case the GNU linker ld aborts the linking process by default for example[13]. The developer,
however, is able to change that behavior by linking with the option of -z muldefs which lets the
linker link to the first definition of a duplicate symbol. If the reader recaps she will argue that this
is not a real problem to all symbol definitions, but to those being defined globally. Local symbols
are excluded because these are only bindable to their corresponding modules. That means that the
linker will not take those definitions into consideration. This is an important fact, and it will rise up
again in Section 3.1.3. Multiple definitions of the same global symbols must not occur. Local
symbols are excluded from that because they are only bindable to their own modules.

2.2.2 Relocations

The compiler makes use of symbols to address the issue with data object declarations and their
actual definitions. For declarations, it will create undefined symbols to tell the linker that there
is a dependency to another object which has not yet been resolved. What is now missing is the
information where exactly this resolution has to take place within the object file. Because the
compiler is the entity placing the symbols it is also aware of the location at which it was unable to
resolve the data object dependency. It can transport that information to the next entity, the linker,
by placing relocation entries inside the ELF that identify the locations which have to be modified.
The linker is in charge to apply relocations so that the final executable now contains valid addresses
for all data references. Since symbols and relocations are placed for all types of references they
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apply to general function calls as well as accesses to data objects such as global integer variables for
example.

One might now ask if the target address is not known at compile-time what does the compiler
place as an address at that position instead? The answer is: it depends. In general there are two
types of relocations. One of them stores an addend right at that position at which the actual address
should reside. The other one saves this addend as a part of the relocation entry, so it is not placed
at the relocation position which is then filled with zeroes. The latter is the one used the most
nowadays[2]. This addend is just a value added to the target value to form the final address. This is
necessary if we access the nth element of an array for example.

When a function is defined it can be called an arbitrary amount of times within an application.
Therefore it is possible to have multiple relocation entries all referencing the same symbol, namely
the function to resolve, as shown in Figure 2.5. The linker will find the undefined symbol, grab
its relocations and updates all of their locations inside the final ELF by placing the valid function
address. Just like the symbol table relocations are aggregated in sections as well. In essence symbols
and relocations together enable the dependency resolution across multiple different objects files.
Relocations describe the positions at which addresses have to be altered and symbols are used to
identify and calculate these addresses.

20: sum(): 0x??????

178: sum(): 0x??????

main.c

foo.c

10: void sum(void) {
...
}

Relocations

offset: 20, symbol_index: 1
offset: 178, symbol_index: 1

Symbols

Index: 1, Name: sum, section
header index: SHN_UNDEF

Relocations

Symbols

Index: 7, Name: sum, section
header index: 2

compile

compile

main

0x600000: call 0xc0ffee

0x700000: call 0xc0ffee

0xc0ffee: sum

link

Figure 2.5 – Symbols and relocations. Together they allow dependency resolution by the linker.
The relocations in main.c reference an undefined symbol sum. This symbol is defined in foo.c
and can therefore be resolved during linking where the linker assigns addresses to data objects.
It assigns the address 0xc0ffee to the data object sum and can now relocate the calls of main.c
at file offset 20 and 178. After relocation the calls to sum at addresses 0x60000 and 0x70000
succeed.
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2.2.3 Memory overlay

Memory overlaying describes a technique in which multiple parts of an application can be placed at
the same memory location, thus they overlap or overlay[1]. The memory overlaying is implemented
at the linker level because it is necessary to build two or more parts of the main application image
which reside at the same location. Since the linker assembles the whole executable and chooses
feasible addresses for all parts of it, it’s the entity which builds the overlay. Overlaying data results in
several challenges to face since the overlaying parts reside at the same memory region and therefore
references between these parts and the other data of the executable must remain valid for all overlaid
parts as Figure 2.6 illustrates.

In order to model the shown behavior, the linker will choose appropriate addresses during the
linking when it resolves relocations for example. For relocations of .mem-overlay2 it will calculate
relative addresses according to the same base address as .mem-overlay1 because both of these
sections share that address. The outcome for both of these sections is a situation in which they would
be the only entity being loaded at their specific address. In fact only one part of any memory overlay
unit can be alive e.g. present at any given time. The reader may notice that as an obvious fact since
there is one memory location for n memory overlaid application parts. Questions arise about how
this overlaying is implemented at runtime if only one overlay part can be present. The concept of
memory overlaying requires not only linktime but also runtime support. A second entity has
to apply the actual overlaying mechanism when the target application is in execution. This entity
has to take the memory overlaying unit which is currently placed within the address space of the
application and replace it with another unit - at that exact same memory location. This requirement
directly translates into several constraints and one of the obvious ones is that all memory overlaying
units have to be of equal size. In case of real application code it does not require these units to have
the same amount of functions for example. It is just a necessity that the memory regions are of equal
size, so one part could be smaller than the other, but then it has to include additional padding.

main

ELF Header

.text

.mem-overlay1

.mem-overlay2

.data

main (loaded)

.text

.data

.mem-overlay1

load overlay

main (loaded)

.text

.data

.mem-overlay2

Figure 2.6 – Memory overlaying concept. The area to overlap here is described as the sections
.mem-overlay1 and .mem-overlay2. During the runtime of the application .mem-overlay1 is
loaded. At some point during execution .mem-overlay2 is laid over .mem-overlay1 thus replacing
it. References of .mem-overlay1 and .mem-overlay2 into .text must remain valid at each moment
of execution.
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In essence memory overlaying is a technique which allows multiple parts of an application to
reside in the same memory region one at a time. Linktime support is necessary to prepare and save
the memory overlay units within the executable and runtime support is necessary to apply the actual
memory overlay.

2.3 Address-Space Views

Memory overlaying describes one technique used to facilitate multivariant applications by replacing
certain parts of the program during execution. Another approach is to not replace application
data but to establish multiple views of the application which contain these different parts of the
executable. With different views we transition from replacing specific aspects to switching between
views to leverage multivariance.

The view of an application is the application’s layout while it is loaded into the main memory
in form of a process. The process model describes the application at runtime by properties such as
its virtual address space, opened files, signals, handles and so on. A thread is the virtual execution
unit which lives inside that process and is described by its internal state such as CPU registers or its
stack. One can say that processes really are an abstraction of the whole computing system since they
contain every resource a program needs to successfully execute and threads are abstracting the CPU
itself. Since the virtual address space is a property of a process and threads live inside a process
they commonly share the same virtual address space. To introduce multiple application views the
process has to not include one, but multiple virtual address spaces.

Multiple ASVs loosen the tight coupling between threads of the same process by allowing different
threads to live in different address spaces while remaining in the same process. Therefore, even
though two threads belong to the same process they may have a different view of the process, or the
application, in which they are running in. Because these two threads see two different versions of
the same program this concept describes an application multivariance at the thread level. As one
use-case Rommel et al. give a practical example for applying binary patches to different applications
by creating a second ASV which contains the patched application version and to which each thread
can individually switch to[15].

Figure 2.7 shows that the technical implementation behind ASVs is a combination of shared
memory with individual Copy-on-write (COW) mapping for specific application parts. While most
of the view of the program is shared only some developer-specified parts are different and diverging
from each other. The reader can think of an example in where one view of the application logs a
function call to the console while another view excludes this logging. When a thread switches its
view then most of the application data remains the same except for the fact that this single thread
will not log its function call anymore.

In essence Address-Space Views allow threads of the same process to have a different view, to see
the program from a different perspective, and enable multivariance at the thread-level.
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Figure 2.7 – Two ASVs next to each other. Most of the data between these two views is shared,
but certain parts can be pinned which results in an own private COW memory mapping. The
pinned part is marked in green. Figure taken out of [15, p. 5].

2.4 Related work

Multivariance in computer applications has been a topic of research for decades and this section
will describe similarities between the thesis and this research as well as how it differs from existing
approaches.

Dynamic linking provides a global layer of multivariance in application software by allowing
programs to link against shared object files. The references to shared objects are resolved during
the runtime of the application with the help of a dynamic linker and is already part of the Multics
operating system since 1967[3]. Replacing such a file with another version of itself results in all
applications using the new variant, thus globally applying multivariance. Robert C. Daley et al.
describe the possibility of sharing procedures and other data as two desired properties of multi-
process computer systems[3, p. 4]. The difference between that approach and the thesis is the area
of effect of applying multivariance. While the replacement of shared objects has global impact to all
applications of the computing system linking to that library this thesis aims at only incorporating
multiple different variants of its own code. Additionally, all variants of an application are known at
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linktime and embedded into the executable for the purpose of this thesis whereas dynamic libraries
are separate files.

With the introduction of loadable kernel modules another layer of multivariance has been
established within the operating system interface. These kernel modules allow a supervised user
to extend the kernel’s functionality by loading dedicated modules into the kernel’s address space
to add support for different types of file systems or network devices for example[7]. To leverage
multivariance inside the kernel the user can first unload and then reload another variant of a specific
module. The visibility of that modification is again global and every application which access the
kernel module in any way will make use of the updated version. Following dynamic libraries,
additional variants of loadable kernel modules are separate files and not embedded into the original
module or the kernel itself. Additionally, they require a privileged user whereas the thesis’ approach
can be applied by any user which is able to link the application.

The paper of Rommel et al. introduced in Section 2.3 exploits ASVs to apply wait-free binary
patches in multithreaded applications [16]. The authors elaborate on the latency impact of these
binary patches induced by points of global quiescence. Global quiescence describes a situation in
which all threads of a process have to halt at a globally defined gate within the application in order
to make sure the applied patches do not corrupt the executing threads. This could be the case for
example if the binary patch replaces program code while one or more threads are currently executing
this program code which can potentially destroy the individual call stacks [16, p. 2]. Waiting for
all threads at a pre-defined point of execution increases latency because some threads can reach
that point (far) earlier than others, thus they block unnecessarily and cannot make any further
progress. To circumvent that the authors transition from global to local quiescence in which each
individual thread on their own decides when it is applicable to apply the desired patch. The technical
implementation makes use of ASVs which contain the patched version of the binary and to which
each individual thread switches to if it’s feasible to do so. This binary patch expresses a different
view of the executable which is why it is strongly related to this thesis. The difference between
these two is, however, that the idea of this thesis is to create multiple views of the same executable
right upfront - at compilation/link time - to facilitate multivariance. Every possible variant of the
binary executable is known right when it is build whereas the binary patches are variants of the
application which are build and applied later on when it has been already released.

Multiverse follows a similar approach in which the authors create specific variations of functions
at compile-time and allow the user to switch between these variants at runtime [17]. That means
these functions are highly tailored to the needs of the developer which results in several benefits
of functional and non-functional properties such as execution time or energy consumption. The
technical implementation of multiverse places these function variants within the binary just as the
approach of this thesis creates an ELF with all its views, but there are several differences between
them. First and foremost all parts of a multiversed binary are loaded at application startup. All
functions and all of their variants are loaded right-away whereas this thesis does load only one
view at a time and therefore the other views are not kept in the main memory. Secondly multiverse
includes specific views of the application just as this thesis, but it is expressed at the granularity of
functions and not at a more coarse-grained level such as a text-segment for example. Thirdly these
views are applied differently in compared to this thesis. Multiverse patches all call targets, in other
words all functions calls, which results in the application calling a different variant of the currently
active variant of a specific function while the thesis overlays whole segments and does not patch
specific control-flow paths. Lastly the applied multivariance of multiverse is visible to all threads at
the process-level whereas this work makes use of thread-level specific multivariance by ASVs.

13



2.5 Summary

2.5 Summary

The reader has been introduced into the concepts being used within this thesis to accomplish
multivariance in binary executables. He learned that the ELF is a file format for organizing and
structuring executable files as well as object files or shared objects. ELF files are made up out of
sections which aggregate related data in a compound manner. These sections have several properties
assigned such as a name, size, file offset and many more. A section is part of a segment which
generally describes a linear region of memory. The segments are the structural parts the loader
processes and loads into the main memory. They do have several properties as well with access
rights being one of them. All sections that are placed within the same segment share the same access
rights.

The objects files which are organized as an ELF file are the outcome of the compiler which
translates source code of a programming language into instructions the target architecture’s execution
engine, the Central Processing Unit (CPU), can understand. A compiler is not omniscient - it translates
one source code file at a time which is why the objects files themselves are not executable. They
only do describe a certain part of the main application and have to be linked together by the linker.
The linker takes all object files of an application as an input and builds the final ELF executable.
Source code files and therefore their object files can contain references between them, when one
of them calls a function which is defined in another one for example. These references cannot be
resolved by the compiler which is the reason it places symbols within the object files to transport
that information. Next to symbols it also places relocation entries which describe the exact position
within the object file at which addresses have to be altered in order make function calls or data
access operations actually succeed. The linker will take those symbols and relocations and process
them on all object files. It fills relocations with their valid addresses because the linker has all object
files as an input and is therefore able to calculate them appropriately.

Since the linker calculates the addresses it is the entity to facilitate memory overlaying at first
place. For memory overlaying the linker has to lay out several parts of the application to reside at
the same virtual memory addresses, hence the wording overlay. Only one version of an overlay can
be active at any time of execution which is why memory overlaying also requires runtime support
in order to actually apply the overlay. Such an overlay manager takes the active overlay unit and
replaces it with another overlay unit. Because the whole unit is overlaid one constraint to memory
overlaying is that the overlaying units must be of the same size.

Finally to facilitate the overlay mechanism one possible technical implementation is the use
of Address-Space Views. Address-Space Views are virtual memory mappings which have most of
their data shared across all view instances while some specific parts are diverging. This allows to
explicitly mark the aforementioned units, so that two views share all of their data except for the
overlaid parts. With that approach a thread can switch to another view which results in that thread
having the exact same view of the executable as before except for the marked overlaying part, thus
leveraging multivariance by dedicated ASVs.
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3A R C H I T E C T U R E

In this chapter the reader will be introduced into the technical and non-technical concepts which have
been worked out over the course of the thesis’ project. It will show and reason the thought process
behind the approaches taken to facilitate multivariant applications. The explanation will start at the
linker where the multivariant executable is assembled and continues to explain the development of
a runtime environment to apply multivariance during execution. At the end a summary composes
elementary implementation details and recapitulates key aspects of the developed architecture.

3.1 Expanding the LLVM linker

In the Chapter 2 the linker has been introduced as the one entity building up the final application
by taking all of their modules, the object files, and assembling the executable by resolving cross-
references between these modules. Therefore, the linker is an essential part in evolving application
multivariance since it decides which parts of an application are included in the final executable. The
LLVM linker has been the linker chosen to be enhanced over the course of this project because it is
open source, well documented and easy to expand.

To facilitate multivariance ELF files have been augmented to include all user-defined views of the
application within their binaries. To this time a view is only composed out of functions so other data
objects such as global variables are not part of an application view. It is the first step of combining the
benefits of static variability with those of dynamic variability because each of these views is a specific
tailored variant of the application to which it can switch to dynamically during execution. The
granularity of these views is on the level of object files which is why multiple views of the program
are expressed by multiple multivariant object files. So the first step to manage multivariance within
the application is to process multivariant object files.

3.1.1 Multivariant object files

Multivariant object files are object files which contain definitions for the same data objects. Imagine
a scenario in which an application defines a helper library to ease database calls. The library is
defined in db-helper.c and includes functions to read from and write to a database. When this library
is translated the compiler takes the source code file and creates an object file for that code. To make
use of static variability the source code file contains C preprocessor (CPP) expressions which regulate
the translated source code by providing conditional compilation [4]. With the CPP developers are
allowed to write code which is included in the final executable if a certain statically defined condition
is met. Listing 3.1 gives an example of the use of the CPP.
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1 #define LOG
2

3 User db_get_user(int id){
4

5 #ifdef LOG
6 printf("Get user for id %d\n", id);
7 #endif
8

9 // Rest of logic.
10 }

Listing 3.1 – Usage of the C preprocessor. Program code between #ifdef...#endif regions are
translated if the given name is defined. In this example the printf function call will be translated
because LOG is defined in line 1.

The CPP is the concept leveraged within this thesis to build multivariant object files. When
the developer decides to create two views of the function db_get_user then she would define the
name LOG, compile it and then remove its definition and compile it again. The output is two object
files, both with a function definition of db_get_user and one of these definitions would include an
additional printf to verbose output information to the user. If the developer now tries to link all
objects files to assemble the final application he would generally receive an error by the linker telling
him that multiple definitions of the name db_get_user exist. This is a circumstance which has been
explained in Chapter 2 already and one solution for the GNU linker ld has been by using the linker
option -z muldefs. The lld allows the same option but the huge problem with that approach is that
this option allows far more than the developer originally intends to do. The goal is to allow multiple
definitions of data objects for all multivariant object files and not for all object files in general. The
big difference is that multiple definitions of the same name across multiple object files can indicate
an error within the application e.g. the developer mistakenly defined a function twice. The existing
linker option levers out that guard and thus is the wrong option to choose for the multivariant
approach. Therefore, the first extension of this thesis to the lld linker are two additional linker
options which allows to enable and list all multivariant object files. For the purpose of this project
the developer does also have to yield a number to all multivariant object files. The reason for that is
that the final application binary will include multiple views of itself and one of these views has to
be the default view. The default view is that view that gets loaded right at first application startup
while the other views remain in the application image on the disk. All in all the established linker
option takes a digit and an object file name and is usable an arbitrary amount of times to list all
multivariant object files.

The example in Listing 3.2 shows how the new linker options can be used. The declaration order
of the multivariant object files is irrelevant for the choice of a default variant since the linker option
mvo with the value 0 indicates the default view. Within the lld source code tree that linker option
has been added to the option list and the existing argument parser has been altered. Its code base

1 ld.lld main.o foo2.o foo1.o --multivariant -linking --mvo 0:foo1.o --mvo ↘
1:foo2.o

Listing 3.2 – Example code for linking with the new linker options.
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already includes helper methods to parse argument lists such as mvo which is why the only thing
that has been done was to create a new vector to hold the given information. The data is saved
as a vector of pairs of int and string to collect all object files of all views. With such a vector the
developer is able to define an arbitrary amount of object files to be part of a view identified by its
preceding view index.

Now that the developer listed all multivariant object files the lld has to allow multiple symbol
definitions for the specified object files. This is necessary because the granularity level of the
multivariant approach is at object file level and that means the linker will see multiple data object
definitions of the same object. But that is exactly what the developer intends to do - to create multiple
views with each of them having their own implementation. Because of that the symbol resolving
has been modified to enable that mechanism. Symbol resolve is a global process in which the linker
gathers all symbols out of all object files to connect symbol declarations to symbol definitions. It is also
that part which throws up originally if multiple symbol definitions of the same symbol take place.
Because the goal of this thesis at first was to enable multivariance in applications by augmenting the
ELF the resolving is implemented straightforward. When multivariant symbol resolve is executed
the last symbol definition is taken. That means that the linking order of object files is highly
relevant to the symbol definition taken, but it only applies to data objects not being functions such
as global integer variables. For functions the linker will use the definition out of the default object
file.

With these two actions, creating new linker options and allowing multiple symbol definitions for
multivariant object files, the developer is able to successfully link the files to create an executable. The
following use-case exemplifies the effect of the established symbol resolve process and is displayed
in Figure 3.1: Imagine the example function db_get_user is getting declared in the main source
code file and a function get_user out of main calls db_get_user. The developer linked two files with
both defining db_get_user in foo.c but made sure that the object file foo2.o has a 0 appended as its
preceding view index. Applying the mentioned approach results in the linker resolving all references
to db_get_user using that object file which is being listed with index 0 as their --mvo linking attribute.
For the given scenario that means that even though foo1.o could be linked "first", e.g. being listed
before foo2.o in the object file link list, the function definition of foo2.o will be taken to resolve the
call in main and all other calls to that function. For now the definition in foo1.o is left untouched and
will never be called by any program code during execution. Therefore, in that scenario foo2.o acts as
the default view of the application and foo1.o is an alternative view. The default view is that view,
that perspective of the application, that is run per default during program startup. An alternative
view is a view to which the developer can switch to during the runtime of the application process.

To enable that switching a runtime has to know what has to be switched and where it can find it.
For that reason the lld has been amplified to record every function of every multivariant object file.
With that information it is able to replace or overlay one function of a view with another function
out of another view. In order to find these functions the compiler is called with an argument that
creates an own section for each and every function definition in one source code file. The only thing
the lld has to do is to gather all of these sections and save them in some sort of view containers. A
view container is a container holding all function definitions of a specific view so that the lld can
distinguish between them across multiple multivariant object files. In this project these containers
are two-dimensional vectors where an index into the first vector selects the view and another index
into that view selects the function definition.

When the linker iterated over all object files and collected all input file sections it has collected
all multivariant function sections as well. At this point it is able to wrap all function sections of
a multivariant object file into one output section which is then written to the output file. That
means that for every multivariant object file the linker will now create one output section .gen to
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foo1.o .text-Section

main .text-Section

foo2.o .text-Section

db_get_user

.text

main.o .text-Section call db_get_user at ???

db_get_user

.text

db_get_user

.text

db_get_user

get_user

get_user

.text

Link

Figure 3.1 – Symbol resolve for multivariant object files. The function symbol db_get_user is
defined in foo1.o and foo2.o and declared in main.o. db_get_user is bigger in foo2.o because it
contains logging logic which foo1.o does not. The linker argument call lists the statement --mvo
0:foo2.o --mvo 1:foo1.o. When the linker resolves that dependency in a multivariant scenario
it takes the definition that is given as index 0 in the linker argument list for the --mvo linker
argument. The result is all declarations of db_get_user are connected to the definition within
foo2.o. The definition within foo1.o is included in the executable, but never called.

distinguish between the different views of the executable and Figure 3.2 gives an overview of their
layout within the final binary. These sections are paged-aligned within the application ELF which
allows for efficient memory mapping of that file as Section 3.2 will further describe.

With all multivariant functions being collected the linker can solve the problem of equally-sized
overlay units as described in Section 2.2.3. When units are overlaid is it essential that they are of
the same size because only whole units can be overlaid. That means that all variants of a function
must be as big as its biggest variant. Figure 3.2 also visualizes the usage of additional padding for
all other variants. When the linker determines the output section size of a function section it now
checks if that function section is part of a multivariant object file. If this is the case then it does
not use the real section size of that function but rather the size of the biggest function variant. It
allocates enough space in the output file to fit the function plus the padding bytes if there are any.
Applying that procedure to all multivariant function definitions ensures a consistent equal size of all
memory overlay units.
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.gen1-Section of foo1.o

.text.db_get_order

.text.db_get_user

.gen2-Section of foo2.o

.text.db_get_order

.text.db_get_user

Figure 3.2 – Comparison of two function variants of db_get_user and db_get_order. Code is
drawn as blue-shaded area, padding is grey-shaded. These functions are part of a memory-
overlayed unit, so they must have the same size. The smaller function definitions contain
padding bytes to reach the same size as their bigger counterparts in the other object file.

3.1.2 Deploying memory overlay

To deploy memory overlay units they have to be formed at first place. Within this project the
granularity of multivariance is statically expressed at the level of objects files. During runtime,
however, it makes use of segments. Since segments only describe are continuous space of memory
one segment can overlay another one by being loaded at the exact same base address and having
the same size and access rights. The idea is to overlay all functions of the running view with all of
their counterparts of a loadable view in a way that they perfectly lie on top of each other. Therefore,
the linker does create additional segments with one segment for each view of the application. Each
memory overlay segment contains all functions of all multivariant object files of the same view index
so that the switch from one view to another results in all function variants being switched to the new
view. Since the requirement for the overlaid units is that they are placed at the exact same addresses
the linker has further been modified to respect these multivariant segments. When the linker now
processes an output section which is part of a multivariant segment it ensures to assign the same
base address to these output sections for all variants. That means that two function sections of the
same function out of two different object files will get the same virtual address.

In further assembling all references to these sections are calculated in respect to their same
base virtual memory address, thus facilitating memory overlaying. This base address has to be
page-aligned as well which is a direct constraint out of the usage of Address-Space Views as a runtime
solution to memory overlaying. Section 3.2 further explains that the pinned memory regions which
are allowed to diverge are set at page boundaries.

Another important part is the lifetime of these multivariant segments. Section 2.2.3 explained
that only one view can be active at any given execution time, which means that all other views are
unused and that it is not necessary for them to reside in memory when they are inactive. Segments

19



3.1 Expanding the LLVM linker

have a type assigned which describe if they should be loaded or not and this type is used to describe
additional views apart from the default one. The linker will mark exactly one multivariant segment
as loadable segment while all other segments of all other views are marked as not loadable. The
result is an application in which the one default view segment is initially loaded while all others
remain on the disk as Figure 3.3 illustrates.

When the views are switched during runtime what actually changes is function implementations
of one view are replaced by implementations of another view. What is not switched is the data that
the view uses because it is not part of the memory overlay unit. Even though each view has its own
data part which is part of its multivariant object file that data cannot be switched. All application
views refer to the same data. That means the current implementation of this work does not support
view-local data. All views must define the same data, even if that means that a view defines data
which it doesn’t use by itself but which is used by another view. Simply spoken the set of data for
every view is total since it contains every possible data item across all existing views. Section 5.3.2
will discuss the benefits and drawbacks of this approach whereas Section 5.5 will give a suggestion
of how the total data sets can be altered in future work.

The previously mentioned symbol resolve does apply to all kind of data objects and therefore
to the global data set of all views as well. This mechanism on its own already ensures that views
implicitly access the same global data. Because always the last definition of such a data object is
used for resolving all view instances implicitly access the same objects, thus they are synchronized
in data access. It does not, however, cover symbols for local data such as those being declared as
static. Local symbols take a different path within the lld and enforce a separate processing. All views
must access the same local data across all view instances just as they do for global data, so local
symbol processing has been modified within this project as well.

main

r/w

ELF Header

r/x

r/x

r/x

.gen1-Section

.text.db_get_order

.text.db_get_user

.gen2-Section

.text.db_get_order

.text.db_get_user

Figure 3.3 – Multivariant segments and output sections in the ELF file. The main executable
has two additional read/execute segments colored in purple. The first purple segment behaves
as the default segment, it is loaded initially during application startup. Both segments contain
an output section .gen which bundles all input function sections of a multivariant object file.
During runtime the first segment can be overlaid by the second segment to switch from one
application view to another.
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3.1 Expanding the LLVM linker

3.1.3 Local Symbols and Relocations

The processing of local symbols differs from the one of global symbols because they have a different
semantic meaning. While it is a race condition when two equal global symbol definitions exist in two
different object files this is not an issue for local symbols. This is due to the fact that this symbol is
only visible to the module defining it, so the linker will not take it into consideration when resolving
symbol references across object files. The solution for global symbols has been to replace equal
global symbols so that the last definition of a symbol is taken. Since the lld does not compare local
symbol definitions across object files it has been enhanced to keep track of all local symbols of all
multivariant object files. When relocations are done for local symbols the lld checks if the requested
symbol definition stems from a multivariant object file. If that is the case it will always return
the symbol definition out of that file that has the index 0 for the --mvo argument list. Because a
constraint of the implemented architecture is that all data sets of all views are total it is ensured that
the processed symbol is defined in every multivariant object file. The linker affords that by returning
the proper data section of the local symbol when calculating its virtual address which is the section
of the aforementioned object file with view index 0. Returning always the same data section for
each local symbol definition across all multivariant object files leads to the same relocations for all
views and the result are consistent, synchronized data accesses to the same data object across all
views. Figure 3.4 illustrates the impact of that approach on the relocations of these object files.

foo1.o

.rodata

.text

.rela.text

foo2.o

.rodata

.text

.rela.text

main

.rodata - foo1.o

.rela.text - foo1.o

.text - foo1.o

.rela.text - foo2.o

.text - foo2.o

.rodata - foo2.o

Link

Figure 3.4 – Relocations of local symbols of two multivariant object files foo1.o and foo2.o. Each
object file contains a .rela.text section which contains all relocations for the .text section. The
references of these relocations are towards the local symbols of their own .rodata section prior
linking. During linking the linker redirects these references to the symbol definitions of foo1.o
because its view index has been 0. In the end that leads to .text - foo2.o accessing not its own
data but the data of foo1.o so that both views refer to the same data objects.
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Applying these modifications to the lld linker allows to place all necessary information in the
final ELF binary for a runtime to overlay different views of the application during execution. To this
point, however, the runtime is not able to find this information and therefore a protocol has been
established within this project to pass that information to a runtime.

3.1.4 Preparing data for the runtime

In order to allow a runtime to find view information the linker embeds additional metadata into the
application ELF describing the view contents. This information is placed in an own section .genmeta
as a structure and includes the following information:

• Size of the structure describing this metadata in bytes

• Base virtual memory address for all views

• Size of a view in bytes

• Number of views embedded in the ELF

• Array of file offsets of all views inside the ELF

The meta section does not need to be placed in an own segment, it is appended to an existing
read-only segment and loaded initially at application startup. To be able to find the meta section
itself the linker places an additional symbol genmeta_start which contains the virtual address at
which this section can be found. This symbol is exported as a dynamic symbol which allows the
runtime to find that symbol when it parses the ELF.

While the creation of that meta section is the next step after parsing all input file sections of all
object files filling its contents is deferred to a later point of linking. The reason for that is that after
parsing all input sections the linker has not yet decided at which file offsets these input sections will
be placed in the output file. The lld, however, expects all input sections which should be placed
in the final binary to be defined at a very early stage during linking. Without deeply altering the
linking process of the lld it is not possible to create that meta section at that point of time at which
file offsets have been applied to all sections. Therefore, a workaround has been implemented to
solve that issue by creating a dummy meta section right after all input sections have been parsed.
Even though the exact file offsets of the views within the ELF is unknown at that time the linker
still does know how many views will exist because it parsed all input sections. That means it is
capable of allocating an empty meta section with enough space to fit in that data when it is ready. It
calculates the size needed to save the metadata structure and creates its section without actually
placing the metadata at first place. Later on, directly after all file offsets have been applied, the
meta section is filled with the listed data above.

Figure 3.5 gives the reader an overview of the final multivariant ELF executable and summarizes
how it is structured. It contains all views of the application to which the process can switch to during
runtime as well as the metadata to identify those. A proper runtime environment can parse that ELF
and apply the view exchange mechanism.

3.2 Incorporating a runtime

Building an ELF which utilizes memory overlaying to facilitate multivariance requires a runtime
overlay manager to apply that overlay. Within this thesis a runtime library has been developed
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Figure 3.5 – Final layout of a multivariant ELF. foo1.o and foo2.o are multivariant object files
which both contain a function definition for db_get_user. Before linking the relocations for
db_get_user are directing towards the object file’s individual read-only data sections. For the
final executable the linker created two new sections, .gen1 and .gen2, which both express two
views within the application. Each of them contains a variant of the function and the linker
made sure that both views access the same data objects by manipulating the relocation entries of
foo2.o. The .genmeta section contains the meta information necessary to identify the multivariant
sections during runtime. The sections of main.o have been omitted due to lack of space.

which parses the processes’ binary file and allows the developer to switch between the views during
execution. The library is built as a dynamic library to which the developer can link to and which
exports the method load_and_switch_view.

First the method tries to load the metadata out of the processes’ memory. It does that by calling
the method dlsym which returns the address of a dynamically exported symbol. This is the reason
why in Section 3.1.4 the linker decided to export the symbol as dynamic symbol so that dlsym can
find it. When the address is found it statically casts that portion of memory into the structure defined
in Section 3.1.4 to retrieve the metadata.

After the data retrieval the library starts to pin the memory region of the memory overlay unit
which starts at the virtual address designated by the meta information. Pinning a memory region is
the first step in utilizing ASVs, and it marks the area of memory which is allowed to diverge across
multiple views. The function wf_kernel_pin(start, end) takes a start and an end address whereas
the end address is calculated by the start address of the memory overlay unit plus its size. When
the pinning succeeded the library calls wf_kernel_as_new() which creates the new ASV. The return
value is the view id, and it is used to directly switch to that view by calling wf_kernel_as_switch(id).
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When the switching is done the thread currently executing load_and_switch_view is inside the
new address space and starts to memory map the ELF binary of its process executable. Under Linux
the file under /proc/self/exe contains the path of the current executable which the library can open
and mmap. mmap allows to memory map a file into the processes’ address space. It further allows
to pass an offset into the file described by the file descriptor of open so that the library is able to
pass the file offset of the requested view. Since the offset must be a multiple of a memory page
size the linker aligns the .gen sections accordingly [14]. With the file being mapped the library will
execute a memcpy to replace the existing version of a .gen section by a new version of .gen out of the
ELF binary. This is the core process of the memory overlay manager, after the memcpy the active
view has been replaced and the new view is ready to execute. To ensure that page access bits allow
these types of modifications two mprotect system calls mark the view area as writable before and as
read/execute after the replacement.

Now the library only has to clean up by unmapping the ELF out of the process address space and
by returning the ASV’s index in which the executing thread now resides in. Since the loading and
switching of different views is only necessary if the current thread is not inside the requested view
already the library includes a thread local variable activeIndex which describes the threads view
index. It has to be stored within the Thread Local Storage (TLS) because each thread can reside
in its own view and TLS allows to model that behavior on a per-thread basis. If a second thread
calls load_and_switch_view after a first thread already set up the requested view all the mmap’ing
and memcpy’ing is skipped instead and the thread simply switches to that view by only calling
wf_kernel_as_switch(id) and setting its private activeIndex.

At a later point in time a switched thread can decide to switch to the default view again by
calling wf_kernel_as_switch(0) because the view with index 0 is always the default view.

3.3 Summary

In this chapter the reader learned about the technical and non-technical details of the architecture
developed during this thesis to implement multivariance with specially crafted ELF files. At first, she
was introduced into the changes made to the LLVM linker lld to enable processing of multivariant
object files. Duplicate symbol definitions are allowed and wanted for these object files so the lld
will now accept those as well as makes sure that for every duplicate definition the last one is taken.
Function definitions are an exception to that, for those the lld uses the definition of the default
view with index 0 that the developer defines via the --mvo argument switch. After that it collects all
multivariant function sections and places them into dedicated output sections .gen. A .gen section
bundles all function sections of a view and the linker makes sure that equal function sections across
all views are of the same size by applying padding where needed.

With all view output sections created the linker creates additional segments for each of these
sections. All view segments reside at the same memory location and are of the same size, thus
forming the first step in deploying memory overlay. One of these segments is declared as the default
segment and is loaded initially during application startup while all other view segments remain
unloaded.

Because all views come with their own data sections such as .data or .rodata the linker also
makes sure that each view accesses the same local data object as well. It does that by manipulating
relocation entries and therefore does not allow defining view-local data. The manipulation is done
by returning the same data section for each and every possible local symbol in all multivariant object
files. After that all relocations of all views refer to the same sections and access the same data.
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To allow a runtime to find the view information a protocol has been established to transfer that
information. A specific structure holds all meta information necessary to gather all view information
and is placed within a .genmeta section. The linker adds a dynamically exported symbol genmeta_-
start to allow retrieving the virtual address of that section during execution. The filling of the
meta section is separated from its creation because output section file offsets are needed, but only
available at a late time during linking. To circumvent that issue this thesis introduces a dummy
meta section right at the beginning which acts as a placeholder. When file offsets are calculated that
section is filled and the meta information is complete. At this point of time the final multivariant
ELF is built.

Actual memory overlaying is provided by a dedicated runtime library to which the developer
can dynamically link to. It offers a load_and_switch_view function to facilitate view exchange by
overlaying the view parts. That functions pins the memory space in which the views reside which
allows them to diverge across all view instances. It then creates a new and switches into that address
space to memory map the processes’ binary. When the executable is mapped the library memcpy’s the
content of the requested view out of the mapped ELF into the memory area at which the currently
active view is placed. This forms the core mechanism of memory overlaying established in this
thesis. After that it cleans up by unmapping the ELF file mapping and returning the active view
index to the user. A subsequent call to wf_kernel_as_switch(0) switches the executing thread back to
its default variant.

In essence the specially crafted ELF binary file as well as the developed runtime library together
allow the user to switch between different views of the application during execution.
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4E VA LUAT I O N

To measure the effects of the implementation several test cases have been designed during this
thesis. Two synthetic test cases will evaluate if the built architecture can be applied to an application
in general. After that memcached has been chosen as a real-world evaluation target to test the
developed architecture in a software which is established and used for several years already.

4.1 Synthetic test cases

The main purpose of the synthetic test cases is to prove the pure functionality of the thesis’ approach.
They consist of two settings in which both, the augmented ELF alone as well as the ELF plus the
runtime is tested. The evaluation target system is a Debian 10 running a wfkernel which is a kernel
that adds the necessary system calls to its interface to be able to use the Address-Space Views.

The first test involves an application which outputs only a test message. The code is given
in Listing 4.1 and makes use of the CPP to control the output behavior of the application. To
translate the source code into an object file the clang C compiler has been invoked with the following
arguments: clang elf.c -c -D LOG -ffunction-sections -o elf.o. This command builds the first multivariant
object file and the -D argument switch allows to pass a macro definition, so that LOG is defined and
the presented code actually outputs the defined text. The second build command almost looks the
same but omits the -D LOG so that no text is printed and is saved as elf2.o.

1 #include <stdio.h>
2

3 const char *logMessage = "This thesis rockz !\n";
4

5 void thesisLog(void){
6 #ifdef LOG
7 printf(logMessage);
8 #endif
9 }

10

11 int main(){
12 thesisLog ();
13 return 0;
14 }

Listing 4.1 – Synthetic test case example code.
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After both multivariant object files are built the updated lld linker is executed to link the final ELF.
The example command is shown in Listing 4.2 and leverages the two new arguments --multivariant-
linking and --mvo. The executable links successfully and creates the binary elf which can be run on
the evaluation system. Executing the application results in an output of This thesis rockz! and the
program exits calmly. This test case proves that:

• A multivariant ELF can be built out of multivariant object files being compiled with ffunction-
sections

• The ELF is able to run successfully on the evaluation target system

• The default view defined by --mvo is the view being initially executed

A subsequent altered command with the default view being changed to elf2.o instead of elf.o by
assigning the 0 view-index to that object file results in no output, thus further proving that the linker
chooses the executable’s default view upon the developer’s preference.

1 /path/to/ld.lld [...] elf2.o elf.o [...] -o elf --multivariant -linking ↘
--mvo 0:elf.o --mvo 1:elf2.o

Listing 4.2 – Command to link the multivariant executable. The listing of important standard
libraries to link against are omitted, the focus is on the new aspects of the linker interface.

With the newly crafted ELF being able to run the next step is to apply the actual memory
overlaying by the runtime in order to switch between these two views during execution. To do that
the example code has been modified in Listing 4.3 to first call the view switching and second place
additional output to increase comprehensibility.

At the beginning the default variant is called, followed by a switch to the second view at index 1
in the executable. A subsequent call to the log method shows the effect of the memory overlay as

1 #include <stdio.h>
2

3 extern int load_and_switch_view(int);
4 const char *logMessage = "This thesis rockz !\n";
5

6 void thesisLog(void){
7 #ifdef LOG
8 printf(logMessage);
9 #endif

10 }
11

12 int main(){
13 printf("Execute default variant :\n");
14 thesisLog ();
15 load_and_switch_view (1);
16 printf("Switched to view at index 1. Execute variant :\n");
17 thesisLog ();
18 load_and_switch_view (0);
19 printf("Switched back to default. Execute variant :\n");
20 thesisLog ();
21 return 0;
22 }

Listing 4.3 – Synthetic test case example code.
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another call to load_and_switch_view(0) complements the test by bringing the application thread
back to its initial view. With the last call to the log method the test is done and the total overlay
mechanism has been evaluated. Listing 4.4 provides the exact command-line output and proves
the correct functionality of the taken approach of this thesis. The binary has been linked as shown
in Listing 4.2 with the default view being the one in which the log method actually prints out the
message. While the first call to logThesis() prints the message, the second call, after switching the
view, does not print any further characters. The succeeding text shows that the pinned area includes
one virtual memory page starting at 0x203000 and is a direct output from the helper library which
calls the wfkernel system calls. When the thread switches back to its original view the statement is
printed again, thus the runtime managed to overlay the views parts successfully during execution.

1 Execute default variant:
2 This thesis rockz!
3 wf-userland: memory pin [0 x203000 :+0 x1000]: rc=0
4 Switched to view at index 1. Execute variant:
5 Switched back to default. Execute variant:
6 This thesis rockz!

Listing 4.4 – Command-line output of the view switching test case.

With the synthetic test cases showing that the developed approach can be applied to a small test
application the next step is testing how it applies to a real-world application.

4.2 Memcached as a real-world application

Memcached is a distributed memory object caching system which operates as an in-memory key-
value store [5]. As a cache it reduces the latency for several data accesses by saving an in-memory
copy. A common use-case for memcached is to reduce latency for database accesses since its file
remains on the disk for many database types which is typically slower than the traditional Random
Access Memory (RAM).

To evaluate the area of effect of this thesis several micro-benchmarks have been measured. When
the memcached server is asked to return data for a specific key its internal process_get_command()
iterates over a hash map to find the corresponding objects. The client can optionally send a multi-key
request which includes more than one key at once and retrieves all objects matching the given keys.
This method is the evaluation target for the micro-benchmarks, and it is measured in two different
ways.

In the first version memcached uses an if-statement to configure key printing. When a client
connection has been established memcached decides whether it should log all keys for this client
connection and sets a global boolean variable. That variable is read during key iteration of the
multi-key request and each key is printed with respect to the state of that variable. The default state
of that global variable is false to not log the keys of the get command. If the client ip matches a
specific pattern the global variable is set to true to log all keys.

The other version of memcached contains two views of memcached in its binary and applies the
thesis’ approach where one view prints all keys and the other view does not print any key. Once a
client connects memcached decides whether it should change its view for that connection and by
that either logs all keys or no key at all. Because of memcached’s concept of worker thread pools the
handling thread has to switch its view only once upon client connection start because memcached
ensures that this thread will be the only thread operating on that connection until that connection is
closed. To match the other version’s default state the default view of memcached is that view that
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does not log any key. If the client ip matches a specific pattern the thread will switch its view to log
all keys of the request. For both versions the following evaluation strategy has been applied:

• Each get request contains the same amount of keys across both versions

• Four worker threads are used to handle client connections inside of memcached

• Each worker thread measures the execution times of 1,000,000 calls to process_get_command

• For one measure this procedure is executed five times in a row

• The measurement method is using clock_gettime and the CLOCK_THREAD_CPUTIME_ID clock
id

All in all one measure includes the execution times of 20,000,000 calls to the micro-benchmarked
function because four threads measure 1,000,000 function calls five times in a row. To investigate
the effect of the specialized logging view of the second version of memcached three measurements
have been gathered with a client issuing multi-key get requests containing 25 keys, resulting in
a total of 60,000,000 measured function calls for each version of memcached. That means for
every get request the first version has to evaluate the former amount of if-statements whereas the
specialized logging view omits these evaluations. 25 keys have been chosen to represent a fairly high
workload. The client application is single-threaded and started four times to create four processes,
each creating a single connection to match the four worker threads of the memcached server.

The results are tabulated in Table 6.1 and visualized in Figure 6.1 to graphically compare both
versions. In Table 6.2 and Figure 6.1 the measurement has been repeated, but this time the default
state for both versions was to log the keys of the command so they both switch to a do-not-log
state as the client ip matches. Both results indicate no significant positive impact of the developed
approach on execution times of the micro-benchmarked function. Even though both versions differ
in several nanoseconds Section 5.4 discusses the impact and reasons for these differences. The
complete measurement has been repeated using the CLOCK_MONOTONIC_RAW clock id, but that did
not provide any significant performance benefits as well.

After the micro-benchmark, which is measured at the memcached server, another measurement
at the client has been executed to detect any latency impacts on the client side when applying
the thesis’ approach of multivariant executables. Furthermore, the evaluation scenario has been
modified to not measure the effect of omitted print statements but to evaluate whether a specialized
application of the Address Sanitizer inside of memcached can have positive impact on client latency.
The idea of the Address Sanitizer is to provide the detection of several semantic programming errors
such as use-after-free bugs or out-of-bounds accesses to stack and global variables[10]. A limitation
is, however, that the developer can only apply that type of sanitization to the whole program or
explicitly exclude certain parts of the application from sanitization. If she intends to only sanitize
one function for example its current implementation does not allow to mark that function. One
solution could be to exclude every other function inside the code base, but that can be tedious and
impractical for huge projects. With the established approach the developer is able to build two views
of memcached - one which does not sanitize anything and the other one sanitizing exactly what
should be sanitized. Because the granularity within this thesis is at object-file level it is currently not
possible to solely mark one function, but it can be used to ensure that only that object file will be part
of address sanitization in total. To evaluate thesis’ effect on client latency one version of memcached
executes a full address sanitization while the other version makes use of the two described views.
The measured procedure is the memcached_get function of the libmemcached helper library. That
method takes the same 25 keys out of the first memcached evaluation and returns the corresponding
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objects matching them. This time the client application spawns 32 additional threads with each
thread starting its own connection to the memcached server. These threads continuously call the
memcached_get function until the main thread told them to stop. Each thread has its own vector
inside the TLS which stores the execution times for each function call. Again clock_gettime with
CLOCK_MONOTONIC_RAW has been used to measure the function latency. After starting the client
threads the main thread sleeps ten seconds to let the client threads execute function calls without
measuring. These ten seconds are explicitly not measured to allow the network and all participating
entities to set themselves up. This thesis expects to reach a rather continuous workload after the
given ten seconds. Now the main threads signals the client threads to start measuring the execution
times for 30 more seconds. When time elapsed the main thread signals the client threads to save
their individual measurements inside a globally allocated standard vector. This procedure is guarded
by a semaphore to synchronize concurrency. The last client thread signals the main thread to dump
the vector into a text file which is the last step the client application takes. After that the evaluation
has finished and its results are presented in Figure 4.1 and Figure 4.2. For the complete measurement
of the performance of the address sanitizer memcached has been invoked with the environment
setting ASAN_OPTIONS=report_globals=0 to disable the reporting buffer overflow detection. This
is necessary because this version of the thesis does not align global variables properly at certain
boundaries and the address sanitizer reports this behavior as an error.
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Figure 4.1 – Client latency histogram for the evaluated versions of memcached. The data
displayed is in range of 0 to 300,000ns to highlight the highest peaks of both approaches. The
green-dotted line marks the median of the ASV approach while the red-dotted line represents
the median of the default version.
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Figure 4.2 – Client latency histogram for the evaluated versions of memcached. The data set
has been ordered ascendingly and the upper 1% has been cut off to avoid displaying potential
outliers. The green-dotted line marks the median of the ASV approach while the red-dotted line
represents the median of the default version.

Figure 4.1 shows the direct impact of the developed approach on the client latency. With the
orange graph representing the histogram for the memcached version leveraging ASVs, the client
latency can be reduced for the case of applying the address sanitizer to all functions of only one
object file. The default version, which applies address sanitization to the whole application, reached
higher client latencies in comparison to the thesis’ approach. Using ASVs the client’s median latency
has been 114471ns while the default version reached 133560ns which means that the established
approach reached a latency reduction of approximately 14.3%. Figure 4.2, however, shows that the
default version of memcached reaches lower latencies around the range of 500,000 to 630,000ns
compared to the Address-Space View variant. Potential reasons for that measure are highlighted
and discussed in Section 5.4.

4.3 Summary

In this chapter the reader has been introduced into the evaluation of the thesis’ approach and its
impact on runtime execution. At first synthetic test cases showed the core functionality of the
approach and prove that the ELF files can be extended to include several application views by
creating dedicated sections. Furthermore, they also show that a runtime can be developed which is
able to parse that information and apply the application view switch during execution in a specially
developed test application.
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For the second test case memcached as a real-world application has been chosen to evaluate
the thesis’ approach in an application which is widely used. The measurements do not indicate
a significant positive impact of the taken approach to execution times of the micro-benchmarked
function process_get_command for 25 keys. They do, however, indicate that the approach is robust
and does not lead to application crashes for several million function executions. The third test
case evaluates the systematic application of the AddressSanitizer to a specified object file in order
to evaluate potential performance gains in cases where developers like to sanitize only certain
parts of their application. The 32 worker threads measured the latency of continuous calls to the
memcached_get library method which retrieves the same 25 keys as in the second test case. One
version of memcached applies the sanitizer to its complete code base while the other version makes
use of ASVs to only sanitize the object file in which that method is defined. The results provide
a measurable effect of the established multivariant approach by reducing client latencies when
utilizing ASVs for the majority of the clients calls by approximately 14.3%. They do also clarify that
the default version of memcached can outperform Address-Space Views for higher latencies which
is further discussed in Section 5.4.
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5D I S C U S S I O N

The previous chapters explained the thesis’ approach and evaluated its impact upon synthetic and real-
world applications. Now the reader is introduced into a critical discussion about the implementation
and its benefits and drawbacks. After this chapter he is able to draw a more reasonable conclusion
on the influence of this thesis with respect to closing the gap between static and dynamic variability.

5.1 Increased code complexity in the linker

To enhance the lld linker to allow the building of multivariant ELFs its code base has been extended
as described in Section 3.1. A primary goal of this project has been to work as minimal invasive as
possible which is why all the added functionality resides in two extra files. During the linking process
the lld imports the multivariant linking interface and executes its various functions on demand. All
of these functions are wrapped in a dedicated MVL namespace to further increase distinguishability
between the existing code base and the multivariant approach. At specific points in linking, such
as symbol gathering, input section file parsing or section file offset generation, these functions are
called in order to gather all the information needed to allow building multivariant executables.

A drawback of the established approach is that the code base is now bloated up for all the
use cases in which the building of multivariant object files is undesired. Also, the lld itself is now
built to always support multivariant linking which is not necessary for linking platforms in which
only traditional linking occurs. Benefits of the developed approach are that even though the code
complexity has increased its real complexity is hidden behind a namespace and the existing code
has to call only a handful of new methods which arguably reduces the harm in readability. Because
the consistent use of that namespace developers are able to identify the added function calls and
can remove them from the code base if they are not needed. In fact the existing solution can be
easily extended to make use of the C preprocessor to build the lld with multivariant ELF support
only when it is desired.

All in all, even though the code complexity has increased the minimal invasive strategy remains
the readability of the code and can be extended to build linker images which support multivariant
linking if demanded.

5.2 Programming interface

Section 3.2 introduced the building of a runtime to apply memory overlaying to facilitate view switch-
ing during execution. Its programming interface contains the function load_and_switch_view(id)
which takes an integer, loads an application view from the application image into a new Address-
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Space View and switches to that view at the end. The implementation and method signature is
straightforward, and the goal was to ensure the view switch can be technically applied. An index as
a view selection does work, but requires the user of this runtime to exactly know which view lies
at which index within the multivariant ELF. A more general approach can be to attach names to
views as they allow to transport more information about that view to the user of the runtime. For
example the existing approach in which a multivariant application has two views, index 0 and 1, can
be changed to attach the names default and no-log to the views. With that change the readability
of the code increases as the reader, especially a coworker or reviewer, can semantically follow the
reasoning of the developer and figure out potential issues in comparison to sole integer indices.

5.3 Executable size overhead

Multivariant ELF files contain additional data which increases the size of the program image. This
data includes the metadata and the additional sections/segments described in Section 3.1.4, as well
as redundant data. Redundant are most of the data sections out of the multivariant object files,
because all view instances only access one version of these sections at every point during execution,
however all versions are saved within the final binary.

5.3.1 Meta data and view data

To facilitate multivariant executables this thesis relies on additional sections and segments to separate
different views of the application. This enforces a larger Section Header Table and a larger Program
Header Table where both of their entries require the amount of bytes described by the members
e_phentsize and e_shentsize of the ELF header. The total increase in image size does also heavily
depend on the amount of multivariant functions, as well as on the size of each of these functions
and is therefore individual to every specific application setup which makes it hard to give an average
estimate. Additionally, for the version of this thesis it is important where these multivariant functions
are defined because the view granularity is at object-file level. The linker places all functions out
of these object files into the final executable which means that even non-multivariant functions
with the exact same code are saved twice if two multivariant views are generated. That means that
applications that define two multivariant functions within the same object file are potentially smaller
than applications that define these two across two different object files. In total the increase in size
of the application image released by the view data can be calculated using the following formula

Sview =
j
∑

m=1

(
k
∑

n=0

size f unc(m, n)) + sizesht + sizepht (5.1)

where j describes the number of views and k denotes the number of multivariant functions.
sizefunc(m, n) is a function which returns the size of the nth function inside the mth view and sizesht,
sizepht return the sizes of an entry within the SHT or PHT, respectively.

The metadata includes all necessary information to find all multivariant view data and resides
in its own section, too. It does not require an own segment but incorporates a dynamic symbol to
point to its memory location. The content of the metadata is described in Section 3.1.4 and part of
the following equation to calculate the its overhead size

Smeta = (
j
∑

m=1

sizeint) + 4 ∗ sizeint + sizesht + sizes ym (5.2)
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where j is the number of file offsets of all multivariant output sections, each of them is saved as an
integer. Additionally, sizeint is added four times because we require an integer for the size of a view,
the number of views embedded in the ELF, the base virtual memory address for all views and the
total size of the meta structure. After that the sizesht is added because of its .genmeta section and
sizes ym describes the size of the dynamic symbol which is an entry within the Dynamic Symbol Table
and the String Table. The final image size increase can be calculated using Stotal = Sview + Smeta.

5.3.2 Redundancy and view-local data

During the reading of Chapter 3 and for the reasons given above the reader may remember that the
thesis’ approach does not allow to define view-local data. To recapitulate view-local data refers to
data that is not shared among other multivariant views of the application. This thesis requires all
views to define and share all of their global data such as global variables, as well as statically defined
data. It may, however, be desirable to define local data parts, as there are numerous examples and
use-cases in which they are beneficial. One of the simplest applications of view-local data is when
data is required by only one view and no other view. Other views then do not needed to know
anything about this data as they do not operate on it anyways. Additionally, it hardens security if
this data is hidden from other views as well. In fact view-local data can be compared to thread-local
data concerning its benefits, drawbacks and use-cases. As thread-local data allows to define data
which is private to each thread view-local data allows to define data which is private to each view
so both of these concepts are strongly related to each other. Furthermore, view-local data eases
synchronization issues across multiple views as the current state of this project synchronizes all
multivariant data and the programmer has to be aware of that concurrency. Synchronization issues
have been prominent in concurrent applications for decades and with the current approach another
layer of that issue is created.

The term redundant is used because every view comes with its own data but as Section 3.1.3
and Section 5.3 describe all relocations lead to data accesses to only one version of that data across
all views. That means that all the other data sections of the views are not accessed during execution
and are therefore redundant. Because view-local data is not supported by the thesis that data serves
no purpose and can be omitted and is part of possible future work as Section 5.5 will explain. Other
redundant data are the functions inside the multivariant object files which are not multivariant on
their own. Since these functions are the exact same in all views they can be omitted as long as one
of their versions is kept inside the executable but outside a memory overlay unit so that it is present
in each and every view all the time.

5.4 Performance impact

The multivariant implementation does not only induce space but also runtime overhead as the view
exchange mechanism increases latency by additional program logic and its side-effects such as cache
pollution. It is now of great interest to see whether the potential performance benefits of dedicated
application views can overcome their cost to make an educated decision in which scenarios the thesis’
approach is a benefit to the application and in which it is not. Keep in mind, however, that there are
more potential benefits than only performance gains with security being one of the discussed ones
in Section 5.5.

Dedicated application views being wrapped in different ASVs provide potential performance
benefits by reducing the amount of executed instructions if the application decides to switch to a
view which contains less logic by omitted logging calls for example. Omitting these calls can also
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be achieved by wrapping them around conditional logic which is evaluated during runtime. That
means that for two scenarios, one using multivariant views and the other using conditionals, what
really can be saved are the execution and evaluation of these conditionals e.g. if-statements. Today’s
computing systems contain many concepts to forecast these conditional branches, with the help
of a branch predictor for example. In combination with speculative execution the CPU executes
that code that it expects to run when a certain condition is met and either applies their results or
discards them and continues with the other part of the branch. If the forecasting system has a high
hit rate then the saving of omitting the evaluation of conditionals will not lead to significant latency
decreases. Caching mechanisms reduce these performance benefits as well which explains the small
to no performance gain of the micro-benchmark in Section 4.2. Additionally, the application of
Address-Space Views requires to flush the Translation Lookaside Buffer (TLB), an important memory
mapping cache, because the switch between ASVs is effectively a context switch [15, p. 6]. Flushing
the TLB further mitigates potential performance benefits.

Another latency impact is the dynamically linked runtime library as it requires a trampoline over
the Procedure Linkage Table (PLT) to call its functions. Especially for scenarios in which a thread
decides to switch into a view in which it already is, these calls are expensive as the called function
will not execute any further logic besides to not switch and return back to the caller.

What can increase the performance, however, is the application of dedicated views when it
comes to sanity-checking. As Figure 4.1 clearly shows there can be a performance benefit to client
latency when the sanity-check is only applied where it is needed. This circumstance is useful if
a target application faces recurring problems and further investigation is needed. The developer
can start the application and directly switch to the sanity-view or have that view be the default
one in order to sanitize only the necessary parts of the application. With that it is possible to get
verbose information and to target that to one thread rather than having the whole application and
all of its threads to be in that verbose application view state all the time. As shown in Section 4.2,
the common client latency can be significantly reduced by around 14% when using a dedicated
sanitization view in memcached.

Figure 4.2 teaches about potential drawbacks of the thesis’ implementation for higher client
latencies. The mindful reader will notice that these latencies are up to five times higher than most
of the measured latencies which is a remarkable deviation. Context-switches have hugh impacts
on all types of application latencies as they defer the processing of the current thread to a later
point in time. While this ensures that every thread of the system can progress, it is still limiting
latency of each thread on its own. Address-Space Views suffer stronger from context-switches as
a switch from one application thread to another application thread induces a TLB flush if these
two threads reside in different views. Usually all application threads share the same address space
and therefore a context-switch between these types of application threads is cheaper compared to
ASVs. The two peaks around 500,000ns to 650,000ns are most likely measurements including these
context-switches which can explain why the developed approach reaches higher tail latencies than
the default one. To prove that context-switches are the reason behind increased client latencies
and why the default version of memcached has been faster than the ASV version for high latencies
both of these versions should have their threads pinned to specific CPUs. The pinning of certain
application threads to certain CPUs reduces context-switching overhead. When the threads are
pinned it is less likely that one thread of the same application will be replaced by another one with
a different ASV. The evaluator has to ensure that application threads of the multivariant executable
which reside in different ASVs should not be scheduled on the same CPU. Although that is not
completely configurable it is possible to set thread specific affinity masks. By using affinity masks
the developer pins all threads according to their views. If the hypothesis proves to be true the higher
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latencies of the ASV version of memcached should converge to the higher latencies of the default
version because the TLB is not flushed as often.

After all it is important to notice that Figure 4.1 covers the majority of the data set for both
histograms. The data displayed represents up to 92.72% of the default and 93.94% of the ASV total
data set and exemplifies that even though there can be a negative performance impact of the thesis’
method most of the time it’s beneficial to client latencies for the case of address sanitization.

5.5 Future work

The core purpose of this thesis was to develop a platform to build multivariant applications by using
dedicated Address-Space Views. Because this is a novel approach of facilitating multivariance it
provides multiple aspects to improve on.

First of all the granularity of multivariant functions can be decreased from object file level to
function level. As Section 5.3.2 explained multivariant views contain functions which are all the
same in each and every view, thus increasing binary file size, process memory size and have a
detrimental impact on caching systems as equal data is reloaded continuously. Therefore, it can be
of great interest to filter out only those functions which are really desired to be multivariant. The
developer should be able to mark multivariant functions in order to tell the linker which functions
are part of a multivariant view and which are not. The existing view building mechanism can be
easily extended to not put all functions of a multivariant object file into an output section .gen but
rather skipping those being not marked as such.

Speaking of marking another important aspect to improve is the implementation of view-local
data. Currently, no view-local data can exist which first can be a feature developers would like to
use like they may use TLS and second results in redundant data being placed in the final executable.
The drawbacks of object level granularity apply to view-local data too and provide a great surface
for improvement. Again the developer needs to be able to mark view-local data objects such as
global variables so that the linker can manipulate relocations accordingly to allow different views to
access different data which is then not synchronized between views. Both of these improvements
contribute to harden security in multivariant applications. The fact that a view can be tailored
to especially one thread allows to include several hierarchies of responsibilities and permissions.
The developer can define dedicated threads being responsible and being the only ones allowed to
execute certain tasks such as making database calls or parsing user information. If the view is highly
restricted that secures the whole system’s environment by mapping only the code that is necessary
to perform the work the thread has to do. The idea of building restricted, isolated views to perform
certain work, however, is not new and existing research already elaborated on it. James Litton et al.
describe light-weight contexts (lwCs) as isolated address spaces to which each thread can individually
switch to in order to execute program logic in the fashion of coroutines[9, p. 5]. This approach of
organized, controlled work scheduling is similar to the idea of restricted views with view-local data,
but the semantics of both of these quite differ. While this thesis focuses on a strong synchronization
between the ASVs with dedicated diverging areas, lwCs targets to provide contexts in a fork-like
manner by even creating copies of file descriptor bindings[9, p. 1]. Also the concept of coroutines
being applied to the latter is not of particular interest to the former. Ultimately, with the approach
established over the course of this thesis, the depth of security is a derivation of the developer’s
creativity and expertise of conceiving restricted views.

Another small improvement is to enable static linking against the developed runtime library.
Using a static link the linker can inline the function calls to the library, thus saving the call and the
indirection over the PLT jump table to further reduce latency. In order to inline functions inside
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the linker it has to support Link Time Optimization (LTO) and the llvm lld used by this thesis does
support it [11].

Last but not least, the multivariant linker and runtime frontends can be optimized to improve
their usability. The linker includes the --mvo and --multivariant-linking argument switches to control
the linking process and with the approach given above, by explicitly marking functions, the linker can
almost omit these arguments. If it is feasible to mark certain function variants as default variants the
arguments can be left out completely, otherwise the --mvo switch is needed to configure the default
view. For the runtime, a more human-readable and reasonable form of switching the view can be
established by moving from unclear integer indexes to named views as proposed in Section 5.2.

5.6 Summary

In this chapter the reader followed a discussion about the results and evaluation of this thesis in
order to be able to critically think about the taken approach and its benefits and drawbacks. She
understands that the implemented code in the lld linker increases its complexity, especially for the
case in which the developer does not want to make use of multivariant linking. The code base,
however, contains a dedicated MVL:: namespace to reduce the induced complexity and to allow
developers to distinguish between the existing code and the added one. Next to the existing code
base a new runtime library has been developed which provides a minimal interface to switch between
different views. Instead of passing integers, named views increase the comprehensibility of the
runtime and ease its usage.

Beside the increasing code bases the final binary ELF increases in size as well due to the additional
sections and segments. The reader learned that the meta information as well as the redundant view
data imply that drawback even though the metadata is necessary to allow the runtime to find its
information. What can be omitted, however, is the duplicated unused data since all views access the
same data. That applies to duplicated non-multivariant functions in all views as well and Section 5.5
suggests enabling the marking of functions and certain data to reduce redundancy and to introduce
view-local data.

Finally the evaluation has shown no significant performance impact on a micro-benchmarked
function. For the macro-benchmark of client latencies, however, it showed that dedicated views
with only the necessary address sanitizing enabled can have a positive impact on the execution time
and provides the reader with two scenarios in which both, the developed approach can and cannot
be beneficial to the underlying application. The reason why the established method can also be
detrimental to client latencies has to be further evaluated. This thesis suggests to investigate the
impact of context-switches upon client latencies to explain that increase. For the case of address
sanitization in memcached this thesis was able to close the gap between static and dynamic variability
by transporting the performance benefits of a statically tailored sanitized version of memcached to
its runtime environment.
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Over the course of this thesis a new approach of multivariant applications has been developed
and evaluated. That approach embeds dedicated application views inside the ELF executable and
switches between those during runtime on demand. It achieves that by extending the llvm linker
to build sections and segments of multivariant functions. Each of these segments are of the same
size and contain the functions built for their views. The views are memory overlayed and can be
exchanged during runtime with the help of the developed runtime overlay manager which creates
Address-Space Views for every embedded view. The application of the view switching is thread-local
so that one switched thread executes one view variant while all other threads remain in their views.
Multiple threads can reside in the same view, thus sharing their instruction code and data objects.

The evaluation shows that it is possible to create and switch to multiple application views in
synthetic test cases as well as in the real-world application memcached. Furthermore, they reveal
that the new approach can lead to significant performance improvements in certain application
use-cases such as address sanitizers. For memcached a median client latency reduction by 14.3%
can be achieved for the optimized use of the address sanitizer. But the test cases also show that this
impact can be neglectable or detrimental for scenarios in which the cost of Address-Space Views
overshade omitted instructions. The reason why ASVs can have a negative impact on client latency
has to be further evaluated, but a particular point of interest can be to investigate the increased cost
of context-switching for these views. This circumstance exemplifies that the thesis’ approach does
not provide benefits to performance in all manners. It is strongly tied to the application use-case
and can significantly improve latency for certain scenarios.

Beside performance improvements multivariant ELFs also contribute to hardened security in
multi-threaded applications. By providing dedicated tailored views, the developer is able to restrict
a thread’s code to an absolute minimum. That restriction enables a new layer of protection and can
even build a hierarchy of authorization in which certain threads are allowed to execute privileged
code while others cannot because its not mapped into their view. Further work on this project
can introduce the concept of view-local data to enable a more fine-grained data access in views.
View-local data is not synchronized across view instances and provides developers with more control
over data accessibility inside the views. Additionally, it further hardens security as certain views can
access confidential data while that data is hidden from all other views at the same time. Finally, an
optimized runtime overlay manager can reduce latency by skipping the indirection over the PLT
with static linking instead of dynamic linking and by making use of function inlining.

In conclusion, multivariant ELF executables and Address-Space Views together provide the
possibility to leverage thread-specific multivariance computer applications by utilizing tailored
application views to increase security or to gain performance benefits as this thesis has shown for
use of address sanitization.
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ASV Address-Space View

COW Copy-on-write

CPP C preprocessor

CPU Central Processing Unit

ELF Executable and Linkable Format

LTO Link Time Optimization

lwC light-weight context

PHT Program Header Table

PLT Procedure Linkage Table

RAM Random Access Memory

SHT Section Header Table

TLB Translation Lookaside Buffer

TLS Thread Local Storage

VA Virtual Address
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A P P E N D I X

The following tables represents micro-benchmark measurements for get requests of 25 keys to a
memcached server. Version 1 refers to the version of memcached using if-statements rather than
address space views. Version 2 makes use of address space views and omits if-statements to toggle
printing. Table 6.1 includes execution times for a scenario in which process_get_command does
output the keys whereas Table 6.2 measured the same method without the keys being printed.

# Measure Total Median Total Mean

Version 1
1 170221 194530.67
2 169716 193481.18
3 169652 194065.01

Version 2
1 173327 200241.42
2 172009 197077.08
3 175916 204190.98

Table 6.1 – Execution time per 1.000.0000 function calls over five iterations and four threads,
in nanoseconds. The function does print the keys.

# Measure Total Median Total Mean

Version 1
1 5053 5227.90
2 4991 5168.41
3 5047 5225.80

Version 2
1 4998 5144.74
2 4989 5157.46
3 5031 5197.39

Table 6.2 – Execution time per 1.000.0000 function calls over five iterations and four threads,
in nanoseconds. The function does not print the keys.
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Figure 6.1 – Visual representation of Table 6.1 and Table 6.2.
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