
Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Masterarbeit im Fach Informatik 2. Juni 2022

Lo(ck|g)-free Page Allocator
for Non-Volatile Memory
in the Linux Kernel

Lars Wrenger

Please cite as:
Lars Wrenger, “Lo(ck|g)-free Page Allocator for Non-Volatile Memory in the Linux
Kernel” Masters’s Thesis, Leibniz Universität Hannover, Systems Research and
Architecture Group, June 2022.

www.sra.uni-hannover.de

Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System und Rechnerarchitektur
Appelstr. 4 · 30167 Hannover · Germany

https://www.sra.uni-hannover.de

Lo(ck|g)-free Page Allocator for Non-Volatile Memory
in the Linux Kernel

Masterarbeit im Fach Informatik

vorgelegt von

Lars Wrenger

geb. am 2. August 1997
in Magdeburg

angefertigt am

Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Fakultät für Elektrotechnik und Informatik
Leibniz Universität Hannover

Erstprüfer: Prof. Dr.-Ing. habil. Daniel Lohmann
Zweitprüfer: Prof. Dr.-Ing. Christian Dietrich

Betreuer: Florian Rommel, M.Sc.

Beginn der Arbeit: 4. Oktober 2021
Abgabe der Arbeit: 4. April 2022

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third parties.
I certify that the work has not been submitted in the same or any similar form for assessment to any
other examining body and all references, direct and indirect, are indicated as such and have been
cited accordingly.

(Lars Wrenger)
Hannover, 2. Juni 2022

A B S T R A C T

With the advent of new memory technologies, the focus in the operating system’s research is currently
shifting from processing elements towards memory. Especially byte-addressable persistent memory
(NVM) is heavily discussed in the scientific community. Its applications have been theoretically
explored even before Intel released capable hardware in 2019.

This work explores a new minimal, self-contained memory abstraction (morsel) that combines
the two concepts of memory and file. A morsel is a small partial address space that can be directly
integrated into the address spaces of processes or devices (DRAM, NVRAM, GPU, and Remote-DMA).
Morsels build upon the (IO)MMU as the interface for memory sharing. They are lock-free to support
non-OS-controlled devices that cannot participate in complicated locking protocols, like GPUs. A
morsel can be stored in NVM to allow the shared memory to survive system crashes or power failures.

To persistently allocate pages for the metadata and content of morsels, a new scalable and
crash-tolerant page allocator for NVM is needed. This work discusses the design and development
of this new highly parallel allocator. It avoids locks for its data synchronization, as they are difficult
to recover after crashes. Logging is another widely-used strategy to implement atomic transactions.
However, the high amount of writes it causes makes it unsuitable for the current NVM hardware.
Like SSDs, NVM can endure only a limited number of writes and thus uses costly wear-leveling
techniques to increase its lifespan. Therefore, the developed allocator is both lock- and log-free.
Also, different strategies for reducing fragmentation, metadata overhead, and memory sharing were
implemented. They are compared with the Linux page allocator in several microbenchmarks. This
work shows that these allocator variants recover from system crashes, significantly outperform the
Linux allocator, and in some cases, even an allocator based on CPU-local linked lists.

v

KU R Z FA S S U N G

Mit der Einführung neuer Speichertechnologien verschiebt sich der Fokus der Betriebssystemfor-
schung aktuell von Prozessoren in Richtung Speicher. Besonders byte-addressierbarer, persistenter
Speicher (NVM) wird in der wissenschaftlichen Community ausgiebig diskutiert. Seine Anwendungen
wurden bereits theoretisch erforscht, bevor Intel entsprechende Hardware in 2019 veröffentlichte.

Diese Arbeit befasst sich mit einer neuen, minimalen, abgeschlossenen Speicherabstraktion
(Morsel), welche die beiden Konzepte Speicher und Datei kombiniert. Eine Morsel ist ein kleiner Teil
eines Adressraums, der direkt in die Adressräume von Prozessen oder Geräten eingehängt werden
kann. Die Morsels bauen auf der (IO)MMU als Schnittstelle zum Teilen von Speicher zwischen
verschiedenen Geräten (DRAM, NVRAM, GPU und Remote-DMA) auf. Um Geräte, die nicht vom
OS kontrolliert werden und keine komplexen Synchronisationsprotokolle befolgen können, zu
unterstützen, müssen Morsels lock-free sein. Eine Morsel kann zudem im NVM gespeichert werden,
was es ihrem geteilten Speicher ermöglicht, Systemabstürze oder Stromausfälle zu überleben.

Um Seiten für die Metadaten und Nutzerdaten einer Morsel persistent zu allokieren, wird ein
neuer, skalierbarer und absturzsicherer Seitenallokator für NVM benötigt. Diese Arbeit diskutiert das
Design und die Entwicklung dieses neuen Allokators. Er vermeidet Locks zur Datensynchronisation,
da diese nur schwer nach Abstürzen wiederhergestellt werden können. Logging ist eine weitere
weit verbreitete Strategie, um atomare Transaktionen zu realisieren. Allerdings verursacht Logging
eine hohe Anzahl an Schreibzugriffen, deshalb ist es ungeeignet für die aktuelle NVM Hardware.
Ähnlich wie SSDs kann NVM nur eine begrenzte Anzahl an Schreibzugriffen aushalten und nutzt
daher teure wear-leveling Methoden, um seine Lebensdauer zu erhöhen. Deshalb ist der Allokator
sowohl lock-free, als auch log-free. Darüber hinaus wurden verschiedene Strategien implementiert,
um Fragmentierung, Speicherverbrauch und Memory-Sharing zu verringern. Diese werden in meh-
reren Micro-Benchmarks mit dem Linux Kernel Allokator verglichen. Die Arbeit zeigt, dass diese
Allokatorvarianten Systemabstürze überleben und performanter sind als der Linux Allokator und in
einigen Fällen sogar als ein Allokator der auf CPU-lokalen verketteten Listen basiert.

vii

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 The Memory Hierarchy . 3
2.2 Virtual Memory Management . 4

2.2.1 Page Tables . 5
2.2.2 Memory Allocators . 6
2.2.3 The Linux Buddy Allocator . 7

2.3 Parallel Processor Architectures . 8
2.3.1 Memory Ordering and Atomic Operations . 8
2.3.2 Shared Memory . 9
2.3.3 Non-blocking algorithms . 10
2.3.4 (False-) Sharing . 10

2.4 Non-Volatile Memory . 11
2.4.1 (Extended) Asynchronous DRAM Refresh . 11
2.4.2 Direct Access (DAX) . 12

2.5 Related Work . 13
2.6 Summary . 14

3 Architecture 15
3.1 Morsels . 15
3.2 The Lo(ck|g)-Free Page Allocator . 16

3.2.1 General Requirements . 16
3.2.2 Persistency Related Requirements . 16

3.3 Page Table-Based Architecture . 17
3.4 Heterogeneous Memory Systems . 18
3.5 Search Strategies . 18
3.6 Page Table Pages . 18
3.7 Summary . 20

4 Implementation 21
4.1 General API . 21
4.2 Lower Allocator . 22

ix

Contents

4.2.1 Fixed Page Tables . 22
4.2.2 Dynamic Page Tables . 23

4.3 Upper Allocators for Subtree Management . 24
4.3.1 Table Allocator . 25
4.3.2 Array Allocator . 26

4.4 Optimizations . 27
4.4.1 Lock-Free Linked Lists . 27
4.4.2 Reducing False Sharing . 27
4.4.3 Utilizing Locality for Free Operations . 28

4.5 Baseline Allocators . 29
4.6 Summary . 29

5 Evaluation 31
5.1 Race Condition Tests with Stopping Points . 31
5.2 Microbenchmarks . 31

5.2.1 Benchmarking the Linux Page Allocator . 32
5.2.2 Bulk Allocations . 32
5.2.3 Repeat Allocations . 35
5.2.4 Random Allocations . 35
5.2.5 Different Filling Levels . 37
5.2.6 Huge and Giant Pages . 37

5.3 Memory Access . 39
5.4 Recovery and Crash Consistency . 39
5.5 Metadata Overhead . 40
5.6 A Volatile Morsel Allocator . 41
5.7 Summary . 41

6 Conclusion 43

Lists 45
List of Acronyms . 45
List of Figures . 47
Bibliography . 49

x

1I N T R O D U C T I O N

The memory hierarchy is becoming increasingly deep for general-purpose operating systems. In
addition to caches, DRAM, and hard disks, there are many new memory technologies in between.
Examples of these are video memory (GPU), Remote Direct Memory Access (RDMA) over network
cards, or Non-Volatile Byte-Addressable Memory (NVM), like the Intel Optane DIMMs that were
released in 2019. All of these have to be managed by the operating system (OS), together with
the ability to directly access it (DAX) and share it between Cores, Sockets, devices (like GPUs), or
even whole systems in the case of RDMA. Current concepts and abstractions come to their limits
in representing these memory types [Pel+15]. This is especially difficult for NVM because it is
byte-addressable like DRAM but also persistent like filesystems on hard drives [Bai+11; Bit+21].
Therefore, it has properties of both concepts: memory and file.

This work is part of the ParPerOS (Parallel Persistency OS) project, which proposes a new minimal
and self-contained memory abstraction, named morsel, to overcome these limitations. A morsel
consists of a small page table tree, similar to the virtual address space mappings of the OS. Depending
on their depth, these small page table trees can span over different sized chunks (2 MiB, 1 GiB,
512 GiB, ...). As they are compatible with (IO)MMUs, they can be directly mounted into a virtual
address space by integrating them as subtrees into the current page table tree. This allows direct
unconstrained access to the mounted morsel.

The primary goal of this new method of integrating external memory into address spaces is
to improve performance due to the closer proximity to the hardware. Additionally, morsels are
developed to support non-OS-controlled memory, like video memory. This requires that morsels are
lock-free, as non-OS-controlled devices like GPUs cannot use complex interfaces that require locks
or logs. This lock-free property also satisfies the persistency requirements of modern non-volatile
memory: In the past years, additional considerations had to be made to guarantee persistency on
Intel’s first generations of Optane memory [IMS16b; Fu+21], including inserting manual cache line
flushes [IMS16a]. This, however, changed when Intel announced the extended asynchronous DRAM
refresh (eADR) "power failure protection domain" in early 2021 [Int21]. This domain guarantees
that caches, which were previously lost after a power failure, are also being persisted. Consequently,
any lock-free algorithm is also persistent in this new persistency model.

A fast and persistent page allocator is required to allocate the pages for the morsel’s page tables
and, optionally, its user data. Related work on physical page allocators for NVM is relatively rare,
as most persistent allocators are designed explicitly for general-purpose userspace applications
[Mor+13; Sch+15; BCB16]. Therefore, this work aims to develop a new persistent, highly scalable,
and lock- and log-free (lo(ck|g)-free) page allocator. Like the morsel, it also uses page tables to store
its metadata and manage its free pages. Updates on page table entries are performed using atomic
compare-exchange operations. Thus locks and complex logging algorithms, which are suboptimal

1

1 Introduction

for NVM due to its write wearing, are not needed. This NVM allocator can allocate small (4 KiB),
huge (2 MiB), and giant (1 GiB) pages. To reduce memory sharing, the CPU cores exclusively reserve
subtrees that span over 1 GiB and contain 5122 4 KiB pages or 512 2 MiB pages. All subsequent
allocations are performed in the reserved subtrees. The allocator’s architecture is subdivided into
a persistent lower part responsible for the inner subtree allocations and a volatile upper part that
manages the subtrees the lower allocator uses. The volatile upper part is rebuilt on boot from the
persistent lower allocator. Different strategies for storing the page tables of the lower allocator in
NVM were developed and compared. Also, various upper allocator strategies were evaluated using
additional page tables or linked lists to manage the subtrees. They have different performance
characteristics and different memory overheads for their metadata. The allocators also contain
mechanisms to avoid fragmentation by prioritizing partially-filled page tables for allocations. Several
optimizations have been developed to reduce NVM accesses and avoid memory sharing, including
false sharing. The latter is especially problematic because different concurrently-accessed page table
entries often are part of the same cache line, resulting in costly cache-line invalidations. In these
cases, core-local replicas were used, retaining most updates.

The benchmark results show that the allocator’s performance scales very well for high core
counts and large amounts of memory. Its reallocation performance is up to twice as good as the
Linux Kernel Allocator. The improvement is even more significant for bulk allocations, where many
pages are allocated or freed simultaneously. Additionally, the allocator variants presented in this
work are persistent, survive reboots, and recover from system crashes and power losses.

This work is divided into six chapters: After this first chapter, the next one (chapter 2) continues
with an introduction to the basic concepts of modern hardware and OS architectures that guided
the design of the allocator. After that, the morsel concept is discussed together with a top-down
overview of the lo(ck|g)-free allocator’s architecture (chapter 3). Then chapter 4 digs deeper into its
implementation and describes the different approaches and optimizations from the bottom up. These
allocator approaches are evaluated and compared with the Linux allocator in chapter 5. Finally,
chapter 6 concludes the findings and discusses future works in this area.

2

2F U N DA M E N TA L S

This chapter introduces the memory architecture and management of modern computer systems
in section 2.1. It describes the basic concepts of memory management (section 2.2) and parallel
computing (section 2.3) essential for the design of the lo(ck|g)-free allocator. Also, the current
non-volatile hardware and its capabilities are discussed, together with its integration on the operating
system level (section 2.4). Finally, the chapter closes with a review of related works in the NVM
research area in section 2.5.

2.1 The Memory Hierarchy

Current servers and workstations use many different memory types combined in the same machine.
These memory types differ in access times and size due to production costs and power consumption,
as shown in Figure 2.1. At the bottom are the hard drives that are slow but cheap and have high
capacities. Towards the top, the memory technologies become faster but more expensive and thus
smaller. The general concept behind this hierarchy is to speed up program execution by copying the
most accessed memory, from slower, high-capacity memory to faster but smaller RAM, caches, and
registers.

HDD

SSD

NVRAM

caches

registers

DRAM
byte-

addressable

volatile

persistent

Figure 2.1 – The different memory technologies existing in a heterogeneous system, ordered by
their capacities and access times.

3

2.1 The Memory Hierarchy

CPU registers are the fastest available memory, while various levels of CPU caches follow close
behind. This work focuses specifically on Intel x86 Cascade Lake and newer, as this is the first
generation that supports Intel’s non-volatile memory. This architecture has three levels of caches
[HP11]. Each core has its own L1 and L2 caches, where the L1 cache is further split into separate
instruction and data caches. The L3 cache (or Last Level Cache (LLC)) is shared between all cores.
In these caches, recently accessed memory chunks are stored for faster access. These memory
chunks or cache lines have a size of 64 Bytes on x86. For each memory access, it is first tried to
load the data from the L1 cache. On a miss, the L2 and later the L3 caches are also checked. If the
data is not in the cache, it has to be loaded from the main memory into the cache, which takes
a lot more CPU cycles. On the software layer, this is abstracted away, as the software only sees
the main memory. The caches cannot be accessed directly. It is up to the CPU to manage them.
However, the x86 architecture has instructions to manually flush and write-back cache lines to main
memory like clflush, clflushopt and clwb. Additionally, there are ways to circumvent caches
like non-temporal stores (MOVNTQ) or the SSE and AVX instructions. They are beneficial when a
large amount of data has to be written at once.

Main memory and byte-addressable non-volatile memory are located in the middle of the memory
pyramid. The access times are more than two orders of magnitude slower than registers, but their
size is much larger. They are directly connected over the memory bus with the CPU and thus have
a very high bandwidth. Additionally, they are byte-addressable, which means that the CPU can
directly access every byte of this memory.

SSDs and hard drives are connected over the Peripheral Component Interconnect Express (PCIe)
or the IO bus with the CPU and have higher access times and lower bandwidth. These devices are
accessible at the granularity of blocks (usually between 512B and 4 MiB). This means that if the
CPU wants to read a single byte, it has to load the entire block into the main memory (an exception
to this is reviewed in subsection 2.4.2).

Another differentiating property of memory is whether it can keep its data in the event of a
power loss. Volatile memory like registers, caches, and DRAM are cleared without power, while
non-volatile memory like NVRAM, flash, and hard disks can maintain their data. Traditionally, the
size and latency differences between volatile and non-volatile memory were very extensive. This
gap has been closing only recently with advancements in solid-state drives and byte-addressable
non-volatile memory. The latter has been commercially available since 2019 as Intel Optane memory,
which is described in more detail in section 2.4.

2.2 Virtual Memory Management

Most registers are directly usable from userspace, and the CPUs control the caches directly. The
main memory (DRAM) and anything below is managed by the operating system, which allocates
this memory and shares it between processes.

Additionally, the OS uses the concept of (virtual) address spaces to further abstract memory
access and hide the physical memory layout. For this, the memory is split up into pages (4 KiB on
x86). An address space is a mapping from virtual pages to physical pages, as shown in Figure 2.2.
Every userspace process has its own address space, its distinct view of the memory. Applications use
virtual addresses to access memory, which are internally translated to physical addresses that point
to the corresponding physical memory.

This memory virtualization has several benefits for the userspace applications and the OS [HP11].
First of all, it greatly simplifies the development of applications. Developers do not have the burden
of managing the physical memory, which might have a limited size, is non-consecutive, contains

4

2.2 Virtual Memory Management

address
space

physical
pages

... ...

text data/heap stack

Figure 2.2 – Virtual address space of a process.
The sections text (containing executable code), data/heap and stack are common to most userspace

applications.

areas occupied by memory-mapped devices, and is generally highly hardware-specific. On the other
hand, a virtual address space provides a simpler view of the memory, hiding all of this complexity. It
also allows deploying the same applications on systems with different memory configurations.

The OS also uses address spaces to isolate processes by their different views of memory. Thus,
the address spaces include only the memory a process may access. Additionally, every memory
region within the address space is protected by access properties, controlling how a process can use
these different memory areas. For example, if the memory is writable or accessible from userspace.
Memory isolation is a means of providing security and safety. It prevents processes from accessing
the private memory of other processes and extracting sensitive data or corrupting memory and crash
systems either by accident or malicious intent.

Besides these immediate benefits, memory virtualization allows the OS to save resources. The
OS generally fills in the address spaces on-demand when a process accesses new memory. This saves
memory, as processes seldom access all of their memory at the same time.

Memory virtualization also makes it possible to speed up userspace access to slower memory
transparently by using DRAM caches. Like L1, L2, and L3 caches, the main memory is also split into
chunks (4 KiB on x86), called pages. These pages can be used as caches for faster access to files on
disks, similar to the CPU caches. It also allows the OS to specify more virtual memory than it has
physical memory and to swap in pages from secondary storage (disks) if necessary.

2.2.1 Page Tables

The translation of virtual addresses to their physical counterparts is performed using a special
mapping data structure. These maps have virtual addresses as keys and the corresponding physical
addresses as their values, together with protection flags (like read-only or writable) and other
metadata. On a 64 bit system, a complete table to translate a 64-bit address to a physical 64-bit
address would need 264 entries with a size of 64 bit (or 8 Byte). The resulting size would be about
150 Terrabytes for every address space mapping. To reduce this size, multiple hierarchical levels of
smaller page tables are used. These page tables form a tree, where the page tables are the nodes,
and the physical pages are the leaves. Each Page Table Entry (PTE) contains a pointer to the child
page table and finally to the physical memory page. The virtual address translation is performed in
multiple steps by walking the page tree down to the physical page. This tree is sparsely populated
and thus takes up only a fraction of this memory.

A page table has 512 8 Byte entries and thus is 4 KiB large and fits into a single memory page.
Each level corresponds to 9 bits in the virtual address (29 = 512), which are used as an index into
the page table as shown in Figure 2.3. The final 12 bits of the virtual address specify the offset

5

2.2 Virtual Memory Management

within the physical memory page. Linux, for example, currently has four levels of page table that
allow it to address 5124 pages (256 TiB) in each address space. For the rest of this work, the page
tables are numbered from bottom to top. The leaf pages at the bottom of the page table tree belong
to level 0. Above that is the first level of page tables, that references 512 pages, and above that is
the second level, referencing 512 1st-level page tables, and so on.

64 bit address: [.. | 9 | 9 | 9 | 12]

P|W|...
P|W|...

P|W|...

3rd-level
page table

2nd-level
page table

1st-level
page table

(level 0)
page

index

index

index

offset

data

Figure 2.3 – Example of a 3-stage page table mapping.

This page table walk is relatively expensive, especially if it must be done for every memory
access. Therefore, CPUs have Memory Management Units (MMUs) that perform the translations
from virtual to physical addresses. They include special hardware for walking these page tables and
caches to store recently accessed addresses, like the Translation Lookaside Buffer (TLB) on x86 CPUs.
To also access other Direct Memory Access (DMA) devices like PCIe graphics cards, modern x86
CPUs have additional Input-Output Memory Management Units (IOMMUs). They function similar
to MMUs and translate virtual addresses from the device’s own address spaces to physical (main
memory) addresses.

These page tables are usually filed on demand. If a process accesses memory that is not present
in the page table tree, the page fault handler of the OS is executed, which allocates new memory and
inserts it into the page table tree. Even the pages for the page table are lazily allocated when they
are needed. The following section discusses the memory allocators responsible for these allocations.

2.2.2 Memory Allocators

In general, allocators can be separated into two categories, fulfilling different requirements. To the
first category belong the general-purpose allocators typically used by userspace applications. Usually,
they work entirely on virtual memory and provide functions to allocate and free variable-sized
memory chunks. These heap allocators are implemented by the Standard Libraries, like the malloc
implementation from glibc (GNU C Library) [Gli]. Similar to this is the general-purpose allocator
of the Linux Kernel, which also supports variable-sized chunks. It can be accessed by kmalloc and
kfree [Lin]. In general, these allocators request large chunks of virtual memory from the OS to
split these into smaller chunks on demand when an application allocates memory.

This work focuses on the second category: special-purpose allocators, optimized for specific
workloads and allocation sizes. An example of this is the physical page allocator of an OS that
manages the physical memory pages. The page allocator of Linux is mainly used for allocating new
physical pages on demand for the virtual address spaces. Every time a process accesses new memory
that is not already included in the corresponding page table tree, the page fault handler of the OS
is executed. It checks the access validity and allocates new physical pages to insert them into the
corresponding page table tree. These allocations frequently happen during the startup of a process

6

2.2 Virtual Memory Management

when it accesses most of its memory for the first time. This is implicit and hidden behind simple
memory accesses, almost entirely invisible to the process, except for the much longer runtime of
these memory accesses that trigger page faults. Therefore these page allocators must be very fast,
interrupting the process as little as possible.

2.2.3 The Linux Buddy Allocator

The design of Linux’s physical page allocator is based on a buddy allocator. It can allocate blocks the
size of 2n · P where P is the page size and n ∈ {0, ..., 11} [Gor04]. These block sizes start with the
page size as order 0 and duplicate on every higher order. The buddy allocator contains a free list for
each of these different-sized memory blocks. For example, the order one free list manages blocks
the size of 21 = 2 times the page size, and order nine manages blocks of 29 = 512 pages. The free
lists are implemented as linked lists where only the pointer to the first free memory block has to be
stored. The memory blocks themselves then contain pointers to the next free memory blocks. The
allocator is initialized with the free memory stored in the highest order free lists. When a chunk of a
specific order is allocated, a block is taken from the free list with the same order. If this list is empty,
a block is taken from a higher-order free list and split into two halves until it has the requested size.
The other halves are stored in the corresponding free lists as shown in Figure 2.4. When a block is
freed, it is checked if its corresponding half (its buddy) is also free. Then both halves are merged
and inserted into the higher-order free list. Otherwise, if the buddy is not free, the block is inserted
into the current-order free list.

4

0
1
2
3

7

5
6

...

2 · 0² pages

2 · 1² pages

2 · 2² pages (=2³)

returnfree lists

Figure 2.4 – Allocation procedure of the Linux buddy allocator.

Linux also manages memory zones, supporting Non-Uniform Memory Access (NUMA) archi-
tectures with different memory devices. It has a buddy allocator per memory zone. To optimize
reallocations, the Linux allocator has additional free lists per CPU core that cache recently freed
blocks for the next allocations. It further uses the least recently used (LRU) caches to speed up
the merging of buddies. In general, it has been undergoing various optimization attempts in the
past years: from memory layout optimizations and heuristics to find the best memory zones for
allocations to various fast paths and shortcuts in the allocation and free routines. It also became
increasingly complex with page_alloc.c, the heart of the allocator, currently having over 8 K lines
of code alone.

The lo(ck|g)-free allocator has conceptual similarities with the buddy allocator. The different
requirements and goals are further described in section 3.2.

7

2.3 Parallel Processor Architectures

2.3 Parallel Processor Architectures

The core count on modern systems increases rapidly. Operating systems and userspace applications
must be optimized accordingly to use the full potential of these parallel architectures. This includes
several new challenges, from synchronization and inter-process communication to the way memory
is accessed and shared between cores [Gra+03]. Parallel algorithms have to be able to exchange data
and wait for parallel computations on different cores. The following sections focus on concurrent
memory access, starting with the CPUs’ low-level ordering of memory accesses, followed by OS-level
memory sharing and synchronization primitives.

2.3.1 Memory Ordering and Atomic Operations

Most modern processors support memory sharing between processing units (cores and sockets),
allowing them to access data from each other directly. Concurrent write and read accesses to the same
date might lead to unexpected race conditions. This has multiple reasons: An optimizing compiler
may reorder instructions to optimize memory access, which can impact or break the behavior of
concurrent accesses. This can be prevented with compiler-based memory fences that forbid the
reordering of instructions. Also, superscalar CPUs with a high degree of instruction parallelism using
pipelining and multiple execution units may reorder memory accesses during runtime. They are
limited to reordering these operations so that the result remains the same. This, however, does not
factor in concurrent accesses by other CPU cores. To solve this, x86 and most other architectures
have well-defined memory ordering constraints or specific instructions preventing reordering.

On a single CPU core, x86 has a total memory order with the following constraints [Int]:

• Reads are not reordered with other reads.
• Writes are not reordered with older reads.
• Loads and stores to the same location are not reordered.
• Writes to memory are not reordered with other writes (except for non-temporal moves and

string operations).
• Reads may be reordered with older writes to different locations but not with older writes to

the same location.
• Reads or writes cannot be reordered with I/O, locked, and serializing instructions.

The reordering can be prevented explicitly with memory fences that wait for previous reads (LFENCE)
or writes (SFENCE) or both (MFENCE). Also, no read or write is reordered with CLFLUSH that flushes
a cache line to the main memory.

For multicore systems, x86 has the concept of global visibility. All processors observe writes
from other processors in the same order. Thus all processors have the same (global) visibility to
data changes. The order of writes a single processor performs remains the same for global visibility.
Writes from multiple processors, however, do not have any ordering guarantees and may interleave
in any possible way. The architecture also provides locked load and store instructions with a total
order.

However, memory ordering is heavily platform-dependent. Most programming languages,
therefore, have abstractions to control the memory ordering and the access to shared variables
[Stda]. These atomic functions guarantee that load and store operations are complete and that
there are no partial updates. Additionally, they allow specifying memory ordering constraints for
these operations. The most common ordering is the release-acquire. This happens-before relation
strictly specifies the order in which operations tagged as release or acquire are executed. The release
operations prevent other loads and stores that happened before from being reordered after these

8

2.3 Parallel Processor Architectures

operations. The acquire operations, on the contrary, prevent other loads and stores that happen
afterward from being reordered before these operations. Both are generally combined to synchronize
a release store operation of one thread with an acquire read on another thread. After the acquire
operation is completed, as a side-effect, all other stores of the first thread that happened before the
release store are guaranteed to be completed. The global visibility of x86 fulfills the release-acquire
relation, thus all regular stores are release and all reads are acquire. On top of this is the sequentially-
consistent ordering, the strongest memory ordering relation. It not only fulfills release-acquire but
also guarantees a single total order in which all threads, including the executing one, observe all
modifications. On x86, this is realized by using the previously described memory fences and special
lock instructions that synchronize with other cores.

Besides the atomic loads and stores, there are several other functions that combine load and
store into single atomic operations. Examples of these are fetch-and-add (FAA), fetch-and-xor, or
compare-exchange or often called Compare-And-Swap (CAS). CAS checks if the atomic variable
contains a specific value and, in this case, stores a new value in it. The lo(ck|g)-free allocator uses
this function heavily to update its persistent metadata atomically.

2.3.2 Shared Memory

On the software level, there are two primary forms of data exchange between parallel tasks –
exchanging messages or accessing a shared data space. Message passing is less commonly used on the
OS level due to its higher abstraction and distance from the hardware. Instead, this communication
strategy is generally used for distributed applications on multiple servers or clusters. Therefore, this
work primarily focuses on memory sharing. Operating systems implement this by allowing address
spaces of different processes to point to the same (shared) physical pages. Shared memory comes
with synchronization challenges, both for the OS and the userspace applications.

If the shared data is immutable, no synchronization is needed, but if one or more threads modify
the data, this concurrent access must be synchronized. Reading or modifying data that is changed
simultaneously might lead to several race conditions where the data has only been partially updated.
Even if the concurrent access to data should be kept to a minimum, it is necessary to share input data
for computations and collect and merge results. There are synchronization and locking primitives
that enable this coordination. The most commonly used ones are semaphores, mutexes, and barriers.
A semaphore consists of a counter variable representing the number of available resources the
semaphore protects. Each thread that wants access decrements the counter. If it is already zero, it
has to wait until another task releases the semaphore, notifying a waiting thread or else incrementing
the counter. A mutex, or lock, protects critical sections and data completely from concurrent access.
Only one thread can access a protected section simultaneously, as all other threads that are trying to
take the mutex have to wait until it is released. This is similar to a semaphore initialized with a
counter of one. And finally, barriers enable multiple threads to synchronize and coordinate their
execution. They are initialized with a counter of how many threads they can handle. When a thread
reaches a barrier, it is suspended until the specified number of threads also reaches this barrier. Then
all threads are awakened and continue execution. All of these locking primitives are commonly
implemented on the OS level with support from the scheduler, which suspends waiting threads so
that they do not occupy resources (passive waiting). On top of these OS specific implementations
there are a number of libraries that implement these (or similar) primitives, like pthread [Pth] for C,
the C++ Standard Template Library [Stdb] or Rusts Standard Library [Rus].

Parallel architectures not only have multiple cores per CPU, but large servers also use multiple
CPUs on multiple sockets, further increasing the number of cores. These different CPUs generally
have their own memory controller connecting to different memory DIMMS. Despite this, CPUs are

9

2.3 Parallel Processor Architectures

still capable of accessing the memory of other CPUs but with considerably higher latency. Because
of this NUMA, the CPUs (and their cores) are separated into different NUMA nodes together with
their corresponding memory and IO devices. The OS manages these NUMA nodes. It optimizes
memory allocation to prioritize local NUMA nodes rather than remote NUMA nodes, where memory
accesses are slower. This is generally done by the memory allocator returning NUMA near pages for
the processes.

2.3.3 Non-blocking algorithms

The traditional approach for designing parallel algorithms on shared memory uses locking mech-
anisms like semaphores or mutexes to synchronize execution and data. These locks can limit the
scalability of an algorithm if there is heavy contention on them. This can happen if the locks are
too coarse-grained, protecting too much data used for different operations. However, if many
fine-grained locks are used, the algorithm might become very complex. It could be hard to avoid
deadlocks or priority inversion. Non-blocking algorithms can provide viable alternatives for their
blocking counterparts in highly concurrent or real-time situations. Non-blocking algorithms guaran-
tee that a thread cannot cause a failure or suspension of another thread. These algorithms can be
further divided into three types, depending on their progress guarantees [Fra04]:

Wait-free algorithms guarantee that each thread completes an operation in a bound number of
steps. This guarantees system-wide throughput, combined with starvation freedom. In theory, every
algorithm can be implemented wait-free (using universal construction [Her88]), but often with
worse performance than the blocking version. Since then, several improvements have been made,
including strategies to integrate lock-free fast paths to improve performance [KP12].

Lock-free algorithms guarantee system-wide progress. Individual threads are allowed to starve
(never completing the operation), but the remaining threads still must be able to make progress.
Both lock-free and wait-free algorithms often implement helping mechanisms, in which a thread
assists another thread in executing its operation before continuing with its own.

Obstruction-free algorithms guarantee that a single thread executed in isolation (without interfer-
ence from other threads) completes the operation in a bounded number of steps [HLM03]. It is not
guaranteed that threads executed in parallel might ever complete. This can happen if they end up
in a live lock blocking each other from progressing. Furthermore, obstruction-freedom only requires
that any partially completed operation can be aborted (rolling back any changes). No concurrent
assistance (helping) is needed, simplifying the implementation.

Every wait-free algorithm is also lock-free, which itself also implies obstruction-freedom. These
non-blocking algorithms are implemented using atomic hardware instructions like compare-and-
swap (CAS) or fetch-and-add (FAA), discussed in subsection 2.3.1. The correctness of non-blocking
data structures is derived from their sequential semantics. Commonly this is done by proving
linearizability: The concurrent execution of a number of linearizable operations must correspond to
a sequence of these operations executed sequentially with the exact same outcome. In other words,
for any set of concurrent operations, a sequential execution order of these operations has to exist
that is semantically equivalent.

2.3.4 (False-) Sharing

A significant performance factor for shared memory is the behavior of caches. When data inside a
cache is modified, the cache line is invalidated for the other cores. These cache lines then have to
be reloaded on the next access. As a side-effect, this might even occur if CPU cores modify different
but closely stored data. As long as this data is located on the same-cache line, it is also invalidated

10

2.3 Parallel Processor Architectures

and reloaded on each access. This effect is called false-sharing. Both sharing and false-sharing are
common causes of performance problems of parallel applications and thus should be avoided if
possible. As described in subsection 4.4.2, this also had a significant effect on the performance of
the lo(ck|g)-free allocator.

2.4 Non-Volatile Memory

Research around non-volatile byte-addressable memory (NVM) is not new. Various concepts for
potential applications and integrations into the operating system were proposed over the past
decades. Thirty years ago Copeland et al. [Cop+89] made the argument that battery-backed-up
RAM was reliable and cost-effective, including the assumption that cost-effectiveness would increase
over the following years due to falling RAM prices. Later Chen et al. [Che+96] developed RIO, a
reliable file system cache in NVM to reduce IO operations and increase performance. The focus
of these early uses of integrated NVM laid heavily on protection mechanisms against stray writes
that corrupt the non-volatile battery-backed-up RAM or separate it into external modules. These
problems, however, have been partially mitigated by better memory protection techniques in current
OSs.

In the past 10 years a new wave of NVM research has started, driven by advancements in
NVM hardware like Phase-Change Memory (PCM) [Rao+08]: From the development of durable
multiversioned data structures [Ven+11] or lock-free data structures [Dav+18; Fri+18] over file
systems [XS16; Kad+21] and userspace allocators [VTS11; Cob+11; Mor+13; Sch+15; BCB16;
HJW15] to whole systems based on NVM like Twizzler [Bit+17]. Most of this research is theoretical
or only simulated on conventional RAM due to the lack of hardware. This recently changed with the
release of the Optane Memory in 2019.

Intel Optane is the first commercially available byte-addressable non-volatile memory hardware
for use in large server systems with high memory requirements. The capacity of these NVDIMMs
greatly surpasses conventional DRAM DIMMs, starting at 128 GiB and going up to 512 GiB per
DIMM. Its performance is similar to DRAM, with almost equal write and about 2-3 times slower read
latency [Yan+20]. However, this best-case performance drops heavily for multicore accesses. Like
SSDs, Optane DIMMs perform wear-leveling and bad-block management using an internal address
indirection table. This wear-leveling technique migrates blocks to different areas if used heavily and
tries to spread write accesses between blocks evenly. In the case of a migration, the access latency is
two orders of magnitude higher because the block must be copied over.

2.4.1 (Extended) Asynchronous DRAM Refresh

Intel defines power failure protection domains for their Optane DIMMs. These domains include
anything that is guaranteed to be persisted in the event of a power loss. For the first generation, only
the Write Pending Queues (WPQs) were persisted as shown in Figure 2.5. Intel calls this mechanism
Asynchronous DRAM Refresh (ADR). Any data that is still in the registers or caches would be lost in
the case of a system crash. This ADR based NVM can be considered as a persistent data storage with
a partially unreliable connection. There are no guarantees when stores are persisted and in which
order that happens. Explicit flush operations (CLFLUSH, CLFLUSHOPT) and memory fences must be
used to persist stores in the desired order. The performance suffers from these manual cache-flushes,
especially for CPUs that do not support the optimized CLWB instruction that retains cache lines on
write-back [Izr+19]. In this case, a CPU not only has to wait for the write-back to complete, but it
also has to reload the evicted cache line on the next access.

11

2.4 Non-Volatile Memory

Figure 2.5 – Intel Optane "power fail protected domain" [Int21]

To optimize performance on ADR, Yang et al. [Yan+20] proposed a set of best practices: (1) Ran-
dom access, smaller than 256 bytes, should be avoided as the access granularity of the NVDIMMs
is 256 bytes. Thus, also smaller writes trigger 256-byte updates. Sequential access is less of a
problem due to a write combining buffer (XPBuffer) that collects consecutive writes. (2) For large
transfers, non-temporal stores should be used as their bandwidth is higher than normal stores and
flushes. Manually controlling cache evictions could also increase performance compared to the
non-determinism of automatic evictions. (3) Further, the number of concurrent threads that access
the same DIMM should be reduced due to contention on the XPBuffer and integrated memory con-
trollers (iMCs). The write bandwidth to a DIMM decreases with more than four threads. (4) Finally,
remote NUMA accesses, especially read-modify-write sequences, should be avoided because they
are exceptionally costly.

However, in part, these specific performance characteristics for this hardware could not apply
to different platforms and probably also future revisions of Optane memory. In addition to the
performance implications of ADR, this persistency strategy is considerably error-prone. Especially
for multicore applications that rely on shared persistent memory, the gap between global visibility
and persistency introduces a new class of race conditions. A considerable amount of research has
been made to either detect these correctness bugs [Fu+21] or transform lock-free algorithms to
such a full system crash model [IMS16a].

In 2021 Intel introduced Extended ADR (eADR) as part of its Optane 200 series. This power
failure protection domain includes caches and registers. Therefore, no manual flushes are needed to
guarantee persistency. Additionally, eADR sets persistency equal to global visibility. This means that
if a write operation becomes visible to other CPUs, it is at the same time guaranteed to be persistent.
eADR makes persistent memory programming much simpler as algorithms now only have to be
lock-free to be persistent at the same time. The performance is expected to be up to two times faster
than ADR with CLWB [Int21].

2.4.2 Direct Access (DAX)

As the concept of NVM is comparatively new, most OSs were never designed for it. Linux, for
example, distinguishes heavily between memory and files. Thus it allows configuring NVM as either
standard memory similar to DRAM or as disks with a file system to manage its access. This work
focuses on the latter. Using fsdax or ext4, applications can mount the Optane Memory and create

12

2.4 Non-Volatile Memory

persistent Direct Access (DAX) files. These files can be mapped into memory with a special flag that
enables direct access to the persistent memory. Linux had support for DAX since 4.15.

After mapping the persistent memory, the application has to ensure persistency itself by using
flushes or non-temporal stores depending on the power failure protection domain as described in
subsection 2.4.1. To simplify this, Intel provides the Persistent Memory Development Kit [Pmd] for
managing and safely accessing the persistent memory from the userspace. On Linux, this library
builds upon the DAX capabilities the OS provides.

2.5 Related Work

Many of the earlier approaches in designing memory allocators for NVM were either closed source
and not benchmarked, like Mnesmosyne [VTS11] or NVHeaps [Cob+11] or rely on special hardware
or CPU instructions. Examples of these are the epoch barriers that NVHeaps [Cob+11] proposes or
new cache line counters from Moraru et al. [Mor+13], that were never realized.

General Purpose Allocators

There are some newer promising persistent allocators designed for userspace applications: Schwalb
et al. developed nvm_malloc [Sch+15], that is based on jemalloc [Jem; Eva06]. It follows a two-step
approach of first reserving memory and then activating it to prevent memory leaks if the system
crashes during an allocation. nvm_malloc uses mmap to map a single dynamically sized pool and
internally addresses its data as offsets from the beginning of the pool to allow Address Space Layout
Randomization (ASLR). It relies on logs to recover interrupted allocations and frees for atomic
updates.

Bhandari, Chakrabarti, and Boehm presented Makalu [BCB16], a fail-safe allocator with recovery
time garbage collection that has many similarities to nvm_malloc. It, however, works with a single
allocation instruction that writes the memory address of the allocated memory block directly into
persistent memory. Furthermore, it reduces the amount of metadata stored in NVM heavily compared
to nvm_malloc using recovery time garbage collection to relax the persistency constraints of the
metadata. Internally it uses normal volatile memory pointers and relies on a fixed memory mapping,
which can be a security issue (ASLR).

In 2017 Oukid et al. developed PAllocator [Ouk+17] that was specifically designed for database
systems that have a different allocation workload than other userspace applications [DLN19], where
the focus is more shifted towards allocations larger than the page size. The allocator works on top
of a DAX-capable file system and creates and adds new DAX files on-demand to its pool. Internally
the allocator consists of three separate allocators for handling different sized allocation, allowing it
to outscale nvm_malloc, Makalu and libpmemobj [Pmd] for large allocations.

Most of these allocators were developed before capable hardware was released in 2019 and thus
were only simulated on DRAM with varying amounts of accuracy. Furthermore, these allocators are
general-purpose userspace allocators specifically designed for allocating and managing variable-sized
buffers. In this work, however, we developed an OS-level page allocator that focuses on managing
physical pages of hardware-defined sizes and not variable-sized chunks (subsection 2.2.2).

Operating Systems

In the operation system space Bittman et al. presented Twizzler [Bit+17; Bit+21], an OS designed
around NVM, that also provides specific NVM allocators. Even if Twizzler was initially released

13

2.5 Related Work

before Intel Optane was available, support for it was added recently. The memory object concept
is heavily influenced by NVHeaps. Similar to our morsel concept, these objects can be volatile or
persistent and have unique IDs and sizes from 4 KiB up to 1 GiB. Also, they are mapped into the
virtual address spaces of threads using the MMU. Each thread has a view describing its virtual
address space layout in the form of a table of object-IDs and permissions. Translations between
view tables and virtual addresses are trivial because the objects, which are at most 1 GiB large, are
mapped directly to corresponding 3rd-level page tables entries (that manage 1 GiB subtrees). The
persistent pointers Twizzler proposes are built upon two indirections to allow large 128-bit object
IDs by keeping pointer sizes at 64-bit. Each object contains a foreign object table (FOT) with all
object IDs (and permissions) referenced by pointers within that object. The persistent pointers
consist of an index to the FOT and the offset within the foreign object. The FOT index of 0 refers
to the own object, simplifying the translation. In general, the (persistent) memory object system
of Twizzler scales well but comes with performance costs. It also cannot be integrated into current
OSs as Twizzler focuses on providing first-class support for the new memory technologies. Legacy
applications are only supported via extra userspace libraries and wrappers and have to be adapted
to use persistent pointers. In contrast to this, we aim to integrate these new memory management
technologies in modern OSs like Linux. Also, Twizzler’s page allocator is at this moment relatively
barebones and uses free lists protected by spin-locks. The lo(ck|g)-free allocator avoids these locks
and scales better than similar locked-list allocators as shown in section 5.2.

Hardware-Tested

Recent research on Intel Optane hardware spans from NVM aware file systems like WineFS [Kad+21]
to page table management strategies in NVM [Kum+21] or dynamically moving pages between
DRAM and NVRAM to optimize performance [Ray+21]. WineFS is a hugepage-aware file system
designed for NVM. It focuses heavily on limiting the effect of aging, the increase of fragmentation
over time, leading to lower performance. For this, Kadekodi et al. developed a fragmentation-
avoiding, alignment-aware allocator. It also prioritizes data from CPU-local pools. Additionally,
the number of NUMA accesses was minimized by migrating threads to the correct NUMA nodes
before writing. The lo(ck|g)-free allocator is also alignment-aware and supports the allocation
of huge (2 MiB) and even giant (1 GiB) pages, and reduces fragmentation by prioritizing partially
filled chunks for subsequent allocations. HeMem [Ray+21] proposes a strategy for switching pages
between NVRAM and DRAM to optimize performance. It samples hardware events to classify hot
and cold data. Also, small allocations are moved to DRAM by intercepting the allocation requests. It
is implemented as a userspace library, similar to the lo(ck|g)-free allocator. However, this is subject
to change in the future as we aim to integrate the allocator into the Linux Kernel.

2.6 Summary

The allocation, virtualization, and sharing of different types of memory are integral parts of operating
systems. Concurrent access to shared memory can be synchronized on multiple levels, from atomic
hardware instructions and memory ordering to OS-level synchronization primitives. The new non-
volatile memory fills a significant gap in the conventional memory hierarchy, combining properties
of byte-addressable memory with the persistency of hard drives. An increasing amount of research
is being done to fully utilize this new hardware and find its conceptual and technical limitations. It
reaches from userspace allocators and file systems to whole operating systems designed for NVM.
Related work, specific to physical page allocators for NVM, however, is relatively rare.

14

3A R C H I T E C T U R E

This chapter focuses on the theoretical approach and higher-level concepts of morsels, the new
minimal memory abstraction (section 3.1). They need a new allocator that persistently manages their
memory. The requirements and architecture of this persistent and lock and log-free (lo(ck|g)-free)
memory allocator are described in sections 3.2 and 3.3. The chapter further discusses the allocator’s
algorithm to find new free pages (section 3.5) and ways to store its metadata (section 3.6).

3.1 Morsels

Modern systems contain many different memory types with different properties. The OS’s primary
responsibility is the management of these memory resources. Paging has become the standard for
access, sharing, and virtualization of main memory (section 2.2). MMUs are designed around this
principle and provide (hardware) support for virtual memory based on page table mappings. On
top of this, the memory subsystems of modern OSs use various levels of abstractions to support
different memory architectures. In Linux, these abstractions have become increasingly complex. The
invention of NUMA and new memory devices further aggravated this. As memory sizes increase and
access times decrease, these abstractions, which were ultimately designed for former architectures,
are slowly becoming a bottleneck [Bai+11; Pel+15].

Meta-Data
• User-Data ↔ Surface mapping
• MMU-specific page tables
• Allocated lazily

Surface
• 4K·512N size and alignment
• Thinly and lazily populated

Morsel
• Self-contained
• Optionally persistent
• Shareable between processes

User-Data
• Exposed to user
• Page granularity

Morsel 0

Figure 3.1 – The morsel as minimal self-contained address space abstraction.

The morsel concept (shown in Figure 3.1) aims to solve this performance bottleneck by introducing
a very hardware-near memory abstraction. A morsel consists of a small page table tree that can be
integrated into an existing address space by adding it as a subtree to the page table tree. Morsels can
have different sizes depending on the depth of their page table trees. For example, a morsel of depth

15

3.1 Morsels

1 contains 512 pages or 2 MiB, and depth 2 contains 5122 pages or 1 GiB (on x86 with a page size of
4 KiB). Morsels have to be compatible with MMUs and IOMMUs to be mounted into address spaces
of processes or devices. For this, they have to be lock-free because non-OS-controlled devices cannot
participate in complex communication protocols that include locking mechanisms. The IOMMU
itself is the only (general) interface to communicate with devices. It does not require specific drivers
or capabilities some devices might not have. The lock-free nature of morsels guarantees that changes
in the underlying page table trees are globally visible in a consistent manner. In addition to that,
morsels are self-contained, allowing them to be stored persistently in eADR capable persistent
memory. Even the user data of a morsel can be allocated from NVM, making it also persistent,
similar to a DAX device.

3.2 The Lo(ck|g)-Free Page Allocator

Persistent morsels require a persistent memory allocator that can both allocate pages from persistent
memory and is itself persistent and able to recover from a power loss. This section discusses these
requirements further.

3.2.1 General Requirements

A persistent page allocator inherits most requirements from its volatile counterparts, like the Linux
Kernel Allocator (subsection 2.2.2). It also has to manage pages of the given hardware size (e.g.,
4 KiB) and preferably large pages (2 MiB and 1 GiB) with similar performance characteristics. As
modern systems come with ever-increasing core counts, scalability on these multi-threaded systems
is one of the primary design goals of the lo(ck|g)-free morsel allocator. Also, reducing fragmentation
is important for an allocator and even more critical if it is persistent and outlives reboots. Because
of its long lifespan, the available memory has to be used as efficiently as possible.

One requirement that is ignored in this work is the management of memory zones for different
memory devices and NUMA nodes. Our allocator is initialized with a single contiguous memory
range to be managed. This, however, could be supported by instantiating the allocator for each
NUMA device. An additional small abstraction layer would be required that chooses the best allocator
instance of the nearest NUMA node for each allocation (similar to the Linux kernel memory zones).
However, managing different zones is outside the scope of this work.

3.2.2 Persistency Related Requirements

There are also a set of new requirements specific to persistency: Mainly, the allocator’s state has to be
recoverable at any point in time without losing any pages or at least only a limited number of them.
Pages could be lost if a crash happens during an allocation or shortly after it, before the allocating
process can persistently store the allocated page. nvm_malloc [Sch+15] solved this issue with a two
step-approach of reserving a page and committing (activating) the allocation after the page has been
inserted into a persistent data structure. However, the downside of this approach is the additional
complexity that comes with two functions instead of one, leading to a more error-prone interface.

Instead, the lo(ck|g)-free morsel allocator only fulfills the laxer requirement of losing only the
pages currently being allocated or freed when a crash happens. This provides an upper bound to
the number of pages potentially lost during a crash, equal to the number of cores of the system.
Assuming that the probability of a crash is reasonably low and the probability of crashing during
allocations is even lower, the amount of lost memory is expected to be reasonably low in practice.

16

3.2 The Lo(ck|g)-Free Page Allocator

Additionally, the morsels themselves are persistent and store all their allocated pages. Thus, they
could be used to determine which pages have been leaked when the allocator recovers after a
crash. These pages are not present in any of the morsels and can be freed and reused later. Other
implications for the allocator coming from the persistency of morsels are discussed in section 5.6.

The second goal, specific to the persistency properties of NVM, is the avoidance of locks and
logs. The first, locks, are obstructive to multicore scaling and make persistency and crash-recovery
inherently more complex. Logs, on the other hand, are problematic for the current Optane memory
because of its limited number of write cycles. Logging results in a higher number of writes, decreasing
the lifespan of the NVDIMMs. The current hardware also uses wear-leveling techniques to spread
write accesses evenly between blocks. If a log is frequently written to a specific block, the wear-
leveling algorithm swaps it more often with other blocks. This is costly because its data must be
copied over.

3.3 Page Table-Based Architecture

The core approach of the lo(ck|g)-free morsel allocator relies on page tables to persistently store its
metadata. The idea is to build an identity mapping over the physical pages the allocator manages
and store the information about which pages are free within their corresponding page table entries.
Updates to the page table entries are performed using atomic compare-exchange operations. There-
fore no locks or logs are necessary to synchronize and persist updates. This simplifies the recovery
step as no locks have to be recovered and checked. Especially for locks, it is challenging to recover
their protected data because changes to it might be only partially written to NVRAM.

flags|c|-

flags|-|p

-----|-|-

512²

512

level 3 L2 L1 pages

...

...

...

...
(1G)

512
(2M)

(4K)

Figure 3.2 – The page table mapping that represents the allocator state.
The P flag marks allocated pages and c is a free page counter. Depending on the level of the page
table where an entry is allocated the corresponding size can reach from a single page (4 KiB) to

2 MiB or 1 GiB large blocks.

Furthermore, this table-based approach makes it easy to support huge pages, with sizes of 512
or 5122 times the page size (2 MiB or 1 GiB). These huge/giant pages are effectively the blocks that
the 1st-/2nd-level page tables are addressing, as shown in Figure 3.2. Instead of allocating a leaf
page (referenced by a 1st-level page table entry), the whole subtree can be allocated for a huge page.

17

3.3 Page Table-Based Architecture

On the conceptual side, this allocator thus can be understood as a buddy allocator (subsection 2.2.2)
with 512 buddies instead of two.

The lo(ck|g)-free allocator is separated into two smaller allocators. The lower allocator manages
smaller allocations of 4 KiB and 2 MiB pages, and the upper allocator manages the 1 GiB allocations
and the 1 GiB subtrees in which the lower allocator operates. These subtrees have the 2nd-level
page tables as roots and address 1 GiB of memory. A subtree thus can be allocated either as a single
1 GiB page or split into multiple 2 MiB or 4 KiB pages. This work compares multiple lower and upper
allocator strategies with each other. These strategies are further described in chapter 4.

3.4 Heterogeneous Memory Systems

Even if NVRAM has similar access times as DRAM, enabled mainly through caches, they become
increasingly bad if large amounts of data are accessed regularly, which does not fit into these caches.
Also, the ADR guarantees, which require frequent flushing to gain persistency, do come with a
heavy burden on performance. Currently, NVRAM and DRAM are generally combined in a single
heterogeneous system. Thus the allocator also combines them in order to increase performance.
Only essential data that cannot be recovered is stored persistently to reduce NVRAM accesses. This
persistent data includes the page tables of the lower allocator, together with metadata defining the
allocator’s memory range. The volatile DRAM contains the page tables of the higher levels, CPU
local data, indices, and free lists that can be rebuilt after a crash. In general, this includes all the
metadata of the upper allocators.

3.5 Search Strategies

The search for new free pages is an essential part of the allocator, as it heavily affects its allocation
performance. For a free operation, the caller provides a pointer for the page to be freed, but this
is not the case for allocations. It is up to the allocator to find the next free pages. The lo(ck|g)-
free allocator does this by iterating through the page table mapping until a free entry is found.
The higher levels of page tables include counters of free pages within their subtrees to speed up
this iteration. These counters allow the search algorithm to skip empty subtrees entirely and, in
addition to that, prioritize partially full subtrees to reduce fragmentation. The downside is that these
counters have to be updated on every allocation and free operation. Subsection 4.4.2 discusses the
memory-sharing-related problems that come with this further.

To speed up subsequent allocations, the allocator saves the address of the last allocation per CPU
core. On the next allocation, the search starts with this saved address. Consequently, for a sequence
of allocations, only the last page, which already has been allocated last time, and the page after
that, which is usually free, must be checked. For an alternating sequence of allocations and frees,
where the allocated page is freed immediately, this page can be reused for each allocation. In these
cases, only a single entry of the lowest page table has to checked and updated. In both examples,
caching the last allocated addresses reduces the number of NVRAM accesses drastically.

3.6 Page Table Pages

The question of how and where to store the allocator’s page tables is deceptive, as it is more
complicated than it seems at first. The page tables of the lower levels have to be stored in non-
volatile memory to guarantee persistency. Thus, they must be located in the NVRAM region passed

18

3.6 Page Table Pages

to the allocator. This is the same region that is used for the allocations. All accesses to these page
tables have to be lock-free to be recoverable. Also, multiple threads must be able to access these
page tables concurrently, as locks are avoided. In general, there are three strategies for managing
page tables:

...

(a) In Separate Memory Area (b) Inside Previous Page Tables (c) Inside Their Own Memory

Figure 3.3 – The different strategies for storing page table.
The pages are at the bottom, and page tables managing them are shown at the top. The white pages

are allocated, and the dashed ones are still free. The page tables have only four entries in this
visualization. In practice, they have 512 entries.

In Separate Memory Area

The first approach is to reserve a fixed memory area for the page tables, as shown in Figure 3.3a.
This fixed area is not available for allocation. The size of this area depends on the size of the memory
range the allocator manages. For an identity mapping with l levels of page tables and n entries per
page table are
∑l−1

k=0 nk pages needed. For example, for l = 3, n = 512 and 4 KiB pages, the page
tables take up more than 1 GiB to manage a 512 GiB area or 0.2% of this space. This amount of
metadata overhead is far from ideal. On the other hand, this static placement of page tables makes
it trivial to find them as their location is fixed. Thus they can be directly accessed. Also, the page
table entries do not have to store any pointers to the child page tables and can be used entirely to
store other metadata, like counters or flags.

Inside Previous Page Tables

Page tables are only needed if the corresponding subtree is not entirely free or allocated. In both
cases, this information can be stored as part of a free page counter in the parent’s page table entry.
If it is zero, the subtree is wholly allocated, and if it has the maximum value, no page is allocated.
The second strategy is to dynamically allocate and free the page tables to save space (Figure 3.3b).
Here, the allocator starts with fixed page tables for the first chunk of memory. After that, every new
page table can be allocated within the last chunk of memory before its page tables are full. If a page
table is full, its page could also be freed and reused for subsequent allocations.

However, this on-demand page table allocation has the downside that it quickly might reach
deadlocks. If all page tables are full, no page for a new page table can be allocated because a free
page table entry is required to mark this page as allocated. This could even occur if the allocator still
has memory left. Also, if the allocator’s memory is entirely allocated, free operations might become
difficult. A free operation requires multiple page tables to mark its page as free. One page table is
needed for the lowest (1st) level and one for every upper level to store the pointers to the child page

19

3.6 Page Table Pages

tables (including flags and counters). Suppose all of these page tables have been removed as they
were are not needed for fully allocated areas. It might become impossible to allocate pages for new
page tables when the allocator has no free pages left. This dynamic approach quickly becomes very
complex, as it has to decide when page tables should be allocated or freed to circumvent deadlocks.
Especially concurrent access is challenging as there are several possibilities for race conditions.

Also, if the page tables can be allocated everywhere, the entries have to store entire pointers to
their child page tables. This shrinks the usable space for counters and flags to only 12 bits, as 52
bits are needed for a pointer to an aligned page.

Inside Their Own Memory

The third strategy is to store the page tables in their own memory chunks, as shown in Figure 3.3c.
They are stored dynamically in one of their own pages. The parent’s page table entry has to store
the index to the page with the child page table. This index can be much smaller than a full pointer.
Consequently, some pages of the page tables are present from the beginning, the ones where the
page tables themselves are located. The 1st-level page tables can also be freed if their area is fully
allocated. Again, this information can be stored in the free counter of the parent’s page table entry.
Problematic are then the level two and higher page tables. They cannot be freed for the same
reasons as in the previous strategy. This would lead to deadlocks where multiple pages are needed
for the next free operation. Also, in this strategy, the support for huge and giant pages becomes
more challenging. It quickly becomes difficult to decide whether the 1st-level page tables are needed
or not, especially if small and huge pages are allocated in the same subtree.

All of these strategies have downsides. This work compares the first approach of fixed page
tables with a hybrid approach of dynamic page tables. The latter reduces the memory overhead by
combining the first and last strategies. The idea is to store the 1st-level page tables as a page in
their own area. These page table pages are allocated as the last page if the rest of the pages are
already allocated. The first freed page in a full area then becomes the new 1st-level page table. This
allocation of the page table pages dramatically reduces the memory overhead of the allocator. In
section 4.2 this hybrid approach and the strategies for updating page tables are described in more
detail.

3.7 Summary

This chapter discussed the concept of morsels as minimal address-space abstractions, providing
new ways of sharing memory with (IO)MMU devices. The lo(ck|g)-free allocator is developed to
manage the memory of these morsels. Its primary goals are multicore scalability and persistency.
Its architecture is based on page tables that are atomically updated, altogether avoiding locks or
logging algorithms. The lo(ck|g)-free allocator is designed for heterogeneous systems, storing as
few metadata in NVM as possible to reduce the number of costly NVM accesses. Finally, the problem
of storing the 1st- and 2nd-level page tables in NVM has been discussed. Two suitable page-table
strategies are further described and compared in the following chapters.

20

4I M P L E M E N TAT I O N

In this work, multiple allocators were developed to compare different strategies. This chapter
describes the critical parts of these lo(ck|g)-free allocator approaches in more detail. The first
section (4.1) describes the general API that the allocators provide. After that, the lower allocator,
which manages the 1st- and 2nd-level page tables, is presented together with its persistent page
table updates (section 4.2). Based on this lower allocator, multiple upper allocators were developed
that implement different strategies for managing the 1 GiB pages and subtrees (section 4.3). Finally,
several critical performance optimizations are described in section 4.4 before concluding the chapter
with a set of simple allocators that were developed as a baseline for the benchmarks in the following
chapter.

4.1 General API

pub trait Alloc: Send + Sync {
/// Initialize the allocator for this `memory` range.
fn init(&mut self, cores: usize, memory: &mut [Page], overwrite: bool)

-> Result<()>;
/// Allocate a new page.
fn get(&self, core: usize, size: Size) -> Result<u64>;
/// Free the given page, returning its size.
fn put(&self, core: usize, addr: u64) -> Result<Size>;
// ...

}

Listing 4.1 – Basic API of the lo(ck|g)-free allocator.

The API of the allocator is shown in Listing 4.1. Every of the allocator variants discussed in
this chapter implements this Alloc interface. The allocators are initialized once during system
startup with a given contiguous memory range and maximum core count. Internally any addresses
to this memory range are converted to page offsets from the beginning, thus allowing this range
to be mapped elsewhere on the next boot, enabling ASLR. Also, an internal dirty flag is set during
initialization. On a regular system shut down, the allocator clears this dirty flag. However, when a
crash occurs, this flag is still dirty on the next boot. In this case, the allocator initiates a full recovery
and checks for interrupted allocations and incorrect counters.

21

4.1 General API

The get and put functions allocate or respectively deallocate blocks of the provided size. They
also expect the id of the current core, allowing them to access core local data. We assume that the
threads are not migrated during the get and put functions, and no concurrent calls to these functions
happen for the same core. An additional get_cas helper function combines the get function with a
compare exchange operation (CAS) storing the result of the allocation directly at a given location.
The function also accepts a callback that translates the address returned by get before the CAS
operation is executed. If the CAS operation fails, the allocated page is freed, and the function returns
an error.

4.2 Lower Allocator

The page tables of levels three and upwards and other data structures are allocated in the volatile
DRAM, but the 1st- and 2nd-level page tables are stored in NVM. The lower allocator manages
these lower-level page tables, which are persistent and recoverable at any time. Its purpose is to
allocate 4 KiB and 2 MiB pages within these lower-level page tables. As described in section 3.6, the
decision of where to place these page table pages is a tradeoff between complexity, performance,
and memory overhead. This section describes the two most promising approaches for the lower
allocator.

4.2.1 Fixed Page Tables

In this approach, both the 1st- and 2nd-level page tables are stored in arrays at the end of the NVM
region, as shown in Figure 4.1. As mentioned in section 3.6, this has the advantage that the page
table entries do not have to store any pointers and can be fully used for other metadata, like flags
and counters. However, the downside of this approach is that these page table pages cannot be
used for allocations anymore. The allocator loses about 0.2% of its memory to these page tables.
However, this could be further reduced as discussed in section 5.5.

...

512 pages

1st-level
page tables

2nd-level page tables

Figure 4.1 – NVM layout with fixed page tables.

The implementation of this approach is reasonably straightforward. The 1st-level page table
entries only contain a single flag storing if the corresponding page is free or allocated (Figure 4.2).
The 2nd-level entries contain an additional free page counter and other flags described later. The free
page counter is initially set to its maximum value. It is decremented before every allocation in the
corresponding 1st-level page table and incremented after every free. Thus the counter represents the
lower limit of free pages present in the 1st-level page table at any point in time. Like a semaphore,
this counter synchronizes concurrent access to the corresponding subtree. If the counter reaches
zero, the decrement fails, and the subtree is not accessed; instead, it is continued with the next

22

4.2 Lower Allocator

one. Both updates on the 1st- and 2nd-level entries are performed with atomic CAS operations.
Therefore, the only possible race condition is that the free page counter is temporarily smaller than
the actual number of free entries in the 1st-level page table. This, however, does not affect the
functionality of the allocator and is considered a valid state. Also, after a system crash, any false
counters are corrected at reboot.

For the allocation and free of 2 MiB huge pages, only the 2nd-level page tables are accessed
and searched for an entry where its counter is at the maximum value, indicating that the chunk is
entirely available. With a single atomic CAS operation, an entry can be checked and allocated at the
same time by setting the page flag (marking this huge page as allocated).

19...060...20616263
rese-
rved idxhugepage pages

9...018...1061...196263

... i1giantpage pages

62...063

page ...

level 3

level 2

level 1

Figure 4.2 – Layout of the different page table entries.

4.2.2 Dynamic Page Tables

...

1st-level page tables

2nd-level page tables

Figure 4.3 – NVM layout with dynamic 1st-level page tables.

Due to the high memory overhead of the fixed page table approach, another strategy has been
developed that reduces the memory overhead dramatically. In this approach, the 1st-level page
tables are dynamically stored to reuse the pages they occupy for allocations if the page tables are not
needed anymore. To achieve this, the 1st-level page tables are stored in one of their own pages, as
shown in Figure 4.3. The 2nd-level page tables are still stored in a fixed area at the end of the NVM
memory. Their entries contain an index to the page of the corresponding 1st-level page table (i1
shown in Figure 4.2) in addition to a free page counter. In the beginning, the 1st-level page tables
are initialized at index zero. The first allocations update the 1st-level page table and upper counters
similar to the fixed page table approach. However, the allocation of the last page of a page table is
different. At this point, all pages are allocated, except the page of the page table itself. In this case,

23

4.2 Lower Allocator

this page table’s page is returned from the allocator, which is possible because the 1st-level page
table is not strictly needed for a fully allocated area. The information that the area is fully allocated
and devoid of free pages is encoded in the free page counter of the corresponding 2nd-level PTE.
When the first page is freed of a fully allocated area, this freed page is initialized as the new page
table. Then the index of the 2nd-level PTE is updated accordingly. Two or more concurrent frees
in a full page table might try to initialize their own pages as the new page tables. However, the
corresponding 2nd-level PTE update is only successful for one of these concurrent frees. For the
others, the CAS operation fails. These free operations are then repeated, modifying the now existing
new page table.

This reuse of page tables for allocations reduces the persistent metadata overhead drastically.
Now the fixed metadata overhead only consists of the 2nd-level page tables. This amounts to about
0.00038% of the allocator’s memory or one 4 KiB page per 1 GiB of memory (instead of 0.2% from
the previous approach).

However, this dynamic reinitialization of the 1st-level page tables adds additional complexity
and a window for new race conditions. The biggest challenge is to synchronize the allocation of
the last page (the page table itself) with other allocations affecting this page table. If not done
correctly, this could result in writes to memory already given to the user or updates that are lost
entirely. This can occur if the last page containing the page table is given to the user too early. Then
any concurrent allocation in this table operates on a page that the user now owns. To avoid these
stale writes, the allocation of the last page has to wait until all other operations on this page table
are completed. This is achieved by storing the address of the current page table that a CPU core
updates in a global array. When the last page is allocated (after decrementing the 2nd-level PTE
counter), the core iterates through this array, checking that no other core accesses this page table. If
an entry is found with the current page table address, it actively waits until this entry is changed.
This strategy is similar to the hazard pointers of Michael et al. [Mic04], which were developed to
solve the similar but more general memory reclamation problem of lock-free objects. These per-core
page table pointers are stored in volatile memory and do not have to be recovered. Also, they are
only accessed by their own cores most of the time, largely amortizing any memory-sharing effects.

Concurrent frees are still possible while a CPU core waits to allocate the last page. These frees
behave identically to the first free in a fully allocated area, meaning that their own page becomes
the new page table. Any operation on this new page table can be executed without interfering with
the running last page free operation.

This approach generally enables highly concurrent access without locks and temporary inconsis-
tent states. The latter also simplifies the recovery process. Like the first approach, only the diverging
2nd-level PTE counters have to be corrected during a recovery. Incorrect page table counters occur
only if the crash interrupted an allocation or free. Their occurrence is limited to the number of CPU
cores, as only this number of parallel operations can be interrupted by the crash.

4.3 Upper Allocators for Subtree Management

The following sections describe several concepts developed on top of the lower allocator to manage
the 2nd-level page tables and distribute them to CPU cores, reducing contention and fragmentation.
The lower allocator manages the access to the level two and lower page tables. These 2nd-level page
tables address 1 GiB of memory. For the following sections, they are referred to as 1 GiB subtrees.
For each 1 GiB subtree, a 3rd-level entry exists, containing a counter of free pages and a flag if the
underlying memory chunk was allocated as a 1 GiB page (Figure 4.2). The following two upper

24

4.3 Upper Allocators for Subtree Management

allocators implement different strategies for managing these subtrees. Both are built upon the lower
allocator, mainly selecting the subtrees where the lower allocator should allocate pages.

In both apporaches, each CPU core reserves a 1 GiB subtree for small 4 KiB page allocations and
one for large 2 MiB page allocations. The cores then primarily operate on their reserved subtrees.
These per-core subtrees reservation aims to reduce memory sharing. This is important because
congestion and memory-sharing penalties often heavily limit multicore scalability.

In addition to that, a 1 GiB subtree is limited to contain either small (4 KiB) or huge (2 MiB)
pages, never both. The support for small and huge allocations in the same subtree comes with
several downsides. The 3rd-level entry would require an additional counter for the number of free
huge pages. Because the same memory can either be allocated as multiple small or a single huge
page, this counter is necessary to keep track of huge pages that are entirely free of small pages.
It would also be more prone to fragmentation. The allocation of a huge page could lead to the
reservation of a new subtree even if the old subtree still has many free small pages.

Therefore, the allocator requires at least two 1 GiB subtrees for each CPU core to be available
for reservation (one for small and one for huge pages). Thus, the memory range must be at least
twice the core count gibibytes large. Given the enormous size of the Intel Optane DIMMs, it can be
assumed that current NVM systems generally fulfill this requirement. However, it might be necessary
for systems with smaller memory sizes or very high core counts to adjust the allocator to reserve the
same subtrees for multiple CPU cores.

4.3.1 Table Allocator

The Table allocator uses a four-level identity mapping with page tables (subsection 2.2.1), to store
its metadata. The Figure 4.4 shows the 1 GiB subtrees of the lower allocator at the bottom. They are
stored in NVRAM. Above are the 3rd-level page tables, with entries containing a free page counter
and additional flags (Figure 4.2). They are stored in DRAM, together with the 4th-level page table.
The 4th-level entries contain three counters: One for empty 1 GiB subtrees and two for partially
filled ones with either small or huge pages. The Table allocator can manage up to 256 TiB with this
four-level page table tree.

Lower Allocator
1G subtrees

level 3

level 4

level 5

...

...

19...039...2059...4063...60

... partially
huge

partially
small empty

level 4/5 entry

DRAM

NVRAM

Figure 4.4 – The idendity mapping of the Table allocator.
In this visualization, the page tables have only four entries. However, the actual allocator uses page

tables with 512 entries.

If a CPU core wants to reserve a new subtree, the allocator checks the page table entries
sequentially for a not yet reserved subtree that is partially filled (with the requested size). The
iteration starts at the previously reserved 3rd-level entry, iterates over the following entries, and
wraps around the end of the mapping. Page tables that contain no partially free subtrees are skipped.

25

4.3 Upper Allocators for Subtree Management

If no partially allocated subtree was found, an empty subtree is searched. This preference for partially
filled subtrees reduces fragmentation. For giant pages, empty subtrees are searched and allocated
entirely. This operation sets the page flag of the 3rd-level entry. However, the 3rd-level entries are
volatile and stored in DRAM. Therefore this giant allocation is persisted by also setting the giant
flag in the first entry of the corresponding 2nd-level page table (Figure 4.2). The recovery algorithm
checks for this flag after reboot.

Similar to the lower allocator, the counters of the parent page table entries are decreased before
the child page table is searched. For unreserve, the counters are incremented in reverse order. Again
these counters represent the lower bounds of subtrees guaranteed to be available in the children’s
page table.

A reserved subtree gives the core exclusive access to it for allocations, reducing the amount of
memory sharing. However, concurrent free operations from other CPU cores are still possible. In
general, this is hard to circumvent, especially if threads are migrated to other cores.

This approach supports large memory areas (up to 256 TiB). It can be expanded to 131 072 TiB
by adding a fifth level of page tables. Holes in the memory area can also be handled by marking them
as allocated from the beginning. However, there has to be enough contiguous space at the end of the
region for the 2nd-level page tables. Alternatively, they could also be stored in a completely different
memory region. The downside of this table allocator is the fairly complex and recursive searching
algorithm for the next (partially) empty subtrees. The page tables have to be traversed sequentially,
and multiple CAS operations have to be performed to update the counters. This complicates the
search algorithm and makes it more fragile and prone to race conditions.

4.3.2 Array Allocator

The goal of the ArrayLocked allocator is to simplify the reservation of new subtrees. Instead of
iterating through the whole identity mapping, this approach uses three array-based stacks to keep
track of empty and partially empty subtrees, as shown in Figure 4.5. The 3rd-level entries are all
stored in a large array instead of separate page tables. The three stacks store the indices to the
3rd-level entry array. As these stacks are shared between the CPU cores, they are protected by
mutexes (ticket locks). Again the partially empty stack is prioritized for subtree reservations. A
simple pop operation is performed, and the entry behind the returned index is reserved. If this stack
is empty, the operation falls back to the stack with the empty subtrees. For giant allocations, the
allocator directly takes a subtree from the empty stack to allocate it as a single page.

1G subtrees

DRAM

NVRAM

partially small

empty

3rd-level entries

partially huge

protected
by mutex

Figure 4.5 – Architecture of the ArrayLocked allocator.

26

4.3 Upper Allocators for Subtree Management

The implementation of this approach is much more straightforward than the table allocator. It
needs about 40% fewer lines of code, requires no recursive table walks, and is less prone to race
conditions, as operations on the stacks are protected by locks. These locks are stored in DRAM and
do not have to be recovered at reboot. However, in benchmarks with higher contentions on shared
data structures, this approach does not perform very well (section 5.2).

4.4 Optimizations

The following sections describe further optimization in addition to the caching in the search algorithm
(section 3.5). They reduce the allocator’s memory overhead and resolve false sharing to increase
throughput.

4.4.1 Lock-Free Linked Lists

In the first version of the array allocator, the empty and partially filled lists are implemented as
vectors, protected by mutexes. Besides violating the goal of developing an allocator without locks,
this approach takes up a fair amount of memory. These empty and partially empty vectors have
to have a maximal capacity of the size of the PTE array. Thus the memory usage of the allocator
increases with every gibibyte by 3 · 8 = 24 B for these arrays alone. The second version of the array
allocator (the ArrayAtomic allocator) instead uses atomic linked lists, as shown in Figure 4.6. The
3rd-level entries themselves store the next pointer in the idx fields (Figure 4.2). These next pointers
are indices to the 3rd-level entry array. The push and pop operations of these linked list-based
stacks are implemented in a lock-free manner, using atomic CAS instructions. Therefore no locks
are required to synchronize concurrent access. The memory overhead is also reduced because now
only the array of 3rd-level entries is needed.

1G subtrees

DRAM

NVRAM

partially Small

empty

3rd-level entries

partially Huge

atomic
linked lists

Figure 4.6 – Architecture of the ArrayAtomic allocator.

4.4.2 Reducing False Sharing

Unfortunately, the per-core reservation of subtrees is not enough to solve memory sharing completely.
Our first benchmarks showed that both allocator variants suffered from high false sharing costs.
These were caused by concurrently updating the 3rd-level entries, which are located directly side
by side. These 8 B large entries are stored subsequently in page tables or arrays and thus often

27

4.4 Optimizations

share the same 64 B cache lines. Concurrently changing adjacent entries leads to frequent cache-line
invalidations with heavy performance penalties (subsection 2.3.2).

A trivial countermeasure is to align the 3rd-level entries to cache-line size. This solves false
sharing completely, as shown in Figure 4.7. However, it multiplies the memory used by the entries
by eight. In the same manner, the number of cache lines increases. If their number exceeds the
cache size, they must be displaced more often. This results in more frequent cache misses and lower
performance.

1 16 32 48 64 80 96
cores

0

500

1000

1500

tim
e

in
 n

s

get

1 16 32 48 64 80 96
cores

put

ArrayAlignedD
ArrayUnalignedD

Figure 4.7 – The impact of false sharing on the ArrayAtomic allocator, depending on cache-line
alignment.

This was measured on DRAM using the bulk benchmark from subsection 5.2.2.

Another strategy is to use core-local copies of the reserved 3rd-level entries. When a subtree is
reserved, the core copies the 3rd-level entry to a local replica. All subsequent updates for allocations
and frees are performed on this local copy. At the same time, the 3rd-level entry in the global page
table/array is changed to be fully allocated. Any free operation on a subtree not reserved by the
current core still updates the global entry. This is also the case if a subtree has been reserved by
another CPU core. When a core later unreserves its subtree, it adds the free pages counter of the local
entry back to the global entry and unsets its reserved flag. This reduces false sharing for allocations
substantially. However, frees that do not modify the reserved subtrees still update the global page
tables/arrays. If adjacent entries are modified, this still causes false sharing. This strategy has been
implemented for the Table, ArrayLocked and ArrayAtomic allocators.

4.4.3 Utilizing Locality for Free Operations

The previous optimization successfully reduced false sharing for allocations. Frees, however, are a
completely different problem. For allocations, the allocator can utilize locality to optimize memory
access. Depending on its use case, this might also be the case for frees. For example, if subsequent
allocations were stored in a data structure that is late freed at once. In this case, the pages that
were previously allocated at the same time are also freed successively. These pages often share the
same subtrees because subsequent allocations are executed in the same subtree. This spatial locality
could be utilized to counteract the false-sharing problem of the free operation.

The following optimization is based on the assumption that subsequent frees are often part of the
same subtree. The idea is to also reserve subtrees on free operations if the last N frees also modified
this subtree. To avoid reserving almost full subtrees, they also must have at least a certain amount
of free pages. The check for the last N allocations is implemented using small core-local N -sized
ring buffers. On every free, the corresponding address is added to the ring buffer (overwriting the

28

4.4 Optimizations

old values). Every free operation in a non-reserved subtree checks if all addresses in the ring buffer
belong to this subtree. In this case, the subtree is reserved. Any following free in this subtree updates
the local copy of the 3rd-level entry. Consequently, updates on these entries are more often retained
in their core-local replicas. This significantly reduced the false-sharing problem of free operations for
the Table, ArrayLocked and ArrayAtomic allocators. It especially improves the bulk-free performance
(subsection 5.2.2). The best performance was achieved with N = 4 and a free-page threshold of
512 · 8.

However, because morsels are allocated lazily, the allocations might have occurred at entirely
different times and in any order. They could have no temporal connection at all. If a morsel is freed,
freeing its pages from start to end could render the free-reserve optimization mostly ineffective.
Therefore, it might be beneficial to sort the morsel’s pages first before freeing them. Combined with
the free reserve optimization, this would again reduce false sharing. However, this is only effective
if the performance gains of the reduced false sharing outweigh the additional overhead for sorting.

4.5 Baseline Allocators

Two other allocators were implemented to better assess the performance of the lo(ck|g)-free alloca-
tors. They do not fulfill any persistency and consistency guarantees. Their sole purpose is to provide
a performance baseline for the benchmarks. The first one is the ListLocal allocator, which is based on
core-local free lists. During initialization, the available pages are split evenly between the CPU cores
and inserted in their corresponding free lists. For every allocation, the core takes an element from
its free lists. This page is later put back to the core-local free list for every free. The allocator uses
singly linked lists with their next pointers stored within the free pages themselves. Thus these lists
do not require memory allocations to grow and shrink. Also, this allocator only manages a single
size of pages to keep it simple.

The ListLocked allocator uses a similar linked list. However, it is global and locked by a mutex
(ticket lock). First, each allocation and free has to take this lock before updating the list. This
protects the list against race conditions. However, it causes heavy contention on the lock. Therefore
it serves as a negative example in our benchmarks. The ListLocal allocator, which is entirely devoid
of sharing and lock contention, represents the best case.

4.6 Summary

This chapter addressed the different allocator variants developed in this work. From the bottom up,
the lower allocator was described, followed by the different upper allocators. These included the
TableAllocator, and the ArrayLocked, ArrayAtomic, and ArrayAligned approaches. These either use
page tables or arrays and free lists for managing their 1 GiB subtrees. The suffixes F and D used in the
following chapter indicate whether the lower allocator with Fixed page tables or Dynamic page tables
is used. Also, the most critical performance optimizations for the allocators were described before
concluding with the ListLocal and ListLocked allocators that provide baselines for the benchmarks in
the following chapter.

29

5E VA LUAT I O N

The previous chapters introduced the different lo(ck|g)-free allocator approaches and described
their functionality in depth. In this chapter, they are benchmarked, analyzed, and compared against
the Linux buddy allocator. First, the correctness tests are described, which have guided the allocators’
development. Then the hardware and different benchmarks are introduced, together with the kernel
module for benchmarking Linux’s allocator. After that, the benchmark results are presented and
analyzed before evaluating the allocators’ crash consistency and recovery capabilities. Finally, the
allocators’ memory overheads and persistency requirements are discussed.

5.1 Race Condition Tests with Stopping Points

The allocator is extensively tested for race conditions by explicitly ordering the execution of parallel
atomic operations. In debug builds, a stopping point is inserted before each atomic load or update.
It is similar to a barrier. All threads that reach a stopping point are suspended, and only a single
one is executed until it reaches the next stopping point. The order in which threads are chosen and
executed is defined at the start. This allows the creation of tests for specific race conditions and
updating orders. It is used to test various combinations of concurrent allocate and free operations.
Also, a number of stress tests were developed that use random updating orders. They check that all
operations are executed successfully and that the allocator’s state is consistent. Especially during
the development, these tests were helpful to find design and implementation errors and verify the
correctness of the algorithms.

However, this technique cannot guarantee that the allocators are entirely devoid of race conditions.
This is very difficult [Fu+21]. The probability of their occurrence could be so low that none of the
tests was able to catch them. These stopping points are helpful, as they can enforce the occurrence
of a race condition. However, they also have limits. Checking every permutation of every atomic
operation is practically impossible. Therefore, this technique was only applied to the lower allocators.
The upper allocators were tested using more conventional stress tests.

5.2 Microbenchmarks

In this section, the allocator approaches discussed in the previous chapter are benchmarked and
compared with the Linux page allocator. To summarize, these are:

31

5.2 Microbenchmarks

Table: Uses additional higher-level page tables (subsection 4.3.1)
ArrayLocked: Stores the 3rd-level entries in an array and uses free lists protected by locks

(subsection 4.3.2)
ArrayAtomic: Uses lock-free linked lists avoiding locks (subsection 4.4.1)

ArrayAligned: Alignes the 3rd-level entries to cache-lines (subsection 4.4.2)
ListLocal: Uses separate core-local linked lists to store free pages (section 4.5)

ListLocked: Uses a shared linked list, protected by a ticket lock (section 4.5)
Kernel: The Linux page allocator (subsection 2.2.3)

The suffixes F and D indicated which lower allocator implementation is used (Fixed page tables
4.2.1 or Dynamic page tables 4.2.2).

Experimental Setup

The following benchmarks were executed on a system equipped with two 24-core Intel Xeon Gold
6252 CPUs at 3.7 GHz with hyperthreading. In total, these are 96 virtual cores on two NUMA nodes.
Each NUMA node is directly connected to six 32 GiB DRAM DIMMs and six 128 GiB Intel Optane
100 DIMMs. The Optane DIMMs are configured in interleaved mode to get the best performance.
The benchmarks are both executed on DRAM, using an anonymous mapping, and on NVRAM by
creating and mapping a fsdax device on NUMA node 0. This DAX device is configured as a PMEM
namespace with its metadata (struct page) stored in DRAM. All allocators except the Linux allocator
are benchmarked in the userspace but with real-time priority (chrt 99) to get more stable results.
The Ubuntu 20.04.4-based system uses a 5.4.0-97 Kernel with enabled NVDIMM, PMEM, and DAX
modules [Nvk].

5.2.1 Benchmarking the Linux Page Allocator

Even if not persistent, the Linux page allocator is a good competitor for the lo(ck|g)-free allocator, as
it has similar requirements (section 3.2). As described in subsection 2.2.3, the Linux page allocator’s
design is based on a buddy allocator. Benchmarking it from the userspace is, without further ado,
not possible. Thus a kernel module was developed that directly calls alloc_page and __free_page
of the allocator. The benchmarks and the random number generator, which is based on wyhash
[Wyh], were reimplemented as part of the kernel module. The benchmarks are directly executed
when the module is loaded. After that, the measurements are accessible via an "alloc" kobject in
the sysfs. This read-only sysfs file at /sys/kernel/alloc/out outputs the benchmark results in the
same CSV format as other userspace benchmarks. The Kernel allocator was only benchmarked on
DRAM because it is currently difficult to execute it on NVRAM.

5.2.2 Bulk Allocations

The bulk allocation benchmark allocates half of the allocators P pages on T threads. Only half the
mapped memory is allocated because the allocators have different memory overheads and thus a
slightly different number of available pages from the start. Each thread allocates the same number
of pages concurrently (P/(2 · Tmax)). The time between the first and last allocations is measured and
divided by the number of allocations performed. In the next step, these pages are freed in reverse
order, and the time is measured similarly. For the DRAM test, 192 GiB of memory (P = 192 · 5122)
is given to the allocator. The NVRAM test uses a DAX file of 512 GiB (P = 512 · 5122).

32

5.2 Microbenchmarks

0

1000

2000

3000
tim

e
in

 n
s

DRAM

get

NVRAM

1 16 32 48 64 80 96
cores

0

1000

2000

3000

tim
e

in
 n

s

1 16 32 48 64 80 96
cores

put

Allocator
ArrayAtomicF
ArrayAtomicD
ListLocal
ListLocked
Kernel

Figure 5.1 – Average time for allocating (get) and freeing (put) numerous 4 KiB pages for
different core counts.

Figure 5.1 shows the average allocation and free times for different core counts. The best
performing lo(ck|g)-free allocators are displayed together with the Kernel, ListLocal and ListLocked
allocators. In this benchmark, all lo(ck|g)-free allocators outperform the other allocators significantly.

The ListLocked allocator has by far the worst performance. It has a high contention on the ticket
lock protecting its global free list. This allocator does not benefit from multiple cores; on the contrary,
it becomes slower at allocating the same number of pages on more cores. Therefore, it represents
the worst-case allocation performance in this and the following benchmarks.

The ListLocal allocator also performs surprisingly poorly. The allocator’s linked lists span over
its whole memory because the next pointers are stored directly on its free pages. Consequently,
these pointers are on different cache lines. Adding or removing pages from the free list results in
frequent cache misses. The Linux profiler (perf) shows that in the ListLocal benchmark, over 85%
of all cache references were misses. In comparison, the ArrayAtomic allocator has a miss rate of
about 20%. This is even more pronounced at LLC misses with 95% compared to 7.5%. As every
cache miss takes orders of magnitude longer, the performance deteriorates sharply. However, the
performance improves slightly on DRAM above 48 cores when the cores of the second NUMA node
are also used. At this point, both the available cache size and memory bus throughput double.

Also noteworthy is the Kernel allocator’s less than stellar bulk allocation performance. It starts at
over 800 ns for a single core and increases exponentially on higher core counts. Most of the allocator’s
optimizations, like local free lists, are ineffective in this benchmark due to the sheer number of
allocations. Its free times are substantially lower, starting almost as good as the lo(ck|g)-free
allocators. However, they increase significantly faster for rising core counts.

The different upper allocators (ArrayAtomic, ArrayLocked, ArrayAligned, and Table) have very
similar performance characteristics, as shown in Figure 5.2. Only the times of ArrayAligned allocators
are slightly worse than the other lo(ck|g)-free allocators. Also, their times vary more strongly between
executions. This performance degradation is most likely caused by the cache-line alignment of the
3rd-level entries. These allocators occupy more cache lines and also have a slightly higher number
of LLC misses than the ArrayAtomic implementations. However, this becomes only noticeable when
they manage large amounts of memory.

Apart from this, the performance of 4 KiB allocations is hardly affected by the upper allocator
approach. For small pages, the subtree reservations are rare compared to the number of allocations

33

5.2 Microbenchmarks

1 16 32 48 64 80 96
cores

0

100

200

300

400

500
tim

e
in

 n
s

get

1 16 32 48 64 80 96
cores

put
Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD
ListLocal
Kernel

Figure 5.2 – Average time for allocating (get) and freeing (put) numerous 4 KiB pages in DRAM.

within these subtrees. Thus, the performance impact of these reservations vanishes almost completely.
Therefore, the different upper implementations have almost equal performance when allocating
small pages. The most significant difference comes from the lower allocator implementations.
The fixed page table implementation (suffix F) is significantly faster than the dynamic page table
implementation (suffix D). The dynamic version has to perform more checks and periodically
reinitialize the 1st-level page tables as described in subsection 4.2.2. The low free times of all the
lo(ck|g)-free allocators are achieved by the free-reserve optimization (subsection 4.4.3). It prevents
memory sharing very effectively in this benchmark (Figure 4.7).

1 16 32 48 64 80 96
cores

0

250

500

750

1000

1250

1500

tim
e

in
 n

s

get

1 16 32 48 64 80 96
cores

put

Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD
ListLocal

Figure 5.3 – Average time for allocating (get) and freeing (put) numerous 4 KiB pages in
NVRAM.

In NVRAM, the fixed version is about twice as fast as the dynamic approach for both allocations
and frees (Figure 5.3). In general, the performance of the lo(ck|g)-free allocators is noticeably
poorer in NVRAM compared to DRAM. Especially the free times, which are almost constant on DRAM,
increase on NVRAM about as fast as the allocation times. This closely resembles the observations
made by Yang et al. [Yan+20]. The NVM performance increasingly degrades when the number of
threads surpasses the number of interleaved NVDIMMs (6 for these benchmarks). The researchers
state that this effect is caused by contention on the integrated memory controllers (iMC) and the
XPBuffers of the Optane DIMMs.

34

5.2 Microbenchmarks

5.2.3 Repeat Allocations

This benchmark tests the reallocation performance of the allocators. First, half of the allocator’s
pages are allocated to initialize and warm up the allocator. Then a page is allocated and directly
freed repeatedly. Each core concurrently frees and reallocates a different page. The time is measured
between the first and last iteration and divided by the number of iterations. Figure 5.4 shows the
average times of these allocation and free sequences for different core counts. Similar to the bulk
benchmark, 192 GiB of DRAM memory and 512 GiB of NVRAM memory are used.

1 16 32 48 64 80 96
cores

0

50

100

150

200

250

tim
e

in
 n

s

DRAM

1 16 32 48 64 80 96
cores

NVRAM Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD
ListLocal
ListLocked
Kernel

Figure 5.4 – Average time for repeatedly allocating and freeing the same 4 KiB page.

All allocators except the ListLocked allocators have a similar performance profile. The runtime
slightly increases until 48 virtual cores, after which the slope increases, before it again decreases
above 64 cores. At core counts over 48, the cores of the second socket are also used. This performance
decrease is caused by remote NUMA accesses to the memory mapped on the first NUMA node. In
this benchmark, the ListLocal benchmark has by far the best performance. Because the same page is
allocated and freed, the allocator can entirely rely on the CPU caches.

The lo(ck|g)-free allocators are about twice as fast as the Kernel allocator. They are faster despite
having no specific optimizations for reallocations, except for the per-core subtrees. In contrast, the
Kernel allocator has fast paths for these use cases and core-local free lists that cache recently freed
pages. These should by themselves have a similar performance as the ListLocal allocator. However,
the Kernel allocator also manages different memory zones and block sizes. It must first find the
appropriate free lists before each allocation.

5.2.4 Random Allocations

This benchmark evaluates the allocator’s performance for randomly freeing previously allocated
pages and reallocating them. Half of the allocator’s pages are initially allocated, similar to the repeat
benchmark. Then repeatedly, a previously allocated page is freed and replaced by a newly allocated
one. The pages to be freed are chosen randomly from the set of previously allocated pages. The
average times for these random free and reallocate sequences are shown in Figure 5.5. Again, the
ListLocked allocator’s performance is terrible due to the high contention on the ticket lock protecting
its free list. Therefore, it was only executed for lower core counts. On DRAM, the fixed page table
approach (ArrayAtomicF) is as fast as the Kernel allocator.

The dynamic approach (ArrayAtomicD) is far slower in both NVRAM and DRAM than the fixed
page table implementations. This difference in performance is even larger in this benchmark than in
the bulk benchmark. The random frees are a weak point of the dynamic page table strategy. In this

35

5.2 Microbenchmarks

1 16 32 48 64 80 96
cores

0

20000

40000

60000

80000

100000

120000
tim

e
in

 n
s

DRAM

1 16 32 48 64 80 96
cores

NVRAM

Allocator
ArrayAtomicF
ArrayAtomicD
ListLocal
ListLocked
Kernel

Figure 5.5 – Average time for repeatedly freeing and allocating random 4 KiB pages.

benchmark, the frees mostly affect fully allocated areas. In these cases, the dynamic approach has
to initialize the first freed pages as new page tables (subsection 4.2.2). This initialization overwrites
the whole page, resulting in a much longer runtime. In the bulk benchmark, this effect is amortized
by subsequent faster frees in the same subtree. However, this is mostly not the case if the frees affect
random areas.

The fixed implementations also perform significantly worse in NVRAM than in the bulk bench-
mark. These results can be explained by the higher amount of cache misses because random page
tables entries have to be updated. Additionally, these random read-modify-write sequences perform
even worse on Optane due to higher latencies and contention on the XPBuffers [Yan+20].

1 16 32 48 64 80 96
cores

0
500

1000
1500
2000
2500
3000
3500
4000

tim
e

in
 n

s

Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD
ListLocal
Kernel

Figure 5.6 – Average times for repeatedly freeing and allocating random 4 KiB pages in DRAM.

Figure 5.6 shows the benchmark results for DRAM. All lo(ck|g)-free allocators are comparable
with the Kernel allocator for up to four cores. After that, the runtimes of the dynamic versions
increase dramatically. However, the fixed implementations have almost identical runtimes as the
Kernel allocator. The performance of the ListLocal allocator is similar to the bulk benchmark. Its
performance is again limited by its high number of cache misses.

This benchmark shows how heavily the lo(ck|g)-free allocators’ performances depend on the
locality of the freed pages. The runtimes differ in more than one order of magnitude from the
previous benchmarks. Especially the dynamic page table implementations perform less than stellar.

36

5.2 Microbenchmarks

5.2.5 Different Filling Levels

As the performance of allocators often varies on different filling levels, this also has been tested for
the Table and Array allocators. For example, depending on how the allocator searches free pages, its
performance could significantly decrease as it runs out of memory.

0.0 0.2 0.4 0.6 0.8
initial filling level

0

100

200

300

400

tim
e

in
 n

s

DRAM

0.0 0.2 0.4 0.6 0.8
initial filling level

NVRAM

Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD

Figure 5.7 – Average time for allocating pages on different initial filling levels.

Figure 5.7 shows that the allocation times of the lo(ck|g)-free allocators remain constant for
different filling levels. This is the case because the cores mainly access their reserved subtrees. As
long as every core can reserve a subtree, the total filling level does not matter. Also, the reservation
of new subtrees does not depend on the filling level for the Array allocators. The performance
of the linked lists or stacks containing the partially or entirely empty subtrees remains constant,
regardless of how many elements they contain. The Table allocators use counters to speed up page
table traversal and thus are also barely affected by the filling level.

However, the drawback is that if the allocator only has a few pages left, the reservation of a
new subtree could fail entirely. This happens if all not reserved subtrees are fully allocated, and the
only free pages are part of subtrees reserved by other cores. It is currently impossible to access a
subtree reserved by another core and the free pages within. Consequently, in this particular case,
the allocation fails even if some pages are still free. As a fallback, an additional allocation procedure
could be implemented, either allocating remotely in reserved subtrees or migrating the allocation to
another core. However, this is beyond the scope of this work.

5.2.6 Huge and Giant Pages

The previous benchmarks measured the allocator’s performance for small 4 KiB pages. This section
covers the management of huge and giant pages. Again the bulk, repeat, and random benchmarks
were used to evaluate the allocators’ performances for these page sizes.

Figure 5.8 shows the average allocation (get) and free (put) time of the bulk benchmark for
2 MiB pages. The allocation times double but mostly remain similar to the 4 KiB pages. This can be
explained by a higher rate of subtree reservations. A subtree contains 5122 small pages but only 512
huge pages. Therefore subtrees have to be reserved more frequently for huge pages. This reservation
takes additional time as it operates on shared data. Noticeable outliers are the dynamic and fixed
implementations of the ArrayLocked allocator. Their runtimes increase faster on higher core counts,
which can be attributed to lock contention.

For frees, the runtimes of the fixed and dynamic approaches are entirely different from each
other. The free times of the fixed allocators are almost equal to their allocation times. However, the

37

5.2 Microbenchmarks

0

100

200

300
tim

e
in

 n
s

DRAM

0

100

200

300

tim
e

in
 n

s

get

NVRAM

1 16 32 48 64 80 96
cores

0

2500

5000

7500

tim
e

in
 n

s

1 16 32 48 64 80 96
cores

0

200000

400000

tim
e

in
 n

s

put

Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD

Figure 5.8 – Average time for "bulk" allocating/freeing 2 MiB pages.

free times of the dynamic implementations are orders of magnitude slower. The dynamic approach
stores the 1st-level page tables as a page inside their 2 MiB area. This makes it possible to allocate
these page table pages and thus reduce the memory overhead (subsection 4.2.2). The downside of
this strategy is that frees periodically have to reinitialize page tables if they were previously given to
the user as part of an allocation. This requires overwriting a whole 4 KiB page. For small 4 KiB pages,
the page table only must be reinitialized if a free occurs in a fully allocated area, which happens
only every 512th free on average. However, for huge 2 KiB pages, this has to be done on every free,
negatively impacting the performance. Interestingly, the free times for the dynamic Array allocators
drop significantly on DRAM for over 64 cores. This is most likely again a NUMA effect, as above 48
cores, the second socked is also used.

The results of the repeat benchmark for huge pages are similar to the 4 KiB pages. The times
also increase by factor two. The random benchmark produces similar results as the bulk frees. The
performance is also affected primarily by the more frequent subtree reservations and the dynamic
allocators’ 1st-level page table reinitializations.

0

2000

4000

6000

tim
e

in
 n

s

DRAM

0

2000

4000

6000

tim
e

in
 n

s

get

NVRAM

1 16 32 48 64
cores

0

1

2

3

tim
e

in
 n

s

1e6

1 16 32 48 64
cores

0.0

0.5

1.0

1.5

tim
e

in
 n

s

1e8

put

Allocator
ArrayAtomicF
ArrayAtomicD
ArrayLockedF
ArrayLockedD
ArrayAlignedF
ArrayAlignedD
TableF
TableD

Figure 5.9 – Average time for "bulk" allocating/freeing 1 GiB pages.

38

5.2 Microbenchmarks

Figure 5.8 shows the average allocation and free time of the bulk benchmark for 1 GiB pages.
These times are more than two orders of magnitude higher than for huge pages. Every allocation
now reserves a new subtree that is allocated as a giant page. These reservations operate on shared
data and thus take much more time. Also, the dynamic allocators have to reinitialize 512 1st-level
page tables for every freed 1 GiB page. This further decreases their performance.

To summarize, the runtimes of the fixed allocators remain reasonably low for huge and giant
pages. However, the dynamic approach has significantly worse performance in the bulk-free and
random benchmarks with larger pages.

5.3 Memory Access

All accesses to the NVM are performed using atomic operations with sequentially-consistent memory
ordering (subsection 2.3.1) to guarantee consistency and persistency. Because these operations are
costly on NVM [Yan+20], the number of atomic updates the allocator performs was reduced as far
as possible. For regular allocations, in the best case, only two CAS operations have to be executed:
One in the 2nd-level page table for decrementing the page counter and another one in the 1st-level
page table for setting the entry to present. If one of them fails, it is retried for the following entries
until it succeeds. In these cases, the number of executed CAS operations is slightly higher. However,
this usually only happens in very few cases because the address of the last allocation is used as
starting point for the next search (section 3.5). In addition to that, the search is sequential, hence
ideal for the CPU caches. In most cases, the following entries are already in the cache because they
are part of the same cache line the previous CAS operation tried to update. For free operations,
the corresponding 2nd-level entry is read first, checking if the whole 2 MiB subtree was allocated
as a huge page or a 4 KiB page was allocated. In the second case, a CAS operation in the 1st-level
page table is performed, marking the entry as free, and then the counter of the 2nd-level entry is
increased. The other updates in the data structures of the upper implementations only affect DRAM.

For the dynamic page table implementation, the 1st-level page tables have to be reinitialized in
certain cases (by setting all entries to zero). Depending on the platform, SIMD instructions (SSE2 or
AVX512) are used to zeroize these pages. After that, the corresponding 2nd-level entry is updated.
To guarantee consistency, this is followed by a memory barrier. The benchmarks, however, show
that even this optimized overwriting of a page still negatively affects performance.

5.4 Recovery and Crash Consistency

Because the allocator was designed for eADR, no explicit flushing is used. Therefore it is not
guaranteed to be recoverable on the 100 series Optane memory of the test system. Only series
200 and newer support the new eADR power failure protection domain. As this hardware was not
available to us, actual recovery tests from power losses could unfortunately not be performed.

Instead, a special test case was created to assess the allocator’s recovery capabilities as accurately
as possible. It is based on shared memory mappings between processes. Two shared memory
mappings are created and then shared with a child process using fork. One of the mappings is used
for the allocator. The other mapping is used for verifying the recovery. It has the layout:

[(idx | init | pages...) foreach thread]

where idx is the index of the currently allocated or freed page, and init is a status flag indicating
whether the corresponding thread has finished initialization.

39

5.4 Recovery and Crash Consistency

The parent process waits for the child to initialize the allocator and to start allocating and freeing
random pages on multiple threads (similar to the random benchmark). After a random delay, it kills
the child process and the allocator. Then it initiates the allocator’s recovery procedure and checks
that only a limited number of pages were lost. After that, it tries to free all allocated pages, verifying
that they were correctly allocated in the first place. This ignores all pages that were allocated or
freed during the crash (referenced by idx). These interrupted operations are recovered as either
completely finished or not performed at all, but neither is guaranteed to be the case. It is only
checked that the number of interrupted operations is limited by the number of threads.

As described in section 3.2, the possibility of losing certain pages during a crash is not optimal.
However, depending on the use case, this can be further mitigated: Either by a per-core undo log,
stored in NVM, or on a higher level by the application that uses the allocator. Morsels, for example,
persistently store all allocated pages. They could be used to relax the persistency requirements of
the allocator further, as discussed in section 5.6.

5.5 Metadata Overhead

The Table 5.1 shows the amount of memory each allocator implementation takes up when it is fully
allocated. The upper allocators’ metadata is volatile. The metadata of the lower Fixed and Dynamic
implementations is stored persistently. Each lo(ck|g)-free allocator consists of a combination of the
lower and upper implementations. The resulting memory overhead is the sum of these parts. The
memory overhead of the upper implementations is negligible compared to the lower implementations.
Also, the most significant difference is between the lower Fixed and Dynamic approaches.

Allocator Metadata Size for P pages P = 5123 (512 GiB)
Table 4 KiB · (dP/5123e+ 1) 8 KiB

ArrayLocked 24 B · dP/5122e 12 KiB
ArrayAtomic 8 B · dP/5122e 4 KiB

ArrayAligned 64 B · dP/5122e 32 KiB
Fixed 4 KiB · (dP/512e+ dP/5122e) 1026 MiB

Dynamic 4 KiB · dP/5122e 2 MiB

Linux struct page 64 B · P 8192 MiB

Table 5.1 – Memory overhead of the allocator implementations.
The upper allocators have an additional overhead of (2+ 2C) · 64 B for C cores, to store shared and

per-core data. Also, an additional NVM page for metadata is reserved for the recovery.

The previous benchmarks show that the fixed page table implementation scales at least twice as
good on multiple cores as the dynamic one. However, the downside is its high memory overhead.
It takes up more than 512 times more space than the dynamic approach, as shown in Table 5.1.
The fixed approach needs a 1st-level page table entry for every 4 KiB page. Only a single bit of this
entry is used to mark the page as allocated. The allocator does not use the remaining 63-bits. Access
to these page table entries could be handed over to the OS, allowing it to (persistently) store any
data related to these pages. This could include reference counters or any other metadata that Linux
stores in its struct page. If needed, their size could also be increased to store more data. These
page table entries can be accessed directly, as they are stored in a known location at the end of the
NVM area. This could be done similarly for huge and giant pages.

Alternatively, the size of these 1st-level page tables could be reduced. Only a single bit per entry
is needed to store if a page is allocated or not. Thus a bitfield with 512 bits would be enough to store

40

5.5 Metadata Overhead

this information, reducing the table’s size from 4 KiB to 64 B. This lower allocator would only need
18 MiB metadata for 5123 pages. However, the 1st-level entries could not be updated independently
anymore as the smallest atomic operation modifies 8 bit. Consequently, two atomic operations are
needed to load the current value and write it back after modification using CAS. If a race condition
occurs in between them it has to be tried again. Despite this, initial tests showed an improved
performance from the reduced memory size. However, this has to be further investigated in future
iterations of the allocators.

5.6 A Volatile Morsel Allocator

The morsels are persistent and self-contained. If they store all pages they use for metadata and
content, the allocator might not have to be persistent. However, the memory pages it manages
still have to be taken from NVM. The allocator also would have to have a function to mark pages
as already allocated. During boot, this function could be used to mark all pages of all morsels as
allocated. In order to find all morsels on reboot, their root page tables (or pointers to them) have to
be stored persistently in a known location.

However, such a volatile allocator can only be used if all pages are stored in persistent data
structures, like morsels, and are easy to find. All not persistently stored pages would be lost after a
crash. Also, iterating through all morsels could significantly slow down the boot process, depending
on their number and size.

The benchmarks showed that even on volatile memory, the lo(ck|g)-free allocators perform
better than the Kernel allocator. Additionally, these allocators can easily be extended with a function
to mark arbitrary pages as already allocated. Their page table-based architecture makes it trivial to
find the corresponding page table entries and update them. Therefore, the lo(ck|g)-free allocators
are an excellent option for the morsels even when ignoring their recovery capabilities.

5.7 Summary

In this chapter, the different allocator approaches were compared against each other and the Linux
Kernel allocator. In most cases, they were faster than the Kernel allocator. However, it became
clear that the lo(ck|g)-free allocator’s free performance heavily depends on the locality of the
freed pages. Current NVM hardware further amplifies this by similarly relying on the locality of
memory accesses. The lo(ck|g)-free allocator fulfills the persistency and recovery requirements
specified in subsection 3.2.2. The dynamic lower allocators have a very low memory overhead but
are significantly slower than their fixed counterparts. The higher memory overhead of the fixed
page table implementations can also be counteracted by allowing the OS to store page-related data
in the unused page table entries or replace them with smaller bitfields.

41

6C O N C LU S I O N

In this work, I revisited the design of page allocators for modern CPU and memory architectures.
The developed lo(ck|g)-free allocator variants, true to their name, avoid locks and logs to achieve
persistency on current eADR enabled Optane memory. They are recoverable from system crashes
and guarantee that the number of potentially leaked pages is bound to the system’s core count. The
use of hardware-near data structures like page tables proved to be very beneficial to the allocator’s
performance. Together with several optimizations to reduce memory sharing, these allocators
out-scale the Linux page allocator on high core counts. This further underpins the hypothesis that
reducing abstractions could significantly increase the performance of the Linux memory management
subsystem. The new minimal address space abstractions (morsels) briefly introduced in this work
aim to achieve precisely this. They directly use MMU-compatible page tables for their own metadata.
This work both developed allocator concepts that can be used to lazily allocate pages for the
morsels, fulfilling their persistency requirements, and further underlines the performance gains
such hardware-near implementations can provide. Furthermore, the allocator could be excellent
for specific userspace applications working with large, evenly-sized memory chunks, like database
systems.

Despite the promising benchmarking results, some improvements can still be made for the
allocator. The poor performance of random frees leaves much room in this regard. Using an extra
free list to cache recent frees or implementing a bulk-free mechanism that sorts addresses before
freeing them could make a huge difference. The allocator also needs a fallback strategy for remotely
allocating pages from subtrees reserved by different cores when no other pages are left. This is
especially important because the chunks, CPUs reserve, are pretty extensive, containing 5122 4 KiB
pages. Also, the allocator was currently only tested on hardware not supporting eADR. As the
allocator was specifically designed for this, it limits the way its persistency capabilities can be verified.
Thus it might be interesting to check if the allocator is genuinely able to recover from a power loss
on real hardware.

Without additional work, the lo(ck|g)-free allocator also cannot be evaluated accurately in real-
world scenarios. This mainly requires two things: (1) The allocator must be integrated into the Linux
kernel to run in kernel space. Similar to its counterpart, it must be able to prevent CPU migrations
and interrupts for the duration of an allocation or free. (2) To be accessible from userspace, the
morsels themselves have to be implemented as kernel objects, together with the means for creating
and mounting them into address spaces. Then the allocator and morsel can be directly compared
with the traditional abstractions for mapping and sharing memory. This would also allow comparing
different morsel allocators with one another. After that, the persistency guarantees of the allocator
could be further strengthened to lose no pages at all. The addresses of the allocated pages could be
atomically inserted into persistent data structures, like morsels or persistent pointers.

43

L I S T O F A C R O N Y M S

ADR Asynchronous DRAM Refresh

ASLR Address Space Layout Randomization

CAS Compare-And-Swap

DAX Direct Access of Files

DMA Direct Memory Access

eADR Extended ADR

IOMMU Input-Output Memory Management Unit

LLC Last Level Cache

MMU Memory Management Unit

NUMA Non-Uniform Memory Access

NVM Non-Volatile Byte-Addressable Memory

PCIe Peripheral Component Interconnect Express

PCM Phase-Change Memory

PTE Page Table Entry

RDMA Remote Direct Memory Access

TLB Translation Lookaside Buffer

WPQ Write Pending Queue

45

L I S T O F F I G U R E S

2.1 The different memory technologies existing in a heterogeneous system, ordered by
their capacities and access times. 3

2.2 Virtual address space of a process. 5
2.3 Example of a 3-stage page table mapping. 6
2.4 Allocation procedure of the Linux buddy allocator. 7
2.5 Intel Optane "power fail protected domain" [Int21] . 12

3.1 The morsel as minimal self-contained address space abstraction. 15
3.2 The page table mapping that represents the allocator state. 17
3.3 The different strategies for storing page table. 19

4.1 NVM layout with fixed page tables. 22
4.2 Layout of the different page table entries. 23
4.3 NVM layout with dynamic 1st-level page tables. 23
4.4 The idendity mapping of the Table allocator. 25
4.5 Architecture of the ArrayLocked allocator. 26
4.6 Architecture of the ArrayAtomic allocator. 27
4.7 The impact of false sharing on the ArrayAtomic allocator, depending on cache-line

alignment. 28

5.1 Average time for allocating (get) and freeing (put) numerous 4 KiB pages for different
core counts. 33

5.2 Average time for allocating (get) and freeing (put) numerous 4 KiB pages in DRAM. . 34
5.3 Average time for allocating (get) and freeing (put) numerous 4 KiB pages in NVRAM. 34
5.4 Average time for repeatedly allocating and freeing the same 4 KiB page. 35
5.5 Average time for repeatedly freeing and allocating random 4 KiB pages. 36
5.6 Average times for repeatedly freeing and allocating random 4 KiB pages in DRAM. . . 36
5.7 Average time for allocating pages on different initial filling levels. 37
5.8 Average time for "bulk" allocating/freeing 2 MiB pages. 38
5.9 Average time for "bulk" allocating/freeing 1 GiB pages. 38

47

R E F E R E N C E S

[Bai+11] Katelin Bailey et al. “Operating System Implications of Fast, Cheap, Non-Volatile
Memory.” In: 13th Workshop on Hot Topics in Operating Systems (HotOS XIII). 2011.

[BCB16] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm. “Makalu: Fast recoverable
allocation of non-volatile memory.” In: ACM SIGPLAN Notices 51.10 (2016), pp. 677–
694.

[Bit+17] Daniel Bittman et al. Twizzler: An operating system for next-generation memory hierar-
chies. Tech. rep. Technical Report UCSC-SSRC-17-01, University of California, Santa
Cruz, 2017.

[Bit+21] Daniel Bittman et al. “Twizzler: A Data-Centric OS for Non-Volatile Memory.” In:
ACM Trans. Storage 17.2 (2021). ISSN: 1553-3077. DOI: 10.1145/3454129. URL:
https://doi.org/10.1145/3454129.

[Che+96] Peter M. Chen et al. “The Rio File Cache: Surviving Operating System Crashes.” In:
Proceedings of the Seventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. ASPLOS VII. Cambridge, Massachusetts,
USA: Association for Computing Machinery, 1996, 74–83. ISBN: 0897917677. DOI:
10.1145/237090.237154. URL: https://doi.org/10.1145/237090.237154.

[Cob+11] Joel Coburn et al. “NV-Heaps: Making Persistent Objects Fast and Safe with next-
Generation, Non-Volatile Memories.” In: SIGARCH Comput. Archit. News 39.1 (Mar.
2011), 105–118. ISSN: 0163-5964. DOI: 10.1145/1961295.1950380. URL: https:
//doi.org/10.1145/1961295.1950380.

[Cop+89] G. Copeland et al. “The Case for Safe RAM.” In: Proceedings of the 15th International
Conference on Very Large Data Bases. VLDB ’89. Amsterdam, The Netherlands: Morgan
Kaufmann Publishers Inc., 1989, 327–335. ISBN: 1558601015.

[Dav+18] Tudor David et al. “Log-Free Concurrent Data Structures.” In: Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Conference. USENIX ATC ’18. Boston,
MA, USA: USENIX Association, 2018, 373–385. ISBN: 9781931971447.

[DLN19] Dominik Durner, Viktor Leis, and Thomas Neumann. “Experimental Study of Memory
Allocation for High-Performance Query Processing.” In: ADMS@ VLDB. 2019, pp. 1–9.

[Eva06] Jason Evans. “A scalable concurrent malloc (3) implementation for FreeBSD.” In: Proc.
of the bsdcan conference, ottawa, canada. 2006.

[Fra04] Keir Fraser. Practical lock-freedom. Tech. rep. UCAM-CL-TR-579. University of Cam-
bridge, Computer Laboratory, Feb. 2004. DOI: 10.48456/tr-579. URL: https://www
.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf.

49

https://doi.org/10.1145/3454129
https://doi.org/10.1145/3454129
https://doi.org/10.1145/237090.237154
https://doi.org/10.1145/237090.237154
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.48456/tr-579
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

REFERENCES

[Fri+18] Michal Friedman et al. “A Persistent Lock-Free Queue for Non-Volatile Memory.” In:
SIGPLAN Not. 53.1 (2018), 28–40. ISSN: 0362-1340. DOI: 10.1145/3200691.317849
0. URL: https://doi.org/10.1145/3200691.3178490.

[Fu+21] Xinwei Fu et al. “Witcher: Systematic Crash Consistency Testing for Non-Volatile
Memory Key-Value Stores.” In: Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles. SOSP ’21. Virtual Event, Germany: Association for
Computing Machinery, 2021, 100–115. ISBN: 9781450387095. DOI: 10.1145/34771
32.3483556. URL: https://doi.org/10.1145/3477132.3483556.

[Gli] The GNU Allocator - The GNU C Library. 2021. URL: https://www.gnu.org/softwar
e/libc/manual/html_node/The-GNU-Allocator.html (visited on 01/19/2022).

[Gor04] Mel Gorman. Understanding the Linux virtual memory manager. Prentice Hall Upper
Saddle River, 2004.

[Gra+03] Ananth Grama et al. Introduction to parallel computing. Pearson Education, 2003.

[Her88] Maurice P. Herlihy. “Impossibility and Universality Results for Wait-Free Synchroniza-
tion.” In: Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing. PODC ’88. Toronto, Ontario, Canada: Association for Computing Ma-
chinery, 1988, 276–290. ISBN: 0897912772. DOI: 10.1145/62546.62593. URL:
https://doi.org/10.1145/62546.62593.

[HJW15] Taeho Hwang, Jaemin Jung, and Youjip Won. “HEAPO: Heap-Based Persistent Object
Store.” In: ACM Trans. Storage 11.1 (Dec. 2015). ISSN: 1553-3077. DOI: 10.1145/26
29619. URL: https://doi.org/10.1145/2629619.

[HLM03] M. Herlihy, V. Luchangco, and M. Moir. “Obstruction-free synchronization: double-
ended queues as an example.” In: 23rd International Conference on Distributed Comput-
ing Systems, 2003. Proceedings. 2003, pp. 522–529. DOI: 10.1109/ICDCS.2003.1203
503.

[HP11] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[IMS16a] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. “Brief Announce-
ment: Preserving Happens-before in Persistent Memory.” In: Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’16. Pacific
Grove, California, USA: Association for Computing Machinery, 2016, 157–159. ISBN:
9781450342100. DOI: 10.1145/2935764.2935810. URL: https://doi.org/10.11
45/2935764.2935810.

[IMS16b] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. “Linearizability of
Persistent Memory Objects Under a Full-System-Crash Failure Model.” In: Distributed
Computing. Ed. by Cyril Gavoille and David Ilcinkas. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 313–327. ISBN: 978-3-662-53426-7.

[Int] Intel® 64 and IA-32 Architectures Software Developer’s Manual - Combined Volumes: 1,
2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel®, 2021.

[Int21] Intel. eADR: New Opportunities for Persistent Memory Applications. 2021. URL: htt
ps://www.intel.com/content/www/us/en/developer/articles/technical/e
adr-new-opportunities-for-persistent-memory-applications.html (visited
on 12/10/2021).

50

https://doi.org/10.1145/3200691.3178490
https://doi.org/10.1145/3200691.3178490
https://doi.org/10.1145/3200691.3178490
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://www.gnu.org/software/libc/manual/html_node/The-GNU-Allocator.html
https://doi.org/10.1145/62546.62593
https://doi.org/10.1145/62546.62593
https://doi.org/10.1145/2629619
https://doi.org/10.1145/2629619
https://doi.org/10.1145/2629619
https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1109/ICDCS.2003.1203503
https://doi.org/10.1145/2935764.2935810
https://doi.org/10.1145/2935764.2935810
https://doi.org/10.1145/2935764.2935810
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html

REFERENCES

[Izr+19] Joseph Izraelevitz et al. “Basic Performance Measurements of the Intel Optane DC
Persistent Memory Module.” In: (2019). DOI: 10.48550/ARXIV.1903.05714. URL:
https://arxiv.org/abs/1903.05714.

[Jem] jemalloc Memory Allocator. 2022. URL: http://jemalloc.net/ (visited on 01/25/2022).

[Kad+21] Rohan Kadekodi et al. “WineFS: A Hugepage-Aware File System for Persistent Memory
That Ages Gracefully.” In: Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles. SOSP ’21. Virtual Event, Germany: Association for Computing
Machinery, 2021, 804–818. ISBN: 9781450387095. DOI: 10.1145/3477132.348356
7. URL: https://doi.org/10.1145/3477132.3483567.

[KP12] Alex Kogan and Erez Petrank. “A Methodology for Creating Fast Wait-Free Data Struc-
tures.” In: SIGPLAN Not. 47.8 (2012), 141–150. ISSN: 0362-1340. DOI: 10.1145/237
0036.2145835. URL: https://doi.org/10.1145/2370036.2145835.

[Kum+21] Sandeep Kumar et al. “Page Table Management for Heterogeneous Memory Systems.”
In: CoRR abs/2103.10779 (2021). arXiv: 2103.10779. URL: https://arxiv.org/ab
s/2103.10779.

[Lin] Memory Allocation Guide - The Linux Kernel Documentation. 2021. URL: https://www
.kernel.org/doc/html/latest/core-api/memory-allocation.html (visited on
01/19/2022).

[Mic04] M.M. Michael. “Hazard pointers: safe memory reclamation for lock-free objects.” In:
IEEE Transactions on Parallel and Distributed Systems 15.6 (2004), pp. 491–504. DOI:
10.1109/TPDS.2004.8.

[Mor+13] Iulian Moraru et al. “Consistent, Durable, and Safe Memory Management for Byte-
Addressable Non Volatile Main Memory.” In: Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems. TRIOS ’13. Farmington, Penn-
sylvania: Association for Computing Machinery, 2013. ISBN: 9781450324632. DOI:
10.1145/2524211.2524216. URL: https://doi.org/10.1145/2524211.2524216.

[Nvk] Persistent Memory Wiki. 2022. URL: https://nvdimm.wiki.kernel.org/ (visited on
03/10/2022).

[Ouk+17] Ismail Oukid et al. “Memory Management Techniques for Large-Scale Persistent-Main-
Memory Systems.” In: Proc. VLDB Endow. 10.11 (2017), 1166–1177. ISSN: 2150-8097.
DOI: 10.14778/3137628.3137629. URL: https://doi.org/10.14778/3137628.31
37629.

[Pel+15] Omer Peleg et al. “Utilizing the IOMMU Scalably.” In: 2015 USENIX Annual Technical
Conference (USENIX ATC 15). Santa Clara, CA: USENIX Association, July 2015, pp. 549–
562. ISBN: 978-1-931971-225.

[Pmd] pmem.io: Persistent Memory Development Kit. 2021. URL: https://pmem.io/pmdk/
(visited on 12/10/2021).

[Pth] pthreads(7) – Linux manual page. 2021. URL: https://man7.org/linux/man-pages
/man7/pthreads.7.html (visited on 12/10/2021).

[Rao+08] S. Raoux et al. “Phase-change random access memory: A scalable technology.” In: IBM
Journal of Research and Development 52.4.5 (2008), pp. 465–479. DOI: 10.1147/rd.5
24.0465.

51

https://doi.org/10.48550/ARXIV.1903.05714
https://arxiv.org/abs/1903.05714
http://jemalloc.net/
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/3477132.3483567
https://doi.org/10.1145/2370036.2145835
https://doi.org/10.1145/2370036.2145835
https://doi.org/10.1145/2370036.2145835
https://arxiv.org/abs/2103.10779
https://arxiv.org/abs/2103.10779
https://arxiv.org/abs/2103.10779
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
https://www.kernel.org/doc/html/latest/core-api/memory-allocation.html
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1145/2524211.2524216
https://nvdimm.wiki.kernel.org/
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.14778/3137628.3137629
https://doi.org/10.14778/3137628.3137629
https://pmem.io/pmdk/
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1147/rd.524.0465

REFERENCES

[Ray+21] Amanda Raybuck et al. “HeMem: Scalable Tiered Memory Management for Big Data
Applications and Real NVM.” In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. SOSP ’21. Virtual Event, Germany: Association for
Computing Machinery, 2021, 392–407. ISBN: 9781450387095. DOI: 10.1145/34771
32.3483550. URL: https://doi.org/10.1145/3477132.3483550.

[Rus] Rust Standard Library – std::sync. 2021. URL: https://doc.rust-lang.org/std/sy
nc/index.html (visited on 12/10/2021).

[Sch+15] David Schwalb et al. “nvm malloc: Memory Allocation for NVRAM.” In: ADMS@ VLDB
15 (2015), pp. 61–72.

[Stda] C++ Atomic operations library - std::memory_order. 2021. URL: https://en.cpprefe
rence.com/w/cpp/atomic/memory_order (visited on 12/10/2021).

[Stdb] C++ Thread support library. 2021. URL: https://en.cppreference.com/w/cpp/th
read (visited on 12/10/2021).

[Ven+11] Shivaram Venkataraman et al. “Consistent and Durable Data Structures for Non-Volatile
Byte-Addressable Memory.” In: Proceedings of the 9th USENIX Conference on File and
Stroage Technologies. FAST’11. San Jose, California: USENIX Association, 2011, p. 5.
ISBN: 9781931971829.

[VTS11] Haris Volos, Andres Jaan Tack, and Michael M. Swift. “Mnemosyne: Lightweight
Persistent Memory.” In: SIGARCH Comput. Archit. News 39.1 (2011), 91–104. ISSN:
0163-5964. DOI: 10.1145/1961295.1950379. URL: https://doi.org/10.1145/19
61295.1950379.

[Wyh] wyhash: The FASTEST QUALITY hash function, random number generators (PRNG) and
hash map. 2022. URL: https://github.com/wangyi-fudan/wyhash (visited on
02/22/2022).

[XS16] Jian Xu and Steven Swanson. “NOVA: A Log-structured File System for Hybrid
Volatile/Non-volatile Main Memories.” In: 14th USENIX Conference on File and Storage
Technologies (FAST 16). Santa Clara, CA: USENIX Association, Feb. 2016, pp. 323–338.
ISBN: 978-1-931971-28-7.

[Yan+20] Jian Yang et al. “An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory.” In: 18th USENIX Conference on File and Storage Technologies (FAST 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 169–182. ISBN: 978-1-939133-12-0.

52

https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3477132.3483550
https://doc.rust-lang.org/std/sync/index.html
https://doc.rust-lang.org/std/sync/index.html
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/1961295.1950379
https://doi.org/10.1145/1961295.1950379
https://github.com/wangyi-fudan/wyhash

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 The Memory Hierarchy
	2.2 Virtual Memory Management
	2.2.1 Page Tables
	2.2.2 Memory Allocators
	2.2.3 The Linux Buddy Allocator

	2.3 Parallel Processor Architectures
	2.3.1 Memory Ordering and Atomic Operations
	2.3.2 Shared Memory
	2.3.3 Non-blocking algorithms
	2.3.4 (False-) Sharing

	2.4 Non-Volatile Memory
	2.4.1 (Extended) Asynchronous DRAM Refresh
	2.4.2 Direct Access (DAX)

	2.5 Related Work
	2.6 Summary

	3 Architecture
	3.1 Morsels
	3.2 The Lo(ck|g)-Free Page Allocator
	3.2.1 General Requirements
	3.2.2 Persistency Related Requirements

	3.3 Page Table-Based Architecture
	3.4 Heterogeneous Memory Systems
	3.5 Search Strategies
	3.6 Page Table Pages
	3.7 Summary

	4 Implementation
	4.1 General API
	4.2 Lower Allocator
	4.2.1 Fixed Page Tables
	4.2.2 Dynamic Page Tables

	4.3 Upper Allocators for Subtree Management
	4.3.1 Table Allocator
	4.3.2 Array Allocator

	4.4 Optimizations
	4.4.1 Lock-Free Linked Lists
	4.4.2 Reducing False Sharing
	4.4.3 Utilizing Locality for Free Operations

	4.5 Baseline Allocators
	4.6 Summary

	5 Evaluation
	5.1 Race Condition Tests with Stopping Points
	5.2 Microbenchmarks
	5.2.1 Benchmarking the Linux Page Allocator
	5.2.2 Bulk Allocations
	5.2.3 Repeat Allocations
	5.2.4 Random Allocations
	5.2.5 Different Filling Levels
	5.2.6 Huge and Giant Pages

	5.3 Memory Access
	5.4 Recovery and Crash Consistency
	5.5 Metadata Overhead
	5.6 A Volatile Morsel Allocator
	5.7 Summary

	6 Conclusion
	Lists
	List of Acronyms
	List of Figures
	Bibliography

