
Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Master Thesis in Computer Science 30. Oktober 2020

Quantifying Soft-Error Resilience of
Embedded RISC-V Systems with Capability-
based Memory Protection

Malte Bargholz

Please cite as:
Malte Bargholz, “Quantifying Soft-Error Resilience of Embedded RISC-V Systems
with Capability-based Memory Protection” Master Thesis, Leibniz Universität
Hannover, Institut für Systems Engineering, October 2020.

www.sra.uni-hannover.de

Leibniz Universität Hannover
Institut für Systems Engineering
Fachgebiet System und Rechnerarchitektur
Appelstr. 4 · 30167 Hannover · Germany

https://www.sra.uni-hannover.de

Quantifying Soft-Error Resilience of Embedded
RISC-V Systems with Capability-based Memory

Protection

Master Thesis in Computer Science

vorgelegt von

Malte Bargholz

geb. am 23. April 1995
in Dannenberg (Elbe)

angefertigt am

Institut für Systems Engineering
Fachgebiet System- und Rechnerarchitektur

Fakultät für Elektrotechnik und Informatik
Leibniz Universität Hannover

Erstprüfer: Prof. Dr.-Ing. habil. Daniel Lohmann
Zweitprüfer: Prof. Dr.-Ing. Bernardo Wagner

Betreuer: Dr.-Ing. Christian Dietrich

Beginn der Arbeit: 01. Mai 2020
Abgabe der Arbeit: 01. November 2020

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angege-
benen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenom-
men wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche
gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from third parties.
I certify that the work has not been submitted in the same or any similar form for assessment to any
other examining body and all references, direct and indirect, are indicated as such and have been
cited accordingly.

(Malte Bargholz)
Hannover, 30. Oktober 2020

A B S T R A C T

Shrinking structure sizes and decreasing supply voltages exacerbate the number of transient faults
which a device experience during its lifetime. These transient misbehaviors often lead to extensive
and expensive failures. In consequence, a multitude of protection schemes has been developed to
address the reduced resilience. Most of these incur large overheads, either in hardware or runtime,
and are prohibitively expensive for commodity electronics. To avoid these overheads designers
often look for added soft-error protection through existing protection schemes such as memory
protection. The CHERI protection model protects a system’s memory accesses through the use of
enhanced pointers called capabilities. To evaluate the impact of CHERI’s memory protection on the
soft-error resilience of a system, two architectures, one unprotected, and one protected with CHERI,
are compared. Their respective soft-error resilience is approximated using fault injection for several
workloads. In summary, CHERI reduces the amount of silent data corruption and timeouts which a
system experiences. Additionally, it improves the detection of soft-errors by detecting more errors
and detecting them faster. Therefore, capability-based memory protection offers effective protection
against soft-errors even though it was not explicitly designed for it.

v

KU R Z FA S S U N G

Schrinkende Strukturgrößen und geringere Versorgungsspannungen verstärken die Menge an tran-
sienten Fehlern, welches ein Gerät während seiner Lebenszeit erfährt stark. Dieses kurzzeitige
Fehlverhalten führt oft zu weitreichenden und schwerwiegenden Ausfällen. Aus diesem Grund
wurden viele verschiedene Schutzmaßnahmen entwickelt, welche die Zuverlässigkeit des Systems
erhöhen. Diese Maßnahmen erhöhen jedoch häufig den Aufwand oder die Laufzeit des Systems
und sind daher oft zu teuer für Alltagselektronik. Um den erhöhten Aufwand zu vermeiden, wird
oft versucht existieren Schutzmaßnahmen, wie zum Beispiel Speicherschutz, für die Zuverlässig-
keitserhöhung wiederzuverwenden. Das CHERI Schutzmodell schützt den Speicher eines Systems
in dem es erweiteren Zeiger, die man auch Capabilities, nennt verwendet. Um den Einfluss dieses
Schutzmodells auf die Zuverlässigkeit eines Systems zu ergründen vergleicht eine durch CHERI
geschütze Architektur und eine ungeschützte Architektur. Die Zuverlässigkeit der verglichenen
Architekturen wird hierbei durch Fehlerinjektion verglichen. Zusammenfassend verringert CHERI
die Menge an undetektierten Datenkorruptionen und Timeout-Fehler eines Systems. Weiterhin
führt CHERI auch zu einer besseren Erkennung von transienten Fehler. Diese werden nicht nur
häufiger erkannt, sondern im Durchschnitt auch wesentlich schneller. Aus diesem Grund erhöht das
CHERI Speicherschutzmodell effektiv die Widerstandsfähigkeit eines Systems ohne spezifisch dafür
ausgelegt zu sein.

vii

C O N T E N T S

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 A Brief History of Soft-Errors . 3

2.1.1 Technology Scaling Effects . 4
2.2 Faults, Errors, Failures and Resilience . 6

2.2.1 Faults, Errors and Failures . 6
2.2.2 Dependability and Resilience . 7

2.3 Fault Forecasting Through Fault Injection . 8
2.4 Related Work: Protection Schemes . 10

2.4.1 Architectural Level . 11
2.4.2 Software Level . 12
2.4.3 Summary . 13

2.5 Memory Protection . 14
2.5.1 Basic Definitions . 14

2.5.1.1 Sandboxing . 14
2.5.1.2 Memory Safety . 15

2.5.2 The CHERI Protection Model . 17
2.5.2.1 Capabilities . 17
2.5.2.2 The Capability Hardware Enhanced RISC Instructions (CHERI) hard-

ware architecture . 20
2.5.2.3 The CHERI software architecture . 21

2.6 Summary . 23

3 Architecture 25
3.1 Soft-Error Resilience Through Memory Protection . 25
3.2 The FAIL* Framework . 27
3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection 30

3.3.1 CHERI-FAIL: Challenges . 31
3.3.2 CHERI-FAIL: Extensions . 32

3.3.2.1 A virtual fault space . 32
3.3.2.2 A bitwise fault space . 35

ix

Contents

3.3.3 CHERI-FAIL: Integration . 38
3.4 Summary . 41

4 Analysis 43
4.1 Fault Model . 43
4.2 Benchmarks . 44

4.2.1 The fibonacci Benchmark . 44
4.2.2 The bubblesort Benchmark . 44
4.2.3 Variants . 45

4.3 Evaluation Procedure . 46
4.4 Results . 47

4.4.1 Hypothesis: Reduced Frequency of Unsignaled Content Failures 47
4.4.1.1 Effect of Compiler optimization . 48
4.4.1.2 Effect of Instruction Length and memory padding 49
4.4.1.3 Effects of parity-protected capabilities 51
4.4.1.4 Summary . 52

4.4.2 Hypothesis: Reduced Frequency of Late Timing Failures 52
4.4.2.1 Effect of optimization . 53
4.4.2.2 Effect of instruction length and memory padding 54
4.4.2.3 Effects of parity . 55
4.4.2.4 Summary . 56

4.4.3 Hypothesis: Improved Detection of Existing Failure Modes 56
4.4.3.1 TRAP errors . 57
4.4.3.2 Detection Latency . 59
4.4.3.3 Summary . 60

4.4.4 Summary . 60

5 Conclusion 63

Lists 65
List of Acronyms . 65
List of Figures . 67
List of Tables . 69
List of Listings . 71
List of Algorithms . 73
Bibliography . 75

x

1I N T R O D U C T I O N

Soft-errors in integrated circuits have been known to exist for at least the last 30 years [MW79]. They
are transient misbehaviors which themselves are manifestations of seemingly random, non-recurring
transient currents called faults. As such, they can trigger flip-flops, force a logic transition, or even
create permanent feedback loops in the erroneous device [Lay+98]. This low-level corruption can
further propagate, for example, if the erroneous flip-flop belongs to a cell of dynamic memory,
which is read by an executed program. The program which blindly uses the corrupted values then
computes an incorrect result. Untreated and unaccounted for, these soft-errors, therefore, often lead
to extensive and expensive system failures [Lyo00].

As the cause of soft-errors researchers first suspected high-energy particle radiation, which
only affects devices operating in highly hazardous environments such as satellites in low-earth
orbit [BSH75]. However, today it is clear that multiple ionization mechanisms involving different
types of radiation exist and can induce the transient current required for soft-errors. Hence, even
most commodity electronic devices operating at sea-level will experience multiple errors during
their lifecycle.

Additionally, the need for faster and more power-efficient devices has lead to significant decreases
in operating voltage, structure size, and increases in operating frequency. All of these changes
increase the vulnerability of integrated circuits to soft-errors as the amount of current or charge
required to upset the circuit shrinks. For some circuits, the soft-error rate is even the limiting factor
for further voltage shrinking [Nar+18].

Over the years, protection against transient errors has been developed at almost any system
abstraction level. From special radiation-resistant coatings for semiconductor crystals [CZ85], to
redundant logic elements [LV62], error-correcting codes [BB84], and redundant operating sys-
tems [DH12], a multitude of protection schemes exist today. Protection at the lower abstraction
levels often offer better protection but are significantly more expensive due to additional process
steps or multi-redundant hardware. Especially for low-cost devices, this cost is often prohibitively
high, which leads to an increased usage of high-level protection approaches.

Memory protection is a high-level protection approach. However, it does not protect a system
against soft-errors but instead protects it from invalid access to its dynamic memory. If a program
accesses an address for which it has no access rights, the system is notified and can prohibit the
invalid access. One form of memory protection is capability-based memory protection. Capabilities
are augmented pointers, which in addition to the pointer value include metadata which describes the
pointed-to region of memory, for example, its bounds and access rights to it. In a capability-based
memory protection scheme, they replace normal pointers and their metadata is validated during
each access through them to assert the access’s validity.

1

1 Introduction

In addition to protection, these capabilities also provide a form of redundancy. If part of the
capability, for example, the pointer value becomes corrupted, they may now be at odds with the
additional metadata. This mismatch is subsequently detected by the memory protection system.
Most other soft-error protection schemes, such as triple-modular-redundancy, also use redundancy
to provide resilience to soft-errors. It can be assumed that the redundancy provided by the capability
memory-protection provides similar resilience.

This thesis quantifies the soft-error protection provided by capability-based memory protection. It
compares the resilience to soft-errors of two systems: One with capability-based memory protection
and one system without any memory protection. More specifically, the CHERI memory-protection
model is evaluated by comparing its RISC-V implementation to the unprotected RISC-V architecture.
To gauge the additional resilience provided by the memory-protection each system is evaluated by
injecting artificial faults into them while they run a suite of micro-benchmarks and recording the
resulting soft-errors or system failures.

The rest of this thesis is structured as follows:
Chapter 2 provides a theoretical framework for soft-errors, discusses existing protection schemes,
and finally presents the CHERI protection model. Then, Chapter 3 presents, at a high-level, the
development of a test framework, which allows gauging CHERI RISC-V’s and RISC-V’s resilience
to faults and their resulting soft-errors for a given workload. Finally, Chapter 4 evaluates both
architectures with multiple representative benchmarks to reach a conclusion about their overall
resilience to soft-errors in Chapter 5.

2

2F U N DA M E N TA L S

The following chapter gives the reader an overview of the fundamental concepts required to under-
stand this thesis. At first, Section 2.1 touches on the history of soft-errors and their mechanisms.
Section 2.2 defines important terms such as fault, error, and failure to arrive at a clear definition
of resilience. Section 2.4 gives an overview of soft-error protection mechanisms at different archi-
tectural levels, to embed this work into related research. Finally, Section 2.5 defines and describes
different levels of memory protection and the CHERI memory protection model that is evaluated in
this thesis in effect on the soft-error resilience.

2.1 A Brief History of Soft-Errors

Soft-errors were first discovered in 1975 when researchers of the Hughes Space Communications
Company discovered four “anomalies” that occurred in their communications satellites during their
17-year operating period [BSH75]. Binder et al. analysis revealed that these abnormal behaviors
could not be attributed to the usual charging of the satellites by solar winds. Instead, they argued
that these anomalies originated in erroneously triggered flip-flop circuits. They attributed this
behavior to high-energy iron particles of cosmic origin, which charged the base-emitter capacitance
of critical transistors causing them to change their state. Due to the low failure rate (about one
failure in 4 years) and the fact that such heavy, cosmic particles rays are not able to cross into the
earth’s atmosphere, the authors dismissed the problem as minor.

It was not until the 1979 landmark paper by May and Woods of Intel [MW79], that the severity
of the soft-error problem was recognized. The Intel 2107-series DRAM was found to exhibit a large
amount of seemingly random, nonrecurring, single-bit errors, for which the authors coined the term
“soft-errors” due to their transient nature. The abnormal behavior was eventually traced back to
radioactive contamination of the ceramic packaging material used in these chips. Based on these
findings, the authors proposed a different mechanism – ionization by alpha-particles – to explain the
soft-errors. Figure 2.1 gives an overview of the ionization mechanism that leads to soft-errors. May
and Woods postulated a critical charge Qcri t , that must be generated by any ionization mechanism
before a soft-error occurs in a particular integrated circuit. Following this discovery “low-alpha
manufacturing”, i.e., the usage of material with stringent alpha particle emission rate guarantees,
became a standard in the semiconductor industry.

Revising the theory of Binder et al., Ziegler and Landford of IBM hypothesized in 1979 that if
alpha particles can induce soft-errors that any cosmic radiation may have a similar effect, even
at sea-level [ZL79]. In particular, they proposed an indirect mechanism, in which high-energy
particles, especially neutrons, fragment silicon nuclei. These fragments then induce other radiation
through nuclear decay and/or charge, which leads to the observed soft-error. At first, the theory

3

2.1 A Brief History of Soft-Errors

n+ n+

p+

gatesource
ID

drain

UGS

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

–

+

(a) 0≤ UGS ≤ Uth, ID = 0

n+ n+

p+

gatesource
ID

drain

UGS

– –+
– –+
– –+
– –+ – –+ –
–

+
–
–
+
––
+
––
+
––
+
––
+

– –
– –
– –
– –
– –
– –

(b) 0≤ UGS ≤ Uth, ID � 0

n+ n+

p+

gatesource
ID

drain

UGS

–

+

–
+

–

+

–

+

(c) 0≤ UGS ≤ Uth, ID ≈ 0

Figure 2.1 – A particle strikes a transistor which gate is floating or below the threshold voltage (a),
creating a wave of minority and majority charge carriers in its wake. Subsequently, a depletion
funnel is formed which collects most majority charge carriers into the nearest depletion region
(b) and subsequently the nearest gate, causing a large current spike. Finally, most generated
charge carriers have recombined, but a small diffusion current remains (c).

was treated with skepticism by their peers, citing concerns on the separability of soft-error events
induced by cosmic radiation and by other sources [Muk08]. To test their hypothesis, the authors then
proposed high-altitude testing, which was supposed to increase the occurrence of such high-energy
particles. This is due to the earth’s dense atmosphere: Most high-energy particles collide and
subsequently scatter, on one of the many atmospheric compounds before ever reaching sea-level.
Finally, computer repair logs collected by IBM confirmed the proposed mechanism [Nic10] in 1983,
putting neutron-induced soft-errors in the focus of research efforts.

In 1995, Baumann et al. of Texas Instruments discovered different indirect, neutron-induced soft-
error mechanism, which is triggered by low-energy atmospheric neutrons [Bau+95]. Experiments
with high-density DRAMs based on the conventional aluminum-based semiconductor process showed
a large soft-error rate, which was eventually traced back to boron compounds used as p-type dopants
or insulators in the form of Borophosphosilicateglass (BPSG)es. Certain boron isotopes are especially
vulnerable to neutron radiation and emit when subjected to such, charged particles and alpha
radiation. This discovery leads to the removal of boron additives from semiconductor manufacturing
processes, thus eliminating this particular problem [Muk08].

While theoretical work on the soft-error mechanism is abundant, real-world impact data is hard
to come by. One highly visible problem case was the “Sun Screen” [Lyo00] bug of 2000, which
caused Sun enterprise servers crashed intermittently due to soft-errors in susceptible SRAM caches.
Since Sun was the market leader for Unix servers at the time, many high profile companies such
as eBay were affected. While other vendors at the time recognized the emerging increased SRAM
soft-error rates, Sun failed to account for these in the design of their Unix servers and subsequently
lost tens of millions of dollars [Nic10]. In another case in 2005, Hewlett-Packard acknowledged that
a large server system installed at Los Alamos National Laboratory was failing frequently because of
soft-error events in its parity-protected cache tag array [Mic+05].

2.1.1 Technology Scaling Effects

When soft-errors were first discovered, most semiconductor technologies used a structure size of well
over 1 µm. As the customers demanded more functionality with less power consumption and size

4

2.1 A Brief History of Soft-Errors

of electronics, structure density increased dramatically. Moore’s law was created which predicted
a doubling of transistor count every two years while keeping area constraints the same. To keep
up with the increased density, the structure size of modern technology-nodes has decreased to a
few nanometers. This change in structure size comes with a problem: The charge needed to upset
a transistor cell is directly proportional to the capacitance of its diffusion area, which in turn is
proportional to the size of the diffusion area. Thus, a decrease in diffusion area size, or in other
words structure size, negatively affects Qcri t and increases the soft-error rate. Research as early as
1982 [Pic82], recognized that dense integration posed unique problems for the soft-error rate of
integrated circuit. By modeling technology nodes from 4µm to 0.4µm, Pickel et al. predicted that
soft-error rate would increase with at least 1/

p
K , when scaling structure size with a factor K .

Nearly 25 years later, in 2005, studies could not validate this claim [Bau05]. DRAM designs
ranging from 1µm to 100nm in structure size instead show a more or less constant soft-error rate
when considering the soft-error rate of the whole system. Single bit soft-error rate in DRAM designs
even show a 4-5 times reduction for each new technology node. Baumann argues that this occurs
due to the widespread use of three-dimensional layout techniques in sub-micron DRAM designs,
which reduce the vulnerable cross-section significantly. The disparity between whole the system
soft-error rate and the single bit soft-error rate can be explained by taking into account the increased
density of DRAM designs with each generation. Thus, while DRAM design was originally the most
susceptible, it is now one of the most robust devices in terms of soft-error rate.

SRAM designs, on the other hand, show a more or less constant or even decreasing single bit
soft-error rate, when considering design ranging below 250 nm structure size. The reduced transistor
depletion area cross section has been mostly canceled out by voltage reduction and capacitance
reduction, which both decrease Qcri t . For larger structure sizes, single bit soft-error was initially
increasing, most likely due to the usage BPSG, which has since been eradicated from manufacturing
processes. The system-level SRAM soft-error rate is steadily increasing, most likely due to the
increased usage of SRAM cells during design. With the advent of new transistor technologies such
as Silicon-on-insulator (SOI) or FinFET in technology nodes below 30 nm, a different effect can
be observed. While Qcri t still decreases with each technology node, Qcol l , that is the charge which
is collected in a soft-error event, stays constant. Hence, the soft error rate of SRAMs decreases
significantly [Nar+18]. This, on the other hand, limits the applicable voltage scaling of modern
SRAM cells, as Qcri t of these technologies is directly proportional to cell bias. Nonetheless, newer
transistor technologies show other failure modes, for example, due to muon radiation [HAR15],
and therefore, future developments remain unclear.

Soft-errors, which occur in logic show a tenfold increase in soft-error rate when examining
structure size ranging from 180 nm to 90 nm. This may especially be a concern for systems,
which protect memory through error correction, i.e., where logic soft-errors are the primary error
mechanism. A radiation-induced glitch in logic may only affect the whole system if it propagated
from the logic to storage elements (i.e., flip-flops, SRAM, or DRAM). For this, it must occur when
the storage element is “latching” or, in other words, clocked. Larger technology nodes are generally
driven with lower clock frequencies and higher path delay, which made such a latching glitch
exceedingly rare. However, Baumann postulated that with increasing frequency and lower path
delays that such combinational soft-errors would be latched at an increased rate, and thus make up
a significant portion of the whole system soft-error rate. While recent studies confirm the correlation
of combinational soft-error rate with frequency [Mah+10], these errors do not make up a significant
portion of the system soft-error rate for 32 nm [GSZ09]. Instead, some research even shows a
decrease in combinational soft-error rate for designs with a structure size below 20 nm [Mah+14].

5

2.2 Faults, Errors, Failures and Resilience

2.2 Faults, Errors, Failures and Resilience

The following section provides descriptions and definitions of basic terms relevant to soft-errors,
such as faults, errors, failure (Section 2.2.1), and system properties that derive from it, such as
dependability or resilience (Section 2.2.2). Note that, while fault, errors, and failures are distinctly
defined in this section, the rest of this work uses the term soft-error interchangeably with faults that
cause errors and soft-errors, and assumes that a given soft-error always causes a failure and can be
observed.

2.2.1 Faults, Errors and Failures

A system that fulfills its intended function (according to a specification) is said to be delivering
correct service [Avi+04]. If it, on the other hand, deviates from correct service, a system is said to be
in failure. Such a service failure is the cause of one or more incorrect (internal or external) system
(sub-)states called errors. Any error is in turn a manifestation of one or more underlying faults.
Examples of faults include externally induced bit-flips in flip-flops, permanent oxide degradation in
transistors, or even software bugs.

Faults can be classified from numerous viewpoints, the most notable of which are: persistence,
locality, and dimension. The persistence of a fault may either be permanent, i.e., gate-oxide degra-
dation, or transient, i.e., externally induced bit flips. Additionally, some authors introduce the
notion of intermittent faults, which are reoccurring transient faults. The locality of a fault may
either be internal, i.e., its cause originates from within the system, or external to the described
system boundary. The dimension of a fault may either be hardware, i.e., it originates, and/or affects
hardware or software.

Each occurred fault may – at any point in time after its inception – induce an error, at which
point it is referred to as an activated fault. On the other hand, a fault that has not yet caused an
error is called a dormant fault. Fault dormancy occurs due to a multitude of reasons. Taking a logic
circuit as an example, a fault in any of its elements might need a certain set of inputs to propagate
to its outputs, which effectively masks the fault for certain inputs. A fault can also be masked due to
its dependency on the occurrence of a different, but related fault. Furthermore, a fault may be a
tolerated fault such as a bit flip in an error-corrected SRAM, which is corrected when accessing the
faulty cell.

An error is in its inception a manifestation of (one or more) underlying faults [Muk08]. A
manifestation need not be directly visible, but it may, in turn, cause other errors which may eventually
be visible. This mechanism is called error propagation. It can either occur inside a system component
(internal propagation) or to another component or system (external propagation). When an error
propagation crosses a system or component boundary it becomes an external fault to the receiving
component or system and forms the “chain of threats” as pictured in Figure 2.2. Similar to propagation
across component boundaries, the propagation of faults across different abstraction layers can be
seen as a form of error propagation. In the context of a processor, a fault and its subsequent failure
at the circuit level, e.g., a faulty AND-gate, might affect the system at the architectural level, e.g., by
saving the wrong result to the result register.

Visible errors are called detected errors, if they are indicated by an error signal or message. In
contrast, latent errors are present but not detected. Additionally, an error might be corrected at
any point in the propagation through means of error correction. Similarly to faults, errors can be
permanent (hard errors), or transient called soft-errors, which includes errors caused by intermittent
faults. While fault and error can be clearly separated, most literature uses these terms interchangeably.

6

2.2 Faults, Errors, Failures and Resilience

external
fault

internal error

activation

internal failure

propagation causation
output error input error

external
failure

internal fault

component A component B

system interface

Figure 2.2 – In the “chain of threats” faults activate errors, which propagate to failures, that
themselves cause new faults. Errors are propagated across interfaces and can cause failures in
the external system behavior or connected components.

This is most likely due to the inherently invisible nature of faults, which only become visible, or
manifest, as errors.

A system failure occurs if – and only if – an error manifests at or propagates to an interface at
the system boundary and causes deviation from correct service behavior. As a consequence, when
talking about errors, one must always consider the scope in which the error occurred. For example,
an error in the branch predictor of a processor might propagate along the “chain of threats” until it
causes a system failure, i.e., misprediction, but it will never lead to system failure.

The notion of a failure in literature is often used interchangeably with the occurrence of visible
errors (e.g., [Muk08]), but when considering resilience to errors it is helpful to separate both.
Consequently, system failures can be classified along a failure domain and if applicable, a failure
mode.

The domain of a failure, that is the “way” a failure is visible to a user, can be broadly categorized
into content failures, and timing failures. Timing failures can additionally be separated into early
timing failures and late timing failures. Failures that occur when both timing and content of the
provided service are incorrect are either erratic failures or halt failures, i.e., failures which stop any of
service of the system. Additionally, each of these failure types can be signaled or unsignaled, which
indicates whether the user of the system is able to tell that a failure has occurred previously. This is
especially relevant in the context of content failures, which when unsignaled, turn into silent data
corruption failures. Furthermore, signaled halt failures are often described as detectable unrecoverable
errors.

Systems, which fail in a consistent way, i.e., don’t produce erratic failures, are called fail-controlled
systems. They only fail in predefined failure modes and can be categorized along the most dominant of
these modes. Fail-halt systems are systems, whose failures are dominated by halt failures. Fail-silent
systems are systems, whose failures are dominated by silent halt failures. The most interesting
failure mode in the context of this work is the fail-safe mode, which describes a system that mostly
fails with minor failures. Such minor failures are failures, for which the associated cost of system
failures is similar to the benefits of a system that delivers correct service.

2.2.2 Dependability and Resilience

A dependable system is a system, which avoids failures that are more frequent and more severe than
acceptable [Avi+04]. Such a system is said to be resilient against failures, or the underlying errors

7

2.2 Faults, Errors, Failures and Resilience

and faults respectively. Typically, dependability is split into four to five basic concepts, which must
be fulfilled by a dependable system:

1. Reliability, i.e., continuity of correct service.

2. Availability, i.e., readiness for correct service.

3. Maintainability, i.e., the ability to undergo modification and repairs.

4. Safety, i.e., the absence of catastrophic consequences of failure.

5. Integrity, i.e., the system is free of improper modifications. (optional)

The concepts are often used under the name RAMS, to encompass dependable systems. Generally
speaking, any extent to which a system possesses resilience or dependability is always probabilistic.
Transient faults for example, by their very nature, occur at random and cannot be properly described
in a deterministic way.

To attain a resilient or dependable system one usually turns to eradicate their source, i.e., faults.
In general four techniques exist: (1) Fault prevention (2) Fault tolerance (3) Fault removal (4) Fault
forecasting. Fault prevention usually happens at design time. The system is designed in a way that
minimizes possible faults, and consequently, minimizes possible failures. Fault tolerance on the other
hand, happens at runtime, and tries to actively avoid fault induced errors and subsequent failures. It
can be split into error detection and recovery. First, a specialized mechanism detects a fault through
its manifested error(s), after which a corrective maintenance action tries to remove the underlying
fault. A typical example is redundancy: By duplicating part of the system and integrating a special
voting mechanism, simple error detection (for dual redundancy) or error correction (for triple
redundancy) can be performed. The effectiveness of a fault tolerance mechanism is described by its
coverage, which indicates how many faults of a certain class be detected and subsequently corrected
through it. Fault removal happens at development time and can be split into three parts: Verification,
diagnosis, and correction. By verifying a system against its design specification or verification
conditions the number of faults may be reduced. Typically, this is done by either static (e.g., model
checking) or dynamic (e.g., testing) verification. If a failure is found during verification, the designer
must diagnose its underlying fault and finally correct it. Last but not least, Fault forecasting evaluates
a system’s behavior regarding faults. The evaluation can be split into a qualitative evaluation, which
identifies failure modes, and a quantitative evaluation, which evaluates in terms of probabilities
to which extent failures are possible. Fault forecasting is different from fault removal in that it
evaluates the system generally and not with regard to a specification.

For the context of the thesis, I focus on two aspects that increase the resilience of a system.
First, a system is more resilient if it shows increased reliability. Such increased reliability could be
achieved if the system detects faults earlier or more often and is, therefore, able to correct them in a
timely fashion. Secondly, a system is more resilient if it shows increased safety. Such increased safety
could be achieved if the system exhibits less catastrophic failure modes or exhibits these failures less
frequently. Both these aspects can be evaluated using fault forecasting.

2.3 Fault Forecasting Through Fault Injection

To evaluate a system’s overall resilience to transient faults, its failure modes and their corresponding
failure rate must be estimated. However, even if failure modes can be successfully modeled, empirical
estimation and verification of their corresponding failure rate are infeasible under normal operating

8

2.3 Fault Forecasting Through Fault Injection

conditions [BF93]. Recent studies [Ziv+19] show that even though modern DRAM memory elements
exhibit a fault roughly every 3000 hours, this only translates to an uncorrected, i.e., observable,
error every 1010 hours. To accelerate system verification, its designers often use a form of fault
forecasting, to predict possible failures modes and to estimate their corresponding failure rate. One
widely known fault forecasting technique is fault injection (FI). Instead of waiting for faults to
naturally occur, FI systematically triggers, or in other words injects, additional faults in the system
under test while it runs one or more workloads to characterize the system’s behavior empirically.
Specifically, deterministic, run-to-completion workloads are often chosen, because they have a
limited and static set of possible points where a fault can occur. While concrete FI implementations
differ, most augment an existing target system. A target system, can either be a (modified) physical
system or a simulation environment. The FI system assumes complete control over the target system
and is able to modify its internal state. Hsueh et al [MTI97] describe a generic FI system with the
following components:

• A controller, which orchestrates every step of the fault injection.

• A workload generator, which selects the systems workload and its input.

• A fault injector, which forwards to the system to the injection point and injects the target
element.

• A monitor, which observes the workload execution.

• A (optional) data analyzer, which translates the collected data into specific metrics, such as
fault coverage.

For the system to produce a valid result, each workload must execute deterministically. This ensures
that they have a static set of possible points where a fault can occur. The presented FI system
iteratively evaluates this set of fault points using a four-step process. First, the target system
is reverted to a known, error-less state. Then, after selecting an appropriate workload and the
corresponding input, the selected workload is loaded and executed until the target system reaches
the fault point. Here, the fault injector injects the faults into the target systems state according to
the fault model, e.g., transient single-bit flips, and resumes execution of the target system. Finally,
the target system executes the workload until completion or until an exception is encountered, at
which point the system state is analyzed and the fault point is considered to be evaluated. This
process is repeated until all fault points have been evaluated. Finally, the data analyzer can output
relevant metrics, such as the fault coverage for each workload. The FI system as described by
Hsueh assumes that only a single fault occurs during each run of the workload. This a reasonable
assumption, due to the very low probability of even a single fault. As Schirmeier succinctly puts it in
his dissertation [Sch16] :

“[. . .] at current – and tomorrow’s – fault rates [. . .] it is sufficient to inject one fault per
FI experiment.”

Each injection can take place at any given abstraction layer of the system under test. As discussed
in Section 2.2.1, due to the error propagation along the “chain-of-threats”, a fault in layer n and the
resulting failure can and will often cause a new fault in layer n+ 1, which has a higher abstraction
level. Consequently, while the original failure, e.g., a stuck output of an OR-gate, is invisible to
the user, its propagation in a higher abstraction layer, e.g., a bit flip in a register, is often not.
Injecting faults at low abstraction levels provides greater insight into underlying fault mechanisms
and allows precise tracing, but is often not feasible. The required computational power and time to
model a large and often complex system at this level of detail is too great. Additionally, low-level

9

2.3 Fault Forecasting Through Fault Injection

models of commercial off-the-shelf (COTS) hardware are often not available or no way exist to
accurately inject faults at lower abstraction levels [Sch16]. To balance the required simulation effort,
FI implementations must carefully choose the abstraction layer at which it injects faults. This fault
abstraction implicitly defines a fault model of the system, since high-level injection limits possibly
faulty elements to these visible at the injected layer. In the context of processors, most FI frameworks,
and especially the FAIL* framework which is used in the context of this thesis, only inject faults at
the instruction set architecture (ISA) abstraction level.

For a given injection abstraction level, each possible fault point can be uniquely specified by its
location and the time at which it occurs. A fault point’s time and location are abstract properties,
which are defined in accordance with the target system. To give an example consider an FI experiment,
which injects faults into memory elements of a processor. A fault points location in such a system
would refer to the memory address and bit injected, while its time would refer to the (absolute
or relative) clock cycle during which the injection will take place. Each fault point is located in
a two-dimensional fault space, which is the space that is defined by all locations and time point
combinations during the execution of the target workload. To extract the fault space, a FI experiment
will often record a “golden-run”, i.e., a fault-less run of the workload, while monitoring accessed
elements of the system. The fault space might be non-contiguous, for instance, if the workload does
not access certain memory locations. Additionally, a FI experiment might only inject a subset of all
fault space points, if certain points are found to be equal in their injection result. This technique is
called fault space pruning.

2.4 Related Work: Protection Schemes

Research on the influence of memory protection on soft-error resilience is sparse. The dOSEK reliable
embedded kernel found that enabled memory-protection unit (MPU)-based memory protection
halved the experienced unsignaled content failures [Hof+15a] A similar result has also been obtained
for the eCos kernel, for which Hoffmann et al. [Hof+14] found that its susceptibility to soft-errors is
highly dependent on the enabled hardware protection features. More specifically, enabling both the
hardware watchdog and the MPU decreased the percentage of unsignaled content failures by 20
percent. However, no research which evaluates capability-based memory protection in a soft-error
context is known to the author. The rest of this section, therefore, gives an overview of existing
soft-error protection schemes.

Protection schemes are specific to the type of system that they protect. In this thesis a processor-
based system is considered, which next to a load-store RISC processor, of DRAM memory, and a
varying amount of memory-mapped I/O devices, the last of which shall not be considered during
this thesis. The processor follows the Von-Neumann-architecture, i.e., consists of an execution unit,
a control unit, and shared instruction and data memory. The processor state is saved in a register
file and the processor might implement a pipelined execution model and caching to accelerate
computations.

In total, such a system can be structured into four distinct abstraction layers of which only two are
discussed here. The CHERI protection model is a memory protection technique at the architectural-
and software level and therefore only memory protection techniques on these two abstraction levels
are discussed in the following. At the lowest level of abstraction – the transistor level – a system
consists of interconnected transistors and other electrical elements. By abstracting the functionality
of transistor groups, logical elements can be derived which are connected in a circuit at the circuit
level. Additionally, the system architecture, i.e., their connection to each other, might provide

10

2.4 Related Work: Protection Schemes

protection against soft-errors. Architectural protection schemes are discussed in Section 2.4.1.
Finally, Section 2.4.2 discusses protection schemes, which modify the software that runs on a system.

2.4.1 Architectural Level

The protection at the architectural level can be categorized as follows:

1. Storage, i.e., protection focused on large data structures such as caches or register-files.

2. Computation, i.e., protection that focused on correct arithmetic computation.

3. Control-flow, i.e., protection that focused on the correct execution order of the instruction
stream.

Historically, storage-focused approaches were the first to appear in research, most likely due
to the increased soft-error rate in the repetitive SRAM or DRAM designs. They rely heavily on a
coding/information theory background, to encode the information stored in an efficient but also
redundant, or at least easily verifiable, way.

The simplest mitigation strategy – the parity bit – provides single-bit error detection. For each
piece of information or byte, a redundant parity bit that is either 1 or 0 is added depending on the
number of ones or zeros in the original byte. For example, if the amount of ones in the original
byte is even the parity bit is 1 and 0 otherwise. The parity bit is stored in-line with the original
data, or in a physically separated parity storage [PGK88]. When reloading data from storage, its
parity bit can be calculated again and compared to the stored parity bit to detect any errors. Such a
scheme can detect errors up to a hamming distance of 1, but can not correct the error. However,
it struggles with Multi-bit upset (MBU), i.e., soft-errors which affect multiple bits in the original
data [Kim77; Bar77]. Nonetheless, multiple improvements to the original design, e.g., [Kem80;
MJ81], are patented and the parity bits remain in wide use today.

Error-correcting codes (ECCs) are an extension of parity bits. They provide, in addition to
detection, correction of soft-errors up to a specified amount of allowed errors. Due to their binary
coding nature, their detection and correction capabilities are inherently bounded. For a code
word hamming distance of d, they can correct up to n and detect up to n + 1 errors, iff. d >
2n+1 [Li+16]. There are multiple patented ECC schemes, which offer varying amounts of coverage
and overhead [BB84; Che89; Del97]. ECC protected systems usually have a timing overhead, which
is incurred by the code word loading and checking, in addition to an area overhead incurred by
the very same checking circuit. Still, the use of ECC is widespread. Examples include but are not
limited to, Reed-Solomon ECC in nearly all consumer media disks (CD, DVD, BluRay) or ECC-RAM,
which is the de-facto standard in modern server systems.

Architectural protection, which focuses on computation or control-flow checking is hard to
separate. Pure computational approaches rely on the encoding of information, similar to storage
protection techniques. One computational protection scheme is arithmetic codes (AN Codes) [Sch10].
AN code is a protection scheme, where for a binary operation each of the operands is multiplied
with a constant A before the arithmetic operation is applied. The result of the operation must then
be a multiple of A, which can be checked by integer division. If the computation was faulty, e.g., due
to a soft-error in the execution unit, the resulting value is most likely not a multiple of A, and the
error can be detected. Unfortunately, AN codes do not cover logical operations. Nonetheless, other
arithmetic codes, which partially cover logical operations, such as residue codes [Gar66] exist and
are used in systems such as the IBM POWER6 processor [San+08]. One other notable computational
approach, that does not rely on coding techniques, is the DIVA core [Aus99]. The DIVA core uses
partial spatial redundancy. A simple “checker” core runs alongside a complex out-of-order core, that

11

2.4 Related Work: Protection Schemes

validates both memory accesses and computation of the main core. However, implementations of
the DIVA design have proven difficult, due to increased memory and cache pressure [CWA00]. The
RESO technique [PF82] instead uses time-redundancy. Each arithmetical operation is calculated
twice: Once unmodified and again using shifted versions of the input operands. The results of both
operations can be compared and errors can be detected. While spatial-redundancy approaches
often only significantly affect the performance of the processor in an error case, time-redundancy
approaches introduce a constant overhead (up to 40% [Li+16]) even without any errors.

Hybrid protection schemes, which target both computation and control flow are almost always
based on redundancy. One prominent example is the AR-SMT approach [Rot99], which uses the
simultaneous multithreading (SMT) feature of modern processors to replicate the instruction stream
and provide time-redundancy. At certain points in the execution, each thread’s architectural state,
i.e., register file, program counter, and caches, is compared to detect soft-errors. This approach can
reduce the aforementioned overhead of time-redundancy to 10-30% over a non-duplicated thread
in simulations. Spatial redundancy that protects both computation and control flow uses N-modular
redundancy and lock stepping. Lock stepping [JSK02] is a mechanism, where the complete processor
is duplicated, runs in parallel, and the architectural state of the duplicates are compared cycle-by-
cycle. N-modular redundancy incurs an area overhead of N times over the baseline architecture, in
addition to any timing overhead of the comparison and synchronization of the duplicated cores.
Still, multiple implementations [Woo99; Sle+99] exist. One notable example, which does not use
redundancy is the Argus [MBS08] method. Argus is a complete approach, that not only detects
computation and control-flow errors, but also data-flow and storage (access) errors. Data-flow and
control-flow errors are detected by calculating a signature from the program’s control flow graph,
which is compared to a precomputed signature. To detect errors in memory (access) Argus uses an
ECC inside its caches. Additionally, computational errors are detected through subcheckers for each
execution unit.

Protection schemes which target only the control-flow may be: (1) hardware-only, i.e., im-
plemented solely in the processor architecture, (2) software-only, i.e., implemented in COTS ar-
chitectures by inserting additional instructions, or (3) a hybrid approach, in which the processor
implements additional instructions to simplify software-based control-flow checking (CFC) tech-
niques. One hardware-only, that is architectural, the approach is CFCET [RM06]. In CFCET the
processor uses execution tracing to compare the executed jumps with a precomputed jump graph,
which is generated from the program’s source code. If a mismatch is detected, a watchdog resets
the processor to the last known good state. While CFC approaches seemed promising at first, recent
studies have shown flawed statistical analysis and/or evaluation techniques that lead to the over-
estimation of these approaches. Instead of providing additional soft-error resilience, they, in fact,
increase the vulnerability of the modified architecture by 5% for hardware-based techniques and up
to 21% for software-based approaches [RJS19].

2.4.2 Software Level

Protection at the software level can be categorized into three levels:

1. Operating system protection, i.e., protection that targets a program’s runtime such as the
operating system.

2. Program protection, i.e., protection that targets the executed program, but without considering
its algorithm.

3. Algorithm protection, i.e., protection that targets the executed algorithm.

12

2.4 Related Work: Protection Schemes

Initially, operating system protection focused on isolation [Hof16]. The isolation concept eventu-
ally reached its peak with µ-kernel architecture [Acc+86], in which each operating system service and
program run in complete isolation from each other and only communicate over rigid and predefined
communication interfaces. Isolation in itself can not protect an operating system from soft-errors but
can aid error-detection and hinder error propagation along the “chain-of-threats” (see Section 2.2).
In combination with component-based recovery schemes [Dav+07; Dav+19a], such an operating
system can successfully detect and recover from a soft-error. PikeOS [Bau+09], which was originally
developed in a verification context, bases its protection on a similar isolation-based scheme, in which
the trusted hypervisor para-virtualizes multiple isolating operating system instances. The hypervisor
itself, however, is explicitly not secured and thus the prime target for soft-errors. L4/Romain [DH12],
on the other hand, implements a typical N-modular redundant approach in the well-known L4 µ-
kernel. Each thread is executed thrice while proxying any operating system calls to avoid duplicated
I/O interaction. Their results are then compared to check for errors.

In recent years, more focus has been put on fault-tolerant operating system design. Artk68-
FT [AJJ04] is one such operating system. It uses coding and redundancy techniques to improve
its tolerance against soft-errors. Martin Hoffmann focused his dissertation on the constructive
dependability of operating systems. He found that a reduction of dynamic state, the usage of
direct data structures over indirect counterparts, coding-based protection of critical structures, and
system customization through a priori knowledge are the cornerstones of dependable operating
systems. The dOSEK operating system [Hof+15b] implements these design guidelines and shows
improvements to silent data corruption by four orders of magnitude when compared to a COTS
operating system with similar features.

Protection at the program level has its origin in the N-version programming method [Avi85], in
which N (functionally equivalent) versions of the same program are generated from a given specifica-
tion. The output of each of these programs is then compared to detect soft-errors. This technique is
related to the previously discussed spatial and time-redundancy approach of architectural protection.
It is in fact, a different kind of redundancy – resource redundancy – in which additional resources,
i.e., programmers, are utilized to improve error detection. Today, most protection techniques that
target whole programs implement special compilers, which insert additional instructions to protect
computation [OSM02b], control-flow [OSM02a] or both [Rei+05]. While all of these show great
fault coverage, i.e., they detect faults well, they struggle with a non-negligible performance overhead
of 50− 200%.

Algorithmic protection schemes make use of explicit algorithmic knowledge to develop a fault-
tolerant version of the algorithm, which is implementation-independent. Roy-Chowdhury et al. [RB96]
propose one such algorithm, which protects matrix multiplications by introducing additional data
into the matrix that can be checked in the result. Evaluations of the proposed protection scheme
have since concluded that this approach introduces an overhead of 10− 14%, depending on the
dimension of the matrix, in addition to the increased code size and algorithmic complexity. Similar
algorithms exist for various mathematical problems, such as Fast-Fourier-Transform [RB90] or QR
decomposition [JA88].

2.4.3 Summary

In summary, a multitude of protection schemes exist at the architectural and software level of a
system. Almost all use some form of redundancy, either in data or computation, and, therefore,
induce a large overhead for protected systems. Architectural protection schemes generally fare better
in terms of overhead. However, they require potentially expensive and time-extensive extensions
of the protected hardware. Software protection schemes, on the other hand, can be adapted by

13

2.4 Related Work: Protection Schemes

simply extending the program. Sometimes, a fault-tolerant algorithm can even be found, which
removes the need for protection schemes altogether. Next, memory protection is discussed, which
is a protection scheme for memory access. However, as discussed with fault-tolerant algorithms,
it might provide inherent tolerance to soft-errors and can provide a benefits without additional
redundancy hardware.

2.5 Memory Protection

The following sections define and describe different levels of memory protection (Section 2.5.1)
and present the CHERI memory protection model, a well-known architecture for memory protection
that is used for this thesis (Section 2.5.2). Memory protection is used in the context of this thesis to
provide a hybrid soft-error resilience scheme, that lies between architectural and software protection.

2.5.1 Basic Definitions

in its most simplistic definition, memory protection describes the control of access to the dynamic
memory of a system. In such a system multiple processes exist, which have (possibly distinct) access
rights associated with them at any given point in their runtime. These access rights are dynamic,
i.e., they may change, either by explicit request of the process or by request of the underlying
(operating) system. Protection in such a system can take one of two forms: Either sandboxed,
that is the virtualized execution of the untrusted process, or execution of an inherently trusted
process [Sti12]. In other words, either the executed code is safe-by-design regarding memory access,
i.e., memory-safe, or the runtime must virtualize its execution to guarantee access control.

2.5.1.1 Sandboxing

The term “sandboxing” originates in a 1993 work of Wahbe et al. [Wah+93], but is first defined by
Goldberg et al. [Gol+96] as:

We use the term sandboxing to describe the concept of confining a helper application
to a restricted environment, within which it has free reign.

Instead of providing a process with the complete system environment, a restricted environment is
created and subsequently used to execute the process. In addition to memory, such an environment
might include other system resources, but for the context of this discussion is it sufficient to assume
that a sandboxed process is only restricted in its memory access. This restriction can be transparent
for the process, i.e., any invalid access is masked, or non-transparent if the process is notified of
the failure when it tries to access restricted resources. Regardless of the transparency, sandboxing
can only be detected by the process when accessing invalid memory. Therefore, in the nominal
case, it seems to the process as if it had full system access. One consequence of this property is that
sandboxing does not protect the process from semantic errors, such as out-of-bound array accesses,
except where these accesses would affect other processes in the system. Typical implementations
of sandboxing often use hardware-based memory isolation techniques, such as virtual memory.
Nonetheless, software-based isolation techniques exist [Wah+93] and work through the same basic
principle.

Virtual memory is a memory management technique, that provides an idealized abstraction
of physical memory addresses to virtual addresses. Segmented memory implements such virtual
addresses using a combination of segments and offsets [OG65]. A special segment identifier register,
which contains the memory segment identifier, is added to the processor or must be passed to each

14

2.5 Memory Protection

memory access. Therefore, the virtual address consists of a segment identifier and an absolute
offset into the segment. The segment identifier is then used, typically by a hardware unit called
memory-managment unit (MMU), to query and check the access rights to the requested segment.
The MMU stores, in addition to access rights, a base address, and a length, which are checked
against the accessed offset. If both tests succeed, the virtual address of the access can be translated
to a physical address by adding the offset to the segment base address, and finally, the memory is
accessed.

Using segmented memory, a simple protection scheme can be implemented as follows. Each
process is assigned a unique segment into which the processes data is loaded. Its corresponding
segment identifier is then written to the segment register on process dispatch or continuation. Each
process is therefore only able to write its own memory, effectively isolating the processes and
implementing a simple memory protection scheme. This concept can be extended, e.g., by splitting
code, data, and stack memory of a process into segments with different access permission. Even
though today segmented memory is not widely used, virtual memory remains in use, for example
as page-based virtual memory or region-based memory protection. Concerning the vulnerability
against transient faults, sandboxing methods which rely only on processor internal state registers,
e.g., segmented memory, can be protected with less overhead, while sandboxing methods which
rely on the large state in volatile memory, e.g., page-based virtual memory, are more difficult to
protect [Sti12].

2.5.1.2 Memory Safety

Most commonly, memory safety is a combination of spatial error safety and temporal error safety.
The authors of the MemSafe [SB13] project define these terms as follows:

A spatial error is a violation caused by dereferencing a pointer that refers to an address
outside the bounds of its “referent”. Examples include indexing beyond the bounds
of an array, dereferencing pointers obtained from invalid pointer arithmetic, and
dereferencing uninitialized, NULL or “manufactured” pointers.

A temporal error is a violation caused by using a pointer whose referent has been
deallocated (e.g., by calling the free standard library function) and is no longer a
valid memory object.

If a program, or more often its programming language, does not commit spatial or temporal memory
errors, then it is memory safe. Most modern languages are memory-safe by design, e.g., Ada, C# or
OCaml, while most languages which target, or are at least most widely used for, embedded system
development, e.g., C or C++, are not memory-safe. Often, memory safety is derived by providing
strong type-safety at the language level, i.e., each reference represents a strongly typed capability to
access a memory area in limited ways defined by the type of the referenced data. Such languages
often do not allow the creation of arbitrary pointers, as it is required for controlling memory-mapped
devices in embedded systems, since the type system would be unable to reason about the referenced
data. The strongly-typed programming language Rust [Rus] is one notable exception. It combines
both memory-safe and memory-unsafe code with a clearly defined interface between both to allow
the type-system to remain sound. Still, memory-unsafe languages (especially C) remain in wide use
today, thus substantial research effort has been put into extending their memory safety guarantees.
These efforts can be broadly categorized into three abstraction levels (low to high):

1. Hardware-level or instruction-set level, i.e., the memory safety checks are performed by
the hardware, which might receive additional information through inserted or modified
instructions.

15

2.5 Memory Protection

2. Compiler-level, i.e., an intermediate representation of the code is extended or transpired to
implement memory-safety.

3. Language-level, i.e., the unsafe language is extended to perform runtime checks, which
implement memory-safety.

Low-level approaches generally incur a large overhead but provide broader applicability than high-
level approaches, which often target only one specific language or usage case. However, high-level
approaches can be significantly faster due to the additional information available at the source code
level. Nonetheless, language-level approaches often require non-trivial changes to the source code,
for example in the form of annotations, which might lead to non-trivial resources, i.e., programming
time, overhead.

HardBound [Dev+08] is a hardware-level processor extension, which provides a new architectural
primitive – the bounded pointer – that enables spatial memory safety through hardware/software
cooperation. This bounded pointer (often referred to as a “fat-pointer” in other work) leaves the
original pointer intact but amends it with additional base and bound information, which are set by the
software on pointer creation. The additional information is kept completely invisible and separate
from the original pointer and is maintained and propagated by the hardware after its creation. To
differentiate a raw pointer, i.e., not-yet-annotated pointer, from its amended counterpart HardBound
keeps separate tag storage, which contains a bit for each memory word to distinguish the different
types of pointers. An evaluation, which assumes that the hardware extension takes one additional
micro-operation per instruction to complete the bound checking and forwarding, shows an average
runtime overhead of 10%, which goes up to 23% for some benchmarks, and an average memory
overhead of 55%, which goes up to 200% for some benchmarks. The CHERI protection model,
which is used in the context of this thesis, uses a similar approach, but significantly expands the
software-side of HardBound and can provide additional temporal memory security. It is discussed in
Section 2.5.2.

SoftBound [Nag+09] is a compiler-level approach, which applies the HardBound fat-pointer
approach as a low-level virtual machine (LLVM) transformation. Instead of explicitly inserting
source code level bound instructions, SoftBound, instead, inserts additional instruction at the LLVM
intermediate representation level to implement the bounded pointer primitive. Therefore, no changes
to the program’s source code are required. Its evaluation shows an average runtime overhead of
93% when checking both loads and stores, but 54% if only writes are checked. Checking only writes
is an optimization which the authors propose to minimize the induced overhead, while still retaining
memory safety in most cases. In addition to the runtime overhead, SoftBound incurs up to 300%
(average 87%) overhead. Other optimization techniques, such as categorizing pointers by their
usage, as done in the CCured project [NMW02], can decrease overhead. The overhead, nonetheless,
remains significant.

Retrofitting unsafe languages with memory safety-by-design is the language-level approach that
the authors of Cyclone [Jim+02] propose. Cyclone is a safe dialect of the C programming language,
which guarantees memory safety through a combination of intra-procedural analysis, source code
annotation, and runtime checks. As a dialect, Cyclone is not directly compatible with existing C
source code, but the authors estimate that only around 10− 20% of existing source lines must be
changed to port a typical application. Cyclone incurs an overhead of up to 242% when compared to
the baseline C implementation.

16

2.5 Memory Protection

Figure 2.3 – Visualization of CHERIs protection properties.

2.5.2 The CHERI Protection Model

The CHERI protection model [Woo+14] is a joint effort of the Cambridge Computer Laboratory
and SRI International’s Computer Science Laboratory to develop a hybrid protection model in a
hardware-software co-design approach for RISC architectures. It is a generally applicable extension
to reduced instruction set computers (RISCs), which builts on top of an existing virtual-memory
model. CHERI is a hybrid protection model, that allows both capability-unaware and capability-
aware code to run side by side, and thus allows incremental adoption. This design choice is also
reflected in the software stack of CHERI: The compiler has two distinct modes and generates either
pure-capability code, that exclusively uses capabilities, or hybrid-capability code, which relies on
manual annotation of pointers to use them as capabilities. It provides a new security primitive – a
capability – that mediates access to and in protection (sub-)domains within an address space. In
other words, a process’s virtual address space becomes a capability address space, within which all
reachable capabilities determine which protection domains or memory it can interact with.

When using the classification used in Section 2.5.1.2, CHERI is a multi-level memory safety
approach. Its checks are performed in hardware and it provides additional safety for legacy, or
memory-unsafe, code through its default capabilities. Therefore, it is a hardware-level memory safety
approach. On the other hand, CHERI relies on its software stack (discussed in Section 2.5.2.3), espe-
cially the modified LLVM compiler, to make use of the additional security primitives and considerably
improve upon the memory safety of CHERI enabled programs. Therefore, it is also a compiler-level
memory safety approach. One important distinction to existing compiler-level approaches, such
as SoftBound, is that this software-stack is not included in the Trusted Computing Base (TCB).
Illegal modifications or usage of capabilities, especially widening processes capabilities, will always
lead to a hardware exception, meaning that a malicious compiler can never exceed the permission
which the program receives from its runtime. In its most basic version CHERI provides spatial
memory safety and compartmentalization, although recent advances have extended it with temporal
memory safety in certain usage cases. The following sections try to give a compacted overview of the
core principles of the CHERI architecture (Section 2.5.2.1), how it can be mapped into hardware
(Section 2.5.2.2) and how its complimenting software stack is built(Section 2.5.2.3). They are based
on the CHERI-ISA description [Wat+19b], which may be used as a reference.

2.5.2.1 Capabilities

A capability can be seen as an unforgeable token of authority through which access is mediated. A
protection domain then refers to a set of capabilities that allow both data access and control flow
within a virtual address region. Capabilities are modeled after pointers, with additional metadata

17

2.5 Memory Protection

to protect their enforce the CHERI protection model. From an architectural perspective, it is a
hardware data type and can be destructured into its referenced virtual address, its bounds, and
additional protective metadata (see Table 2.1). The additional metadata ensures six properties: (1)
integrity, (2) pointer-provenance, (3) monotonicty, (4) bound checking, (5) permissions and (6)
encapsulation (see Figure 2.3).

CHERI ensures pointer integrity through the out-of-band tag bit. When a capability is modified
illegally, either through oversight or malevolence, its tag bit is cleared and any subsequent use of
the capability fails.

Capabilities also provide pointer-provenance, i.e., they ensure the origin, or provenance, of each
pointer [Dav+19b]. More specifically, by only allowing newly-created capabilities to be derived
from existing capabilities, each capability must have a valid provenance, if the initial capability state
has provenance. On system boot, CHERI-enabled processors derive default capabilities that span
the entire address space, and from which the embedded system or operating system can derive
capabilities for its protection domains.

Furthermore, capability creation must always be monotonic, that is any newly created capability
may only narrow the permissions or range of an existing capability. Together with tagged integrity
protection, this provides unforgability of capabilities, which is the foundation of the CHERI protection
model.

Where a capability is used to access memory, bounds checking limits, in addition to its permissions,
the extent of memory that can be accessed. The region triple (base, address, leng th) fully specifies
the address space region to which a capability has, albeit restricted, access. While a capability
referenced address might move outside its bounds, attempts to dereference out-of-bound capabilities
will throw to an exception. Typically, these bounds originate in an allocation event, where a language
runtime sets them dynamically.

Additionally, a capability is limited by their permissions, which restricts the way it is used. For
example, a compiler might restrict a capability so that it can only be used for execution, by granting
only the “execute” permission. A capability that points to an array in memory might, on the other
hand, have read and write permissions. Specific CHERI implementations, especially when used in
conjunction with a custom compiler, might furthermore implement language features (such as C’s
const specifier) directly through capability permissions. Last but not least, capabilities permissions
might allow it to use the seal/unseal mechanism, used to provide immutable capabilities. Available
permissions may vary between CHERI implementations. Table 2.2 gives an overview of a selection
of available permission for the MIPS implementation of CHERI.

Capabilities may either be unsealed, i.e., modifiable and dereferencable, or sealed, i.e., non-
modifiable and non-dereferencable. CHERI provides pointer encapsulation through this sealing

Field name Width [bit] Purpose

Tag 1 Integrity bit, stored out-of-band
Permissions mask ~ Permissions available through this capability.
SW permissions mask ~ Extended permissions for use in software.
Flags ~ Architecture specific capability flags.
Address 64 The virtual address, which the capability references.
Object type 64 Used for sealed capabilities.
Base 64 The base address of the capability’s memory region.
Length 64 The length (in bytes) of the capability’s memory region.

Table 2.1 – The CHERI capability data type. “~” refers to a variable sized field.

18

2.5 Memory Protection

Name Bounds Use

Global - Allow this capability to be modified by capabilities that
do not have Permit_Store_Local_Capability

Permit_Execute Region Allow this capability to fetch and execute instructions
Permit_Load Region Allow this capability to load words from memory
Permit_Store Region Allow this capability to store words to memory
Permit_Load_Capability - Allow this capability to load other capabilities with valid

tags
Permit_Store_Capability - Allow this capability to store other capabilities with valid

tags.
Permit_Seal Object

type
Allow this capability to authorize sealing of another capa-
bility, where other.otype == self.address

Permit_CCall - Allow this sealed capability to be used to transition be-
tween protection domains.

Permit_Unseal Object
type

Allow this capability to authorize unsealing of another
capability, where other.otype == self.address

Access_System_Registers - Allow access to privileged processor registers, such as
registers for interrupt management or MMU configuration.

Table 2.2 – Selection of permission bits in the MIPS implementation of the CHERI protection
model. Adopted from [Wat+19b].

mechanism. Unsealed capabilities, when passed to capability-aware load or store instruction, might
be dereferenced to mediate memory access inside the virtual address space. Sealed capabilities, on
the other hand, may be used as object capabilities that can be invoked and unsealed. To seal or unseal
a capability, the (un-)sealing capability must have the (un-)seal permission and a matching object
type with the capability to be (un-)sealed. A capability may also be invoked through special capability-
aware call and return instructions to provide, which allows the implementation of an effective
inline address space compartmentalization. A domain crossing in the CHERI compartmentalization
model always requires a pair of two capabilities with matching object types to initialize the target
protection domain. More specially, any protection domain may be uniquely described and initialized
from two capabilities: The data capability, which is used to derive any memory capabilities inside
the domain, and the control capability which specifies the domain’s entry point and execution
bound. When a domain crossing is executed, the CHERI-enabled processor installs the provided
pair of capabilities atomically to the corresponding architectural registers (see Section 2.5.2.2) and
execution continues in the target domain. A similar scheme is used during exception handling: By
installing a pair of capabilities to be used when an exception occurs, CHERI allows an exception
handler to break the monotonicity guarantee and hold privileged access, even when the domain in
which the exception occurred has limited access. Recently, CHERI added support for sentrys, which
allow domain crossings similar to the previously mentioned call and return mechanism, but instead
uses only one code capability to facilitate the crossing. Only the code capability is changed and
consequently jumped to. Finally, while sealed capabilities are mostly used to implement protection
domains, they may also be used by a software-stack to construct arbitrary protected references.

The CHERI protection model does not provide a general way to revoke or invalidate, an existing
capability without modifying each instance of it. However, when it is coupled with a virtual memory
system, revocation is still possible. By invalidating the address which is referenced by the capability
and instead of mapping the data at a different location in the virtual address space, a capability may

19

2.5 Memory Protection

be invalidated. Subsequently, a modified capability, with different permissions can be created for
the new virtual memory address. Other techniques, for example, the usage of capabilities tagged
with an identifier and a global capability table or memory scanning approaches, exist too [Xia+19].
They have been successfully used to implement temporal memory safety for heap memory in the
FreeBSD operating system [Fil+20]. Nonetheless, revocation is not a primary design goal of the
CHERI protection model and must be retrofitted if it is needed.

2.5.2.2 The CHERI hardware architecture

Similar to a classical load-store architecture, capabilities may be stored in memory or held in
capability-enabled registers when they are used or modified. Their in-memory or in-register repre-
sentation might vary considerably from the data type structure presented previously (see Figure 2.4).
In the 64 bit MIPS implementation of the CHERI protection model, for example, each capability is
256 bit long with one additional tag bit, which is stored separately (see Figure 2.4a). Of these 256
bits, 192 bits are reserved for the region triple, and the remaining 64 bits are shared among the
permissions and object type fields (31 bits and 24 bits respectively), while the flags fields remain
unused. In total, a stored capability, therefore, takes four times the storage of a normal 64-bit pointer.
Modern implementations of the CHERI protection, e.g., CHERI-RISCV, instead use the CHERI Con-
centrate [Woo+19] representation (see Figure 2.4b). It uses a floating-point format to coalesce
the region triple and reduce available permissions and object types, to fit a 64-bit capability into
128-bit (or 32-bit capabilities into 64-bit) memory or register space reducing the storage overhead.
In comparison to the uncompressed representation, CHERI concentrate requires stronger alignment
of capabilities in memory to compensate for compression. Still, CHERI Concentrate halves the
storage overhead of the protection model.

Architectures, which implement the CHERI protection model, are free to explicitly split the
register set into capability-only and normal registers or provide a merged register set, that supports
both general-purpose values and capabilities in registers. The program counter capability (PCC)
replaces the default program counter register regardless of this decision. A capability enabled
program counter allows the CHERI protection model to constrain the control flow by restricting
instruction fetch access, and finally, provide compartmentalization. Similarly, other control-flow
related registers must be extended, such as the exception program counter, if they are present in the

31 2423 0

object type

user perms perms

address

base

length

(a) 256 bit CHERI capabilities.

31 17 15 0

perms object type

compressed bounds

address

(b) 128 bit CHERIConcentrate capabilities.

Figure 2.4 – Compressed (128 bit) and uncompressed (256 bit) capability representations.

20

2.5 Memory Protection

architecture. Furthermore, CHERI extends the architecture with a default data capability (DDC)
register, which holds the default capability that is used for legacy, i.e., non-capability, loads, and
stores.

The CHERI protection model extends the base instruction set with several instructions. These
can be used to modify, create, or use capabilities. By adding explicit instructions, which only
target capabilities, a key design choice of the CHERI protection model, intentionality, is achieved.
Additionally, capability-aware instruction are unprivileged. This does not only reduce context switch
overhead but also allows processes to create protection sub-domains without operating system
interaction. Nonetheless, it is also the reason why the integrity of capabilities must be protected in
memory or registers. Due to the unprivileged nature of capability-aware instructions, it is expected
that capabilities are also stored in unprivileged memory. Thus, they may be modified by capability-
unaware stores, or arithmetic register operations and must be protected by the aforementioned
tag mechanism. The authors of HardBound rely on tagged memory for the same reason, with
one important distinction: It allows arbitrary capability creation and, therefore, a capability in
HardBound does not constitute a protection domain like in CHERI.

Due to different underlying design principles of the extended architectures, specific implementa-
tions of the CHERI architecture vary in micro-architectural implementation details. For example,
while ARM processors avoid pointer modification exceptions and instead defer such exceptions
to access time, RISC-V architectures always raise precise exceptions. The differences between
implementations can be (mostly) reduced to three design decisions:

1. Should the register set be split or merged, or are both variants supported?

2. How should the architecture treat capability errors?

3. How are capability-aware instructions encoded?

Currently, four implementations exist with varying degrees of completeness. They are summarized
in Table 2.3. MIPS is the first architecture for which the CHERI protection model was implemented
and is therefore the most mature adoption. It supports a split register set, in which all capabilities
are managed by an additional co-processor, called CP-1, which runs in parallel to normal processor
execution. Due to the vast opcode space in MIPS, CHERI instructions were given their own encoding,
completely separate from normal load/store encoding. When a capability error occurs, the capability
co-processor raises a synchronous exception which interrupts the current program flow. RISC-V
follows similar concepts, except that it supports both split and merged register sets. The ARM
implementation on the other hand only supports merged register sets. Additionally, it does not
raise precise exceptions when an invalid capability modification occurs. Instead, the capability is
simply marked as corrupted (by clearing its tag bit) and execution continues. When the corrupted
capability is subsequently used, an exception occurs and the program is notified. Both the RISC-V
and the ARM implementation use a so-called “capability-mode” extension, in which the opcode for a
capability-aware load/store instruction and a capability-unaware load/store instruction is the same.
The processor is extended with an additional mode-bit, the capability-mode bit, which indicates
whether the currently processed instruction is interpreted as a capability-aware instruction or not.
Finally, an early sketch of a CHERI implementation for x86-64 exists, which uses merged register
sets and a capability mode.

2.5.2.3 The CHERI software architecture

To use the previously described primitives to provide memory safety in software, CHERI implements
a versatile software stack. More specifically, CHERI’s software stack discussed here is used to provide

21

2.5 Memory Protection

ISA Status Register file Error Mechanism Shared Opcodes

MIPS Complete Split Exception 7
ARM Experimental Merged Invalidate 3
RISC-V Draft Both Exception 3
x86-64 Sketch Merged Undecided 3

Table 2.3 – Existing CHERI implementations, adapted from [WSWMN19]

memory safety to two historically unsafe languages: C and C++. At the lowest level, the software
stack is a modified version of the LLVM compiler and linker, on top of which various support libraries,
such as a hardened standard library are implemented. Then, a CHERI-enabled operating system
is stacked on top, which may reuse the high-level primitives provided by the hardened support
libraries. Finally, a CHERI-enabled program may run as the last layer of the software stack. Two
basic protection modes are implemented by the CHERI software stack: Fine-grained memory safety
and scalable software compartmentalization. Only the implementation of fine-grained memory
safety is discussed here as it is the relevant technique for this thesis, but [WSWMN19] may be used
to gain more insight into the compartmentalization mechanism.

Fine-grained memory safety is provided by the compiler and the runtime system and works by
replacing C/C++ pointers, either explicitly or implicitly, with capabilities. Two new compilations
modes are defined: pure-capability mode and hybrid-capability mode. Pure-capability mode uses
capabilities for all C/C++ pointers including implied pointers, such as return address or stack
pointer. Trying to dereference an integer, that is a legacy pointer, will lead to an exception, in
the same way, that using a capability in an invalid way would. Pure-capability compiled code is
usually incompatible with legacy code due to different pointer sizes. Hybrid-capability mode, on
the other hand, uses explicit language-level annotation for pointers to distinguish between pointers
which are backed by a capability and unprotected pointers. Pointers are by default unprotected and
use the DDC, when dereferenced. Therefore, pointer size is unchanged (in the default case), and
hybrid-capability compiled code is binary compatible with both pure-capability and legacy code. As
such, it can be either used as a bridging interface between both variants, or when the capability
system proves too restrictive to implement the required functionality (e.g., bootloaders, early kernel
startup).

When using the pure-capability mode, capability creation is deferred to the runtime, which will
derive valid capabilities either at runtime, e.g., when a dynamic pointer is allocated, or during load
time, e.g., when a global capability is created. Additionally, a C/C++ runtime might use load-time
capabilities to protect runtime internal structures, such as the procedure linkage table (PLT), or
thread-local storage (TLS), from corruption. Furthermore, the PCC is usually the only capability,
which holds execute permissions and access to the code region of the loaded program. The DDC
usually contains the NULL capability, an always invalid capability, such that any legacy pointer access
will throw an exception.

The described memory safety techniques have been successfully used to implement fully memory
safe operating systems: Notable examples are:

CheriBSD [Cheb], a port of the FreeBSD operating system, which supports both hybrid and
pure-capability mode compiled binaries in its userspace and provides compartmentalization
and memory safety.

CheriFreeRTOS, a port of the FreeRTOS operating system, which is compiled in pure-capability
mode to provide memory safety.

22

2.5 Memory Protection

CheriOS [Chea], a clean-slate, single-address space µ-kernel design which uses CHERIs com-
partmentalization techniques to efficiently implement its design primitives.

2.6 Summary

This chapter first defined the terms fault, error, and failure in the context of this thesis. Next, it
used them to define a resilience concept that is based on the RAMS principles. It then presented
fault injection, a fault forecasting technique, that can be used to evaluate the dependability and
resilience of a system. Furthermore, related work was presented that mostly focused on existing
soft-error protection schemes due to the lack of research, which used memory protection as a
method for soft-error protection. Finally, memory protection was defined and the CHERI memory
protection model was discussed in detail. It is a hybrid protection scheme that provides its memory
protection through a combination of hardware extensions and software augmentation. Similar to
the presented soft-error protection schemes, it works between the architectural and software level
of an architecture. Its influence on soft-error resilience is further evaluated in the rest of this thesis.

23

3A R C H I T E C T U R E

After laying the theoretical foundation, this chapter first outlines – from a theoretical standpoint
– how extending an architecture with memory protection might improve the soft-error resilience
in Section 3.1. Next, Section 3.2 presents the fault injection framework FAIL*, that forms the basis
on which the soft-error resilience of an architecture can be evaluated. Finally, Section 3.3 presents
the concrete memory protection architecture – CHERI RISC-V – and its integration into the FAIL*
framework.

3.1 Soft-Error Resilience Through Memory Protection

To understand how a system, which employs memory protection, might have improved soft-error
resilience, consider what improved resilience constitutes. Generally speaking, a system can be
considered to be more resilient than another system, if it adheres to stricter guarantees regarding the
RAMS principles (see Section 2.2.1). For example, if such a system provides better fault detection,
i.e., detects faults earlier, it can be considered to be more reliable than the baseline system. In
consequence, it is more resilient, as it allows for failures to be detected and corrected in a more
timely fashion. Similarly, a system, which by design exhibits less catastrophic modes of failures or
exhibits such failures less frequently, may be considered to be safer and, thus, more resilient than a
comparable system. In the context of this thesis, a system is defined to be more resilient against
soft-errors if it either:

1. Exhibits reduced frequency of specific failure modes or

2. Improves detection of existing failure modes

Therefore, to assess a system’s resiliency, its failure modes must be considered in greater detail. A
system, as described in the previous chapter has six different failure modes: early timing failures,
late timing failures, erratic failures, halt failures, unsignaled content failures and signaled content
failures. Of these six failure modes, two are considered in greater details as they provide opportunity
for improvement through memory protection: Unsignaled content failures and late timing failures.

Unsignaled content failures are system failures in which the system silently corrupts content
or, in other words, data contained in a system. These system failures are often called silent data
corruption. For a processor-based system most of its corruptible data is usually contained in an
attached random-access memory, while only a small fraction is loaded to its registers at any given
moment. Depending on the system architecture an executed instruction may operate directly on
data contained in memory and registers (register-memory architecture), or it may only operate on
register data (load-store architecture). The memory protection architecture evaluated in the context

25

3.1 Soft-Error Resilience Through Memory Protection

of this thesis is a load-store architecture, and only such architectures will be considered from now
on. To access data contained in memory, a load-store processor must follow a two-step process: First
a pointer to the data is constructed in a register, usually through arithmetic computation from an
existing pointer, before it is loaded by passing the constructed pointer to a dedicated load instruction.
Similarly, such a processor must first construct a destination pointer, before writing register data
to memory by passing the pointer to a dedicated store instruction. For load-store architectures
data may either be corrupted directly, when a fault affects the data stored in memory, or indirectly,
when the pointer used to access it is corrupted by a fault and subsequently the wrong data is
accessed and propagated. While direct data corruption is not influenced by memory protection,
indirect corruption, i.e., constructing or accessing an invalid pointer, can be detected and, therefore,
prevented. Memory-protected systems often impose additional restrictions on pointer creation, such
as monotocity (see Section 2.5.2.1), which prevent arbitrary pointer construction. Additionally,
these systems introduce additional pointer metadata, such as the intended pointer usage, which
further restricts the space of faulty, but valid, pointers. Unprotected architectures, on the other hand,
allow arbitrary pointer construction, and therefore, are only able to detect indirect corruption when
the corrupted pointer leads to a generally invalid, e.g., misaligned, access. As long as the faulty
pointer still refers to a valid, albeit incorrect, memory location and if the system does not have a
mechanism to detect invalid memory accesses the pointer may be used to silently corrupt data in the
unprotected system. In summary, memory-protected systems impose restrictions on pointer creation
and usage and, thus, should in theory provide improved protection, or at the least detection, from
otherwise silent data corruption.

Next, consider late timing failures. Late timing failures, or as they are more commonly called
timeouts, may either occur due to corrupted data or due to corrupted control flow. Corrupted
input data leads to timeouts when it is used to bound the computation of a system. To give an
example, consider a system which processes a different amount of elements during each run. First,
it determines the size of its work queue and saves this information to a faulty storage element,
which instead saves a much higher value, e.g., by flipping the most-significant bit. When the system
subsequently tries to use this information to process queued elements, e.g., as a loop bound, its
computation will take much longer than expected. Therefore, the system will not deliver the result
in time, which constitutes a late timing failure. Similarly, corrupted control flow can induce a late
timing failure. For example, if the system reaches the code section that outputs its results never or
heavily delayed, it might fail to deliver its service in time or, in other words, exhibit a late timing
failure. To understand how a fault can induce erroneous control flow, consider a processors function
call mechanism. Before continuing execution in the callee, its caller first saves certain registers,
sets up the callees call frame and finally stores the correct return address to the stack. If a fault
happens in the storage element that backs the stack memory, a return address can be corrupted
and consequently lead to an erroneous control flow when the callee returns control to the caller.
Unprotected systems will accept the faulty return address and continue execution, given that the
faulty address still refers to a generally valid memory location. This is especially problematic, when
a processor architecture (as it is the case for ARM A32 [Arma], MIPS [Mip] and AVR [Avr]) consider
an instruction that is of value zero to be the no-operation instruction. If such a processor jumps to a
zero-initialized, but unused section of memory due to a faulty return address, it will silently continue
execution, with no failure indication to the user, until a timing failure occurs. Memory-protected
systems, however, can offer some protection against timeout failures. As previously discussed,
memory protection schemes often restrict pointer creation or modification, and thus should prevent
modifications to saved return address through corrupted pointer to stack variables. Corruptions
of variables which bound the computation of a system, such as a loop counters, will be protected
similarly. Memory-protected systems may additionally restrict the range of valid call and return

26

3.1 Soft-Error Resilience Through Memory Protection

addresses by augmenting the program counter, as done in the previously discussed CHERI capability
architecture. Here, the program counter is restricted by a bound, that restricts possible jump offsets
from the current program location. Transitions outside this range require a special compartment
call, and hence the set of possible incorrect, but valid, return addresses is further restricted. In
conclusion, memory-protected system will protect control flow information saved in memory due to
imposed restrictions on pointer creation and subsequently restrict possible late timeout failures by
detecting error conditions early.

3.2 The FAIL* Framework

This section describes the FAIL* framework, a versatile FI meta-framework [Sch+15], developed to
aid architecture-independent full fault space evaluation of complete systems. It is used in this thesis
to evaluate both an unprotected system and its memory protected counterpart in regard to transient
faults. FAIL* is an acronym for FAult Injection Leveraged and its asterisks stands for its versatility
with regard to its target architecture. By default, FAIL* supports both simulation-based FI and hybrid
FI backends, which modify the target state through a JTAG-based approach. For the rest of this
chapter, however, focus is put on the simulation-based backends of the FAIL* framework, since the
architectures depicted in this thesis are evaluated in a simulation environment. Originally, FAIL* was
developed since existing FI tools lacked generability, i.e., target independent experiments, or were too

Figure 3.1 – Structure of the FAIL* plumbing layer, or in other words, its FI abstraction. Taken
from [Sch16].

27

3.2 The FAIL* Framework

specialized, i.e., only supported a single architecture with non-portable experiments [Sch16]. FAIL*
strives to balance both needs, and create an abstraction of the target – the execution environment
abstraction (EEA) –, which provides fine-grained target state access while allowing experiment
sharing across backends.

On top of the EEA layer, FAIL* builds a parallelized client server architecture, which manipulates
the target architecture through its EEA interface (shown in Figure 3.1). In its essence, each client is a
version of the targets architectural simulator that is extended through the EEA layer and controlled by
a user-defined experiment procedure. Both the extended architectural simulator and the experiment
procedure run in different co-routines, and are cooperatively scheduled. The EEA exposes two
distinct interfaces to the experiment procedure. First, a target state interface is available through
the EEA. It allows complete state dumps and restores, as well as fine-grained deep state access,
e.g., setting a bit in a CPU register. Secondly, an event interface is exposed that allows the experiment
procedure to wait for events by registering listeners, such as reaching a certain instruction, or passing
a set amount of simulator time. Additionally, the EEA facilitates FAIL* cooperative scheduling
approach: An experiment may resume execution of the extended simulator at any point, however, it
is only returned control, when a previously registered listener is triggered or the workload execution
finishes. A control-flow example is shown in Figure 3.2. While user-defined, each experiment
procedure usually either traces the simulators execution or injects (one or more) faults during its
execution and records the result. This duality between tracing and injecting is inherent to fault
injection: Before a program can be injected its set of possible fault points, i.e., the fault space, must
be discovered, by tracing a “golden-run” of the program (see Section 2.3). Nonetheless, how a
execution trace maps to possible injection points, or in which way these are subsequently injected,
depends entirely on the user-defined experiment procedure. To ease the transition for new users
FAIL* provides a generic tracing and injection experiment procedure, called the assessment layer. In
contrast to the previously discussed plumbing layer [Sch16] it supports both memory and register

Figure 3.2 – Sequence diagram of a typical control-flow between an experiment procedure and
the simulator which has been extended with an EEA layer. Taken from [Sch16].

28

3.2 The FAIL* Framework

injection, and injects bits according to a uniform single-bit flip or uniform byte burst flip model. It
stores the tracing information, the fault space and fault experiments results in a central database
for easy parallel access during injection, and to simplify subsequent result analysis. A generic fault
injection experiment, a campaign, then consists of four distinct steps, not considering the result
analysis (shown in Figure 3.3):
First a “golden-run” trace of the workload is generated by running the simulator, while all relevant
state access, i.e., memory accesses, executed instructions or for example serial output, is recorded.
Typically, only part of the workload is traced. For example, it might be unwanted to inject the
workloads startup code, since it is not part of the fault model. Consequently, two special instructions
are defined – the start_marker and stop_marker –, which instruct FAIL* to start and stop the
tracing respectively. Additionally, a dump of the target state is saved by the FAIL* client when it
starts tracing workload execution. It is used during the injection phase of the campaign to restore
the system to a known good state.
Secondly, the information collected by tracing the “golden-run” is used to extract possible fault
points through a separate program called importer. Multiple importer implementations exist that
differ in the type of possible fault points they import into the database for later injection. One may,
for example, only convert recorded memory access to fault points, while another importer may only
deal with access to certain registers. They, in other words, each explore a different part of the traces
fault space and import it into the database. The choice of importer remains with the user, allowing
for full flexibility.
Thirdly, the set of possible fault points is reduced, i.e., pruned, to avoid redundant injection and
enable full fault space evaluation even for large workloads. A set of planned injections, or pilots, is
generated which each evaluate a group of similar behaved faults. This technique is based on the
observation, that in any fault space multiple fault points may result in the same behavior when
injected. To give an example, consider a fault occurring in an arbitrary byte of memory. Such
a fault can only be activated and cause a failure, if the memory location holds a value, i.e., was
previously written, and is read, i.e., used, after the fault occurs. The time interval during which
the fault can be activated forms an equivalence interval. It does not matter, at which time during
the interval the fault happens, it will always be activated by the read at the end of its equivalence

Figure 3.3 – Structure of FAIL* assessment layer. It consists of four steps – tracing, import,
pruning and injection –, which store their (intermediary) results in the internal database. Finally,
during post-injection analysis, this database can be queried to extract results for the FI campaign.
Taken from [Sch16].

29

3.2 The FAIL* Framework

interval. Consequently, all fault points inside this equivalence interval can be considered to be equal
in their injection result, and only one candidate must actually be injected to record the effect of
all fault points. All other fault points are pruned, and are henceforth considered to be invisible to
the injection experiment procedure. Their existence is, nonetheless, recorded in the database so
that each injection result may be weighted according to its equivalence interval, when calculating
failure metrics during data analysis. In addition to equivalent faults, a fault may be pruned if it is
overwritten after it occurs, i.e., if its equivalence interval ends with a write instead of a read. In this
case the faulty value is lost and the fault is rendered ineffective. After evaluating all possible fault
points for their effectiveness, the pruner writes each effective fault to the central database, thus
building a list of scheduled injections. Note that the presented pruning technique, called def/use
pruning, is only one of many possible techniques. For example, Schirmeier presents a heuristic-based
pruning approach [Sch16], which additionally groups fault points according to their architectural
state.
Lastly, a central server and multiple parallel clients are launched to process the scheduled injections.
Each client receives a subset of all scheduled injections from the central server, which it subsequently
processes in serial. During each injection it follows a simple process: First the simulator is rewound
to the workloads start_marker by restoring the state dumped in the first campaign step. Then, it is
forwarded until it reaches the instruction at which the fault shall occur. At this point the architectural
state is injected through the EEA in accordance with the selected injection technique. Finally, the
simulators’ execution is continued, either until it reaches the end of the workload, or until the
simulator stops execution due to an erroneous condition, such as a trap. To indicate a successful
or failed run, the workload jumps to one of two special instructions called ok_marker, and fail_-
marker, which indicate a valid or invalid result respectively. The injection’s result is subsequently
recorded in the central database and the client repeats the process for the next scheduled injection.
After all scheduled injections have been processed, the central server instructs all connected clients
to quit before shutting down.

After all injection results have been collected, the developer can continue with the (optional)
post-injection analysis. Each result contains, in addition to its outcome, a detailed account of the
injected fault and its result. In total, it contains information on the injected element and the precise
offset within it, the injections’ outcome with additional information, such as the addresses which
caused a subsequent error condition, and the simulator time when the result occurred. Through this
detailed information, each result can be linked, not only to its fault point, but also to the event which
resulted in the fault point. This allows for extremely fine-grained injection analysis, such as mapping
injection results to source code lines. FAIL* additionally allows calculation of well-known FI metrics
such as fault coverage. However, this metric is often unfit when comparing differently-sized fault
spaces, and thus, FAIL* also supports calculation of absolute error counts. This metric is independent
of fault space size and thus can be used to compare different implementations, or even architectures,
for their resiliency to transient faults.

3.3 CHERI-FAIL: Combining Fault Injection with Memory Pro-
tection

After discussing the theoretical improvements that a memory-protected architecture might offer in
regard to transient faults, and discussing the FAIL* framework, this section presents the integration
of a memory-protected architecture – CHERI RISC-V – into the FAIL* framework to validate the
hypotheses made in Section 3.1. Together, with the existing integration of RISC-V into the FAIL*

30

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

framework, a comprehensive evaluation platform – CHERI-FAIL – is formed, which allows conclusion
on the effectiveness of the protection schemes provided by the CHERI protection model.

The CHERI protection model is selected to evaluate the presented hypotheses because it offers
both protection of pointers and control-flow. Additionally, multiple well-tested implementations
exist, e.g., CHERI MIPS or CHERI RISC-V, and have been used in numerous research projects. For
each implementation a complete software-stack, including a C-compiler and assembler, is available,
which further simplifies development of representative workloads. Furthermore, its protection works
at the hardware-level (see Section 2.5.1.2) and requires no runtime libraries. Loading additional,
potentially large, runtimes libraries increases both the execution time and the memory footprint
and, therefore, the set of possible faults significantly. Finally, cycle-accurate simulators exist for each
CHERI implementation which can be integrated into the FAIL* framework.

Specifically, the RISC-V implementation of CHERI in addition to a baseline RISC-V implemen-
tation is selected for comparison. Firstly, both are load-store architectures and should exhibit the
discussed decrease in unsignaled content failures and late timing failures (see Section 3.1). Further-
more, both architectures have a cycle-accurate simulator based on the Sail architectural description
language [Armb]. In fact, the CHERI RISC-V simulator is an extension of the RISC-V simulator
aiding comparability. Finally, an example integration of the 32-bit variant of the RISC-V simulator
was developed during Marcel Budoj’s master thesis [Bud20] and can be used as the basis for the
integration of the CHERI RISC-V architecture into the FAIL* framework.

The rest of this section is structured as follows:
First, Section 3.3.1 outlines the challenges, which prevent a straight-forward integration of CHERI
RISC-V into FAIL*. Next, Section 3.3.2 discusses two extensions to the FAIL* framework aimed to
overcome the previously presented problems. Section 3.3.3 presents the final integration of CHERI
RISC-V into the FAIL* framework.

3.3.1 CHERI-FAIL: Challenges

To understand the challenges that come with integrating CHERI RISC-V into FAIL*, consider its
main difference to the unprotected RISC-V architecture: The tagged memory-architecture. A tagged
memory architecture is an often used technique that annotates each byte of memory with an
additional tag bit. CHERI uses this bit to ensure the integrity of its capabilities (see Section 2.5.2.1).
In short, each legitimately created capability, e.g., through valid modification of an existing capability,
has a set tag bit. Explicit writing of the tag bit is disallowed, which makes it impossible to craft valid
capabilities by memory manipulation. While each tag bit can be stored in-line with the data memory,
CHERI RISC-V chooses to store the tags bits out-of-line in a seperate bit-addressed memory, which
shares the the address space of the data memory. Due to its addressing scheme and access width
this implementation choice complicates CHERI’s integration into FAIL*.

First, consider the addressing scheme used for the tag memory. During a memory access, it is
indexed with the data memory address to read or write its corresponding tag bit. Consequently,
the address space of the tag memory and the data memory are shared. In other words, for each
valid memory address, two pieces of information exist: its data and its tag bit. During trace import,
i.e., when exploring the traces fault space, FAIL* uniquely identifies each fault point by its memory
address and time of fault. To identify registers in this scheme, each register is assigned an unused
address of the memory address space. Often, the begin of the memory address space is unused, or
reserved for device I/O and thus not injected, and can be safely re-purposed to identify the limited set
of registers available in an architecture. Consequently, register and memory fault points will never
overlap and can be uniquely identified by their address and time of occurrence. However, with tag
memory such overlaps are inevitable. During a memory access that loads a capability from memory

31

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

both the tag memory and the data memory are read. Therefore, two distinct fault points should
be imported. However, both are accessed with the same memory address and at the same time.
Their respective fault points are the same and the importer, and more importantly, the injection
mechanism, has no way to distinguish the two fault points for the different types of memory. To
solve this overlap, either each fault point must be additionally identified by the type of memory to
which it belongs, or a unique mapping must be found, which translate their respective addresses
to a globally unique, virtual, memory address. Section 3.3.2 discusses the creation of this unique
mapping.

Secondly, consider the width of each access in the data and tag memory. By default, FAIL*
assumes a byte-addressed data memory, and therefore, a byte-addressed fault space. In other words,
one byte of memory belongs to each fault point discovered during import. Furthermore, each access
tracked during tracing is assumed to be aligned and of byte-length, i.e., reads n full bytes. This is a
reasonable assumption for most modern architecture, given that misaligned access is discouraged in
most modern architectures (see [Inta]), or even optional (see [Wat+19a]), i.e., leads to a system
trap. Similar to their respective data memory access, accesses to tag memory are byte-aligned.
However, only a single bit belongs to each “byte-address”. FAIL*, in contrast, assumes that each
memory address in the tag memory contains one byte of information and will inject each bit of the
fault point. Of these injections only one will have an effect when injected, while the others do not
change the systems behavior. Effectively, seven artificial no-effect faults are added to the fault space
for each accessed tag, which skews the obtained FI results. Consequently, a way must be found
to track fault points at bit-granularity, or mark actually accessed and, thus, possibly faulty, bits of
each address. Section 3.3.2 discusses a masking scheme, which tracks fault points at bit-granularity,
while retaining a byte-addressed fault space.

3.3.2 CHERI-FAIL: Extensions

In the following two extensions to the FAIL* framework are presented, which solve the previously
discussed integration problems of CHERI RISC-V. First, in Section 3.3.2.1, a virtual fault space
is discussed which allows a unique mapping of architectural elements to addresses even when
considering multiple types of memory with shared address spaces. Then, Section 3.3.2.2 discusses
how this abstraction was extended to support fault points with bit-granularity.

3.3.2.1 A virtual fault space

An important step of each FI experiment is the discovery of possible faults, or in other words, the
workloads fault space. For a given system architecture, the set of possible faults for a given workload
is defined by all architectural storage elements, that are used during the execution of the workload.
Each of these storage elements can experience a fault at any time during the workloads’ execution.

During trace import FAIL*, consequently, identifies the set of possible faults, which can occur
in an architectural element, by their time of occurrence, and an abstract fault space address which
uniquely identifies the architectural element. The accumulation of these individual fault points
forms the two-dimensional fault space (see Section 2.3) of the workload, which can be further
processed, or pruned. Finally, given a fault model, each abstract point in this fault space can be
mapped to one or more concrete injections and be injected. The amount of concrete injections
depends on the amount of data stored in its architectural element, or in other words, the fault points
size. For example, a fault point might represent a one-byte chunk of data memory, and produce
eight concrete injections for a uniformly-distributed single-bit flip fault model. Note that, while
the size of each fault point need not be uniform, FAIL* assumes that each fault point is byte-sized,

32

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

i.e., represents one or more byte of storage. The fault space abstraction has several benefits for the
pruning strategies used by FAIL*, however, it needs a unique mapping from architectural elements
to fault space addresses. To give an intuition on possible fault space addresses for architectural
elements, three systems with increasing degrees of complexity are discussed in the following.
First consider a system, in which a fault only occurs in used bytes of the data memory. In such
a system, each possibly faulty byte of data memory is an architectural element, which by design
is uniquely identified by its memory address. Each fault space address, therefore, is the memory
address of the corresponding byte of data memory.
Next consider a system, in which a fault can occur in used bytes of data memory and registers. Given
that a unique register identifier exists, a fault point can be uniquely mapped to either a register
or a byte of memory. However, a globally unique mapping is required to model faults in bytes of
registers and memory simultaneously. FAIL* implements this globally unique mapping, by assigning
each register a unique identifier and using this identifier as the fault space address of register fault
points. This effectively maps all register fault points to the beginning of the memory fault space,
shadowing all possible memory fault points in the overwritten range. However, most architectures
have non-contiguous address space by default [Intb], for example due to memory-mapped device
registers. Shadowing such an unused region constitutes no loss of fault space.
Finally, consider a system, which has multiple types of memory, e.g., tag and data memory, such
as CHERI RISC-V. Reusing the memory address as a fault space address is not possible due to the
overlap. A simple memory access, which also accesses the corresponding tag, would result in two
identical fault points due to the shared addressing between tag and data memory.

This aliasing can be mitigated by either transforming the memory address depending on the
class of architectural element it belongs to, or by extending the fault point model to include this
class. Extending the fault point model, however, complicates the previously discussed fault space
processing, such as pruning, significantly and is therefore not pursued in this thesis. Instead, each
physical memory or register address space, is transformed or, in other words, mapped into distinct
sections of an artificial global fault address space.

Inside this virtual fault space, each class of architectural elements is mapped to a distinct, i.e., non-
overlapping, address range, or fault space area. Consequently, each element’s global fault space
address consists of both the area’s offset in the fault space and its original address. Even if two
elements initially shared an address, their respective global fault space address will be unique in
this scheme, as long as the original address was uniquely occupied in its area. Each distinct fault
space area manages a set of architectural elements, or fault space elements, for each of which it must
provide an, at least locally, unique address. During fault space generation, this relative address is
used by the virtual fault space to encode the element to a globally unique fault space address by
adding it to the area’s offset. Similarly, during injection the fault space can be used to decode an
existing fault space address to return the fault space element associated with it, and inject it.

The virtual fault space implementation in FAIL* follows this hierarchical fault space structure and
is shown in Figure 3.4. It consists of three classes – space, area and element – , which implement
a global fault space, a fault space area and an (injectable) fault space element respectively. However,
their respective implementations are dependent on the systems configuration and must be sub-
classed to fit its architectural requirements. Typically, each architecture will provide a single subclass
of the space class which provides the create_areas() method. During construction, the space
class will call this method to query the architectures available fault space areas and their respective
sizes to calculate their offsets in the virtual space. When decoding a global fault space address
during injection, it then uses this calculated offset to derive the elements relative address before
passing it to the respective area for final address decoding. Finally, the space class provides a
method to query an area by its canonical name. It is used by each importer during the trace import

33

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

memory_area
-
registers:

bimap<id,
address>

+
override

decode(address):
element

+
override

encode(element):
address

+
override

get_size():
address

+
create_element(addr):

memory_element

memory_element
+
manager:

MemoryManager

+
override

inject(injector):
result

space
-
areas:

map
<address,

area>

+
get_area(string):

area
+
encode(element):

address
+
decode(address):

element

riscv_space

+
create_area():

vector<area>
cheri_riscv_space

+
create_area():

vector<area>

area
-
offset:

address
+
get_offset():

address
+
virtual

decode(address):
element

+
virtual

encode(element):
address

+
virtual

get_size():
address

element
-
offset:

address
+
get_offset():

address
+
virtual

inject(injector):
result

register_area
-
registers:

bimap<id,
address>

+
override

decode(address):
element

+
override

encode(element):
address

+
override

get_size():
address

+
create_element(id):

register_element

register_element
-
register:

ArchRegister

+
override

inject(injector):
result

1 uniquely
maps

1..n
1

manages1..n

Figu
re

3.4
–

The
class

diagram
for

the
virtualfault

space
im

plem
entation.

34

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

to get a reference to its corresponding fault space area. Next, area must be sub-classed for each
class of architectural elements in the target system. By default, however, it only provides a default
implementation for its encode() method. Since each element has access to its own offset (via its
get_offset() method), its global fault space address can be trivially calculated by adding this offset
to the areas offset. Nonetheless, if this assumption is invalid for a specific area encode() can be
overwritten to implement a custom encoding scheme. Besides providing an encoding scheme, each
subclass of area must provide implementations for a total of four methods: First, it must provide
the size of its address space via the get_size() method, so that it can receive a correctly-sized
address range in the global fault space. Secondly, it must provide a canonical name so that it can be
queried through the fault spaces get_area() method during trace import. Thirdly, it must provide a
create_element() method, which is tailored to the importer which will use the area to create fault
points. While the MemoryImporter creates fault points by passing an absolute memory address to
the area, a RegisterImporter will instead pass a register identifier and a byte offset within the
register. Each call to create_element() creates an instance of the element class, or an area specific
subclass of it, which abstracts an architectural element. Making it injectable through a common
interface. Fourthly, each area must provide a mapping of previously created element instances to
a locally unique address through the decode() method. Each subclass of area must provide its
own element subclass, which is self-contained and able to perform an injection of its corresponding
architectural element. This injection mechanism is accessed through element’s virtual inject()
function, which takes an injector. Each fault model comes with its own injector, which modifies the
architectural element accordingly.

In summary, the virtual space implementation allows the creation of unique elements in a virtual
fault space during import, which can be transformed into a globally unique fault space address. This
address can then be used during injection to retrieve an abstract architectural element, which can
be injected transparently according to a fault model.

3.3.2.2 A bitwise fault space

By default, FAIL* uses byte-sized fault points with a length of one. For the originally considered
systems, e.g., Intel IA-32 and ARM A32, memory reads and writes are naturally byte-aligned in
length. In other words, a byte of memory or register can only ever be read or written in its completion.
For these systems, tracking fault points at byte granularity has no adverse effect. Consequently,
FAIL* imports byte-sized fault points, builds equivalence classes during pruning at byte granularity,
and schedules injection at byte granularity. Only when processing the actual injection during the
final experiment phase, a fault model is applied to inject specific bits of each byte of storage. FAIL*
supports both a uniform single-bit fault model, in which each fault point leads to eight concrete
injections, and an eight bit burst fault model, in which each pilot leads to a single injection that flips
all bits of the injected byte.

However, not all systems have memory writes and reads that are byte-aligned in length, have
registers which byte-aligned in length or even write registers at a byte granularity. For example,
CHERI RISC-V’s tag memory, is byte-addressed, however, each write or read will only ever access
one bit of information. To map each bit of information into a byte-addressed fault space, it must be
appended with seven unused bits, that while tracked through the pruning and injection step of the
FI experiment, have no effect when injected. Consequently, creating a byte-sized fault point for a
single bit of tag memory does not only result in unnecessary work in the import and pruning steps
of the experiment and cause injections, which have no effect, it also artificially inflates the fault
space and skews the FI experiments results.

35

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

A different, but related, problem arises for the tag memory of CHERI RISC-V’s capability registers.
Instead of storing the tag bits in-line with the capabilities values, all tag bits are instead mapped to
a shared, bit-packed, virtual tag register. A write to this register, which is artificially generated when
any byte of a capability register is written, will only ever write a single bit of the tag register. More
specifically, it will write the tag bit which belongs to the written capability register. To track such
a write in a byte-addressed fault space, the whole byte in which the written bit is contained must
be considered a fault point. This however is detrimental to the experiment, even if only a single
bit was written of the byte in the tag register, the tag bit of seven other registers would be injected
during the injection phase of the experiment. Therefore, any results gathered from such an injection
campaign would provide seven result that provide no meaningful insight, and again, skew the FI
experiments results.

To tackle this problem, one might consider implementing a bit-addressed fault space. In such a
fault space each fault point only refers to one bit of storage. However, this inflates the fault space
by a factor of eight for uniformly-distributed single-bit faults, which increases runtime and storage
requirements for tracing, import and pruning. Instead a mask-based approach is implemented,
which means in addition to the fault space address and its time of occurrence, each fault point
saves a bit-mask to indicate accessed bits. For each bit that is accessed during the read or write, the
mask contains a one bit at the corresponding bit position. Each importer sets the mask according

Bit 10x1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bit 8

Bit 10x2

t = 1 t = 2 t = 3

Figure 3.5 – Example for equivalence intervals in a masked byte-addressed fault space. Each
interval is indicated by a green color.

36

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

input: U = {(address, mask, t ime), . . .} previous accesses address, mask of the new access
output: T = {(mask, t ime), . . .} all accesses, which form an equivalence interval

T ←∅
for all (a, m, t) ∈ U where a = address sorted descending by t do

if mask ∧m 6= 0 then
T ← T ∪ {(m∧mask, t)}
mask← mask⊕m

end if
end for

Algorithm 3.1 – FINDMATCHING

to the tracing information it received and the type of architectural element. For example, a fault
point which refers tag memory will always have only the least-significant bit set, while a fault point
referencing the virtual tag register, will have a bit set in its mask that corresponds to the injected
capability register’s tag bit. During pruning, this mask is then used to track reads and writes and
subsequently build equivalence classes at bit-granularity. Additionally, during injection, only the bits
marked as accessed in the fault point are injected.

Byte-sized reads and writes can then be treated similarly to the original fault space model by
simply setting all bits in the mask. Thus, no additional information, beside their mask, must be
tracked in the database for these fault points, which reduces the performance impact in comparison
to a bit-addressed fault space. However, finding equivalence intervals is more complex in this fault
space model. For a simple byte-addressed fault space with byte-sized fault points, each interval
begins when an address is accessed and ends when it is accessed again at a later time. An algorithm
to find these access intervals, when each such access is potentially masked, in contrast, must consider
each accesses non-masked bits. Next, consider the example given in Figure 3.5. Here, the memory
access at time t = 1, accesses the first three and the last bit of the fault point at fault space address
0x1. As the memory access at t = 2 subsequently accesses bits two and three of the same byte of
fault space, two equivalence intervals are created, which span with a length of 1. The access of bits
one and eight, however, only create an equivalence interval when they are accessed at t = 3.

Consequently, when deriving equivalence intervals from tracing information, the implementation
of this mask concept in FAIL* tracks accessed addresses and their respective not-yet-accessed-again
bits. When an address is accessed the importer iterates the access masks of previous accesses to
find equivalence intervals that will be closed by this access. Algorithm 3.1 is used to find matching
previous accesses. It takes the set U , which contains previously recorded accesses, with corresponding
address, time of occurrence and access mask, and the newly accessed address and access mask,
which is used as a search mask. For each previous access, which matches the newly accessed address,
it determines the overlap in their access mask. If they overlap, the overlap and the time of occurrence
of the matching access is recorded. Additionally, the overlap is cleared from the newly accessed
mask, which acts as search mask. This process continues until no further previous accesses have
been recorded or the search mask has been cleared completely. If bits remain in the search mask,
FAIL* returns an additional artificial (mask, t ime)-tuple which contains the remaining bits of the
search mask, and the workloads’ start time, i.e., the time at the encounter of start_trace marker
(see Section 3.2), to emulate a write access outside the trace.

After deriving all matching previous accesses the importer validates them, combines their access
mask, and uses the algorithm presented in Algorithm 3.2 to find all accesses, which are now shadowed
by the new access. Going back to Figure 3.5, the access at t = 3 would purge the interval at t = 1,
since all of its accessed bits have since been accessed or, in other words, shadowed. To determine

37

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

input: U = {(address, mask, t ime), . . .} previous accesses; address, mask, t ime of the new access
output: U ′ all accesses with uncompleted equivalence intervals

U ′←∅
for all (a, m, t) ∈ U where a = address sorted descending by t do

overlap← m∧mask
m′← m⊕ overlap
mask← mask⊕ overlap
if m′ 6= 0 then

U ′← U ′ ∪ {(a, m′, t)}
end if

end for
U ′← U ′ ∪ {(address, mask, t ime)}

Algorithm 3.2 – PURGEMATCHING

which accesses must be purged the algorithm again iterates over all previous accesses and determines
their overlap with the combined mask of all valid intervals. The overlapping bits are then cleared
from the combined mask and the previous accesses’ mask. If there are still bits left in the access
mask of the previous access, it is then added to the set of still uncompleted accesses. Finally, the
algorithm adds a new access to the list of recorded accesses, which contains the combined mask and
the address and time of the current access.

To sum up, instead of assuming that an accessed byte is always read or written completely, a mask
can be supplied, which marks accessed bits. This enables tracking of faults at bit granularity without
the drawback of a purely bit-addressed fault space. This, mask-based, approach has been successfully
used in this thesis to enable both tag bit fault points in memory and in capability registers.

3.3.3 CHERI-FAIL: Integration

After discussing the required extension to FAIL* to support the CHERI architecture, this section
outlines the concrete integration of CHERI RISC-V into the FAIL* framework. Its integration is based
on and inspired by Schotbruch [Bud20], which integrates a 32-bit RISC-V simulator into FAIL*.
However, due to its recent development, a subset of its implementation, most notably its automatic
interface generation, is unused in this thesis. Other parts have been extended or simplified. Similar
to Schotbruch, the integration of CHERI RISC-V is based on its simulation model written in the
Sail architectural description language [Armb]. To simulate such a model, the Sail compiler first
translates the description into C code, which can be integrated into the FAIL* framework. A similar
translation to OCaml code is available too, however, it is unused for this thesis due to its inherent
incompatibility and simulation speed.

Both 32-bit and 64-bit variants of a RISC-V processor, which implements the IMAC specification,
can be generated. Similarly, the CHERI RISC-V model can be generated for 32-bit and 64-bit
instruction length, with 64-bit and 128-bit capabilities respectively. The capabilities are compressed
with the CHERI Concrentrate representation (see Section 2.5.2.2). Additionally, it implements a
similar IMAC specification, since its model is an extension of the RISC-V model.

Generally speaking, to integrate a new architectural simulator into the FAIL* framework, it must
be adapted to the existing EEA interface. It consists of two distinct sub-interfaces (see Section 3.2),
which must be implemented separately.

The first interface – the event-listener interface – is responsible for tracing architectural events.
Registered listeners are tracked in the EEA abstraction, however, each simulator must call event

38

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

callback functions exposed by the EEA abstraction at the appropriate times to notify it of occurred
events. However, since the C simulator is generated from the Sail model, these calls must be
integrated into the Sail model itself. For this, the Sail foreign-function interface is used, which allows
calls to external C functions directly from the Sail model. To cover all possible registered listeners,
the simulator must call a total of seven different event callback functions during its execution.
First, the simulator notifies FAIL* of any memory accesses that occur in the simulator. For RISC-V, it
passes the type of access which occurred, i.e., read or write, the accessed address and the length of
the access to the callback function. To distinguish between accesses to tag and data memory, this
interface is extended for CHERI RISC-V to include the type of memory that has been accessed. This
type is then saved to the trace, and can be used during import to map the memory access to the
correct fault space area.
Additionally, it notifies FAIL* of any interrupts and traps, which have occurred in the processor.
By default, only the pending interrupt or trap number is passed to FAIL*. In addition to the event
callback, both models are extended with additional traps to signal error conditions in the model
execution to FAIL*. Furthermore, the CHERI RISC-V is modified to map any internal error which
occurs due to an invalid capability to an unused trap number. This eases later analysis of its failure
modes.
Furthermore, it notifies FAIL* when the executed workload has written characters to the host-target
interface (HTIF) available in RISC-V. FAIL* allows tracking of the output generated by a workload
to further verify its correct execution.
Likewise, it notifies FAIL* when it reaches a new instruction and after it executed the instruction.
This is used to track listeners, which wait for the execution to reach a certain instruction or, in other
words, breakpoint listeners. The callback after instruction execution is used to track if the executed
instruction was a jump instruction, which is required for certain pruning strategies. Both RISC-V
and CHERI RISC-V use a opcode table to distinguish normal instructions from jump instructions.
The last callback function does not notify FAIL* of any event, but instead provides a synchronization
point between FAIL* and the simulator. It switches the control flow back to the experiment co-routine
(see Section 3.2 and Figure 3.2), and allows any previously queued save or restore requests to run.
Careful consideration must be applied to the timing of its call: It must be called after FAIL* has been
notified that an instruction has been reached, but before any processing of the current instruction
has started. This ensures, that the correct state is saved, when the start_marker is reached and no
previous state pollutes the simulators execution, when its state is restored.

The second interface of the EEA layer is the state interface. It facilitates access to the simulators,
and consequently, the simulated processors internal state. The state of a Sail model can be split up
into the simulated data and tag memory, and the processors registers.

First, consider the simulated memory. The Sail compiler provides a standard library, which
provides often used functionality to the generated C simulator. Most notably, this standard library
implements both data and tag memory as dynamically allocated linked-list structure. Both memories
are exposed to the Sail model through a pair of read and write function, and can be accessed from
the model through the foreign function call interface of Sail. FAIL*, consequently, uses the same
functions to read and modify the simulated memory during injection. To save and restore the state
of simulated memory, FAIL* simply serializes the linked-list structure to a file.

Secondly, consider the processors internal and external registers. Each register declared in a
Sail model is a global, statically-typed variable. By default, Sail supports a multitude of data types,
ranging from simple integers to bit-vectors and complex structs. During model compilation, the Sail
compiler allocates a similarly named, albeit differently typed, static variable in the generated C code
for each register declaration. This global variable can then be accessed in the EEA layer. However,
special consideration must be given to the type of generated C variable.

39

3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection

Figure 3.6 shows three Sail register declarations and the corresponding generated C code.
Depending on the size and type of the register, the Sail compiler will either emit a register which is
backed by a primitive type (test), a register which is backed by an arbitrary precision number type
(test_long), or a register which is backed by a struct (test_comp).

Internally, the EEA layer uses unsigned integer types to pass register values and thus, any Sail
register value must be converted to an integer value before it can be handled by FAIL*. Registers,
which are backed by primitive types, are unsigned integers and can therefore be read or written by
simple assignment. Most registers declared in the RISC-V and CHERI RISC-V model fall into this
category. This includes registers, which are internal to the model and must be saved or restored
but cannot be injected. Struct registers, such as CHERI RISC-V capability register, on the other
hand, must be serialized to an unsigned integer representation before passing through the EEA layer.
Instead of implementing this conversion from scratch, CHERI RISC-V EEA implementation instead
uses memory serialization functions from the CHERI RISC-Vs Sail model to convert the capability
registers before access. However, since the tag bits are saved separately during memory reads and
writes, they must also be considered separately for capability registers. Instead of storing them
in-line with the register value all tag bits are mapped into a separate virtual tag register. This register
can then be read and written, and thus injected, like any other register. Similarly to the memory
state, each such register is serialized to and from a file during state save and restore respectively.

In addition to its adaption for the EEA layer of FAIL*, CHERI RISC-V requires modifications to
the fault space exploration, i.e., the trace importing, of FAIL*. Both RISC-V and CHERI RISC-V use
the virtual fault space abstraction discussed in Section 3.3.2.1. Their fault space contains three
concrete fault space areas, a register_area and two memory_areas, which abstract registers and
data or tag memory respectively. For each memory event, the importer then creates a fault space
element in the corresponding memory area and the accessed address. It then records its globally
unique address and access mask for the injection procedure. Similarly, the register importer creates
a fault space element in the register area, which references the accessed register. For CHERI RISC-V
it additionally inserts an artificial access to the virtual tag register, which only reads or writes the
tag bit that corresponds to the accessed register. This single-bit access is facilitated by setting the
fault points masks accordingly (see Section 3.3.2.2).

In summary, the integration of CHERI RISC-V into FAIL* largely follows the existing integration
of the RISC-V Sail model. However, the additional tag bit for both register and memory required
special consideration. Nonetheless, a successful integration was possible due to the virtual fault
space extension presented in Section 3.3.2.1 and the additional granularity for the fault space
presented in Section 3.3.2.2.

1 /* Sail model code */
2

3 register test : bits (64)
4 register test_long : bits (128)
5 struct Complex = {
6 real: bits (64),
7 imag: bits (64)
8 }
9 register test_comp : Complex

/* Generated C code */

uint64_t ztest;
lbits ztest_long;
struct zComplex {

uint64_t zreal;
uint64_t zimag;

};
struct zComplex ztest_comp;

Figure 3.6 – Sail register declarations with the corresponding generated C code for differently
typed registers. lbits is a multi precision number type defined by the Sail standard library.

40

3.4 Summary

3.4 Summary

This chapter first outlined, how a memory-protected architecture could improve the soft-error
resilience of a system. Then, it presented the FAIL* FI framework, which can be used to evaluate
the soft-error resilience of an architecture. Next, it presented the concrete memory protection
architecture – CHERI RISC-V – and its integration into the FAIL* framework. Together, with the
existing integration of RISC-V, this form a comprehensive evaluation platform on which the memory-
protected architecture can be evaluated. However, CHERI RISC-V’s tagged memory architecture
posed unique challenges for its integration. These have been tackled by developing a virtual
fault space abstraction, which can abstract into a globally unique fault space regardless of their
corresponding architectural element. Additionally, FAIL* is extended to support fault point at bit-
granularity instead of byte-granularity to track writes to tag bits in registers and memory without
skewing the FI results.

41

4A N A LY S I S

This chapter evaluates the memory-protected CHERI RISC-V and its unprotected counterpart RISC-V
to compare their resilience against soft-errors. First, Section 4.1 defines the fault model used for
the evaluation. Next, Section 4.2 and Section 4.2.3 present two micro benchmarks, with various
variants, designed to exercise the spatial memory safety and control-flow protection of CHERI.
In combination, they cover large parts of the system’s functionality, and allow conclusion on its
resilience. They are then evaluated according to Section 4.3 to characterize each architectures
behavior. Finally, Section 4.4 discusses the results to validate or refute the hypotheses made
in Section 3.1.

4.1 Fault Model

For this evaluation, I, first and foremost, assume that faults can only occur or first become visible at
the ISA level of an architecture. Furthermore, only faults which occur in the system’s data memory
or its registers including their respective tag bits are considered. Control logic, on the other hand, is
assumed to be resistant against faults due to its inherent masking of transient irregularities [Hen+13;
DW11].

From all available registers, only consider general-purpose registers are considered. More
specifically, RISC-V’s control-and-status registers (CSRs) are considered to be immune against faults.
They often do not act as mere storage elements and instead forward architectural state to the user.
Although research shows that SRAM and DRAM memories have different soft-error rates [Sla11]
they vary significantly for different architectural parameters and implementations. Therefore, it is
assumed for this thesis that a fault in either type of system memory is equally likely and their resulting
failures can be combined without additional weighting to reach conclusions for the complete systems.

Furthermore, the evaluation follows the “single-fault assumption” postulated by Schirmeier [Sch16].
In short, it is assumed that during each system run, only a single fault will happen, which is transient
and is only visible for a single cycle.

Each fault leads to a, possibly erroneous, system state, which are classified along three classes of
errors.

1. SDC error, meaning that no error has been reported but the system produced a wrong result.

2. TIMEOUT error, meaning that no error has been reported, but the system failed to produce a
result within a predetermined timeframe.

3. TRAP error, meaning that the system reported an unexpected trap event.

43

4.1 Fault Model

Translating each error class to failure modes is simple for most error classes. SDC errors corre-
spond to unsignaled content failures, and TIMEOUT errors correspond to late timing failures. Finally,
TRAP errors associated failure mode is dependent on the failure model of the system. Assuming a
fault tolerant system, such errors could be recovered from and they therefore do not constitute any
failure. However, for non-tolerant system they correspond to unsignaled halt failures.

4.2 Benchmarks

To evaluate each architecture thoroughly, two micro benchmarks written in the C programming
language, with a total of five different implementations, are presented that each exercise a specific
aspect of the target. Together, they provide an overview of the system’s behavior for different
classes of programs under the influence of soft-errors and allow conclusions for the real-world
soft-error resilience of the evaluated architectures. In addition to the distinct implementations of
each benchmark, four compile-time variants of each benchmark, which differ in compilation flags
and/or memory layout, are generated to increase the generalizability of the results. In the follow-
ing, both benchmarks and their respective implementation variants are discussed in Section 4.2.1
and Section 4.2.2 respectively. Finally, Section 4.2.3 elaborates on the compile-time variants, which
are generated for each implementation.

4.2.1 The fibonacci Benchmark

The fibonacci benchmark computes the eights Fibonacci number. Two implementations of the
algorithm are evaluated, one of which calculates the result through recursion (fib), and the other
through iteration (fib-iter).

Generally, recursive computations allocate a multitude of stack frames due to repeated function
invocation, whereas iterative computations often only allocate a single stack frame. Each allocated
stack frame contains, next to the invocated functions’ arguments and spilled registers, control-flow
related information such as the return address and a pointer to the previous stack frame. Transient
faults that affect the stack memory can, therefore, affect the control flow of the affected system
by corrupting saved frame pointer or return addresses. This is especially true, if the stack mostly
contains control-flow related information, i.e., the recursive function takes few arguments and keeps
a small local state which may needs to be spilled before the next recursive invocation.

The fibonacci algorithm is a simple and stateless recursive algorithm. In its recursive implemen-
tation, the recursive function takes only a single argument and keeps no local state. Therefore, its
allocated stack memory contains mostly control-flow related information. The iterative implementa-
tion of the same algorithm provides a baseline, which calculates the same result without keeping
any control-flow related information on the stack.
Expected Result: The recursive fibonacci implementation will show fewer TIMEOUT errors than the
iterative implementation.

4.2.2 The bubblesort Benchmark

The bubblesort benchmark sorts a sequence of numbers according to the bubble sort algorithm. It
repeatedly loops over the sequence and swaps two adjacent entries if the value of the latter is lower
than at the former. This is continued until the end of the sequence is reached, and then repeated
from the front until no swaps have been performed for the full length of the sequence and, therefore,

44

4.2 Benchmarks

the sequence has been sorted. The resulting sequence is then compared to a presorted version of
the input sequence, to check if it was sorted correctly by the algorithm.

The input array contains ten numbers ranging from (0, 232−1) for 32-bit systems and (0, 264−1)
for 64-bit systems, and is, similarly to the presorted array, generated pseudo-randomly.

Three different implementations of this algorithm exist, which keep the same sorting algorithm
but choose a different implementation of the data structure which back the abstract sequence.

The static variant implements the sequence as a C array. To swap two elements, it simply stores
the former element’s value in a temporary variable, moves the latters value into the formers array
entry and finally moves the temporary variable into the latter array entry. The array is statically
allocated and filled at compile time.

The single variant, on the other hand, implements the sequence as a single-linked list. Two
elements can then be swapped, by modifying their and potentially their neighbors’ forward link
pointers to change the structure of the sequence.

Finally, the double variant, implements the sequence as a double-linked list. In contrast to
the single-linked list implementation, both the forward and backward pointer of both nodes, and
potentially these of their neighbors’, must be swapped.

Both the single and the double variant allocate their linked-list dynamically at the start of the
workload. However, the allocation is not injected during the evaluation, as to not skew the results
in comparison to the baseline.

While the static variant uses no, or very few pointers to access the array’s values, both the single
and the double variant handle multiple pointers to list elements with varying levels of indirection. In
other words: The level of indirection, i.e., the use of pointers, increases with each implementation.
As discussed in Section 3.1, indirect memory accesses should be better protected in CHERI.
Expected Result: The single and double variant will show fewer SDC errors than the static im-
plementation. Additionally, the double variant will show even fewer SDC errors than the single
variant.

4.2.3 Variants

Each of the previously discussed benchmark implementations is evaluated in four compile-time
variants. The first two relate to the compiler’s optimization flags. Typically, benchmarks evaluated
with FAIL* are compiled without compiler optimization. This makes it easy to map assembler
instructions back to source-code lines, when performing the post-injection analysis. Additionally, it
prevents the compiler from optimizing the program’s structure and which skews the benchmark’s fault
space. However, the compiler used to compile the benchmarks for CHERI RISC-V (and consequently
also for RISC-V) is llvm-cheri, a Clang-based research compiler. Without optimization, it generates
correct but very inefficient code for CHERI-enabled architectures, which artificially inflates the fault
space of these architectures. For some benchmark variants this inflation is up to 440 percent when
comparing CHERI RISC-V to RISC-V. Consequently, to aid comparability, each benchmark is built
with and without enabled optimization to evaluate the impact of the default code generation.

The other two variants modify the memory layout of the compiled binary. A pointer in a non-
memory protected architecture that has been corrupted by a transient fault can still be used to access
data, if the newly pointed to address is still a valid, albeit incorrect, address. If it points to non-
accessible or invalid memory addresses, e.g., device memory, even an unprotected architecture is able
to detect the invalid access. For a given pointer, the number of incorrect but valid corrupted addresses
is directly proportional to the size of memory available to its program. Assuming that typically,
only that data section of a program is both readable and writeable, this pool of corrupted but valid
pointers is comparatively small for small input data sizes, and thus for the presented benchmarks.

45

4.2 Benchmarks

However, real-world implementations of the presented benchmarks would be embedded into a larger
system, and thus have a much larger pool of corrupted, but valid, pointer available. Consequently,
evaluating each algorithm in a micro-benchmark scenario will yield less silent data corruption, than
it would when implemented in a commercial system. To consider this effect, each benchmark is
evaluated in a padded version, where its data section has been artifically enlarged through link-time
modifications, and as an unpadded version where the original memory layout is preserved.

4.3 Evaluation Procedure

Through implementation and compile-time variants, a total of twenty different benchmarks are eval-
uated. Each benchmark is evaluated for the baseline RISC-V architecture and its memory-protected
variant CHERI RISC-V in both 32-bit and 64-bit configurations. Evaluating both instruction lengths
is of interest because the CHERIConcentrate capability encoding (see Figure 2.4b) is dependent on
the instruction length. While the length of capability is always fixed to twice the instruction length
of the architecture, the size of its internal fields is not. For example, its permission field varies in
the number of permissions supported by the specific CHERI RISC-V implementation. Additionally,
the length of its compressed bounds fields can be varied, where shorter bound encodings require
stricter alignments and, thus, increase object granularity. This changes the heap layout of the
workload since its objects must fulfill stricter alignment guarantees. However, by shortening the
bounds, additional permission bits can be added or the range of object types can be extended.
Therefore the precise allocation of bits in the capability encoding is able to change the runtime
behavior of the workload and must be evaluated. Additionally, an extended version of the CHERI
RISC-V architecture, henceforth called CHERI-P that uses parity to protect capabilities in memory
and registers is evaluated in both instruction length configurations. It is discussed in greater detail
in Section 4.4.1.3

Both memory and register, including their corresponding tag bits, are injected separately through
the FAIL* framework. For each benchmark the complete fault space is evaluated. However, to speed
up the evaluation, its size is reduced before injection with the def/use pruning strategy discussed
in Section 3.2. For each of these injected faults the resulting error class and the delay between
the injection and the resulting system state – the detection delay – are recorded in a database. To
account for the pruning, each result is then weighted with the length of its equivalence class. Finally,
the weighted results are grouped by their error class and accumulated to form each error class’s
absolute error count. The fault coverage of each system is not compared since it is an unreliable
metric when comparing workloads with different fault space sizes [Sch16].

For CHERI RISC-V, each benchmark is compiled in pure-capability mode, i.e., all pointers are
capabilities (see Section 2.5.2). Furthermore, all benchmarks are compiled for the RISC-V’s medany
code model, are not position-independent and statically linked without any standard library. They
are, instead, amended with a small boot code that only initializes the heap and stack memory before
calling the main benchmark function. For CHERI RISC-V this bootcode, additionally, performs the
necessary initialization of the capability system, such as setting up the DDC registers and PCC
registers. Finally, optimized variants of the benchmarks are compiled with loop-unrolling and
automatic function inlining disabled. This way, any optimization by the compiler do not dramatically
alter the structure of the program, and skew the results. Additionally, with loop-unrolling enabled,
the compiler sometimes resolves the bubblesort algorithm statically on RISC-V, which collapses the
fault space of the benchmark.

All experiments are conducted on a 48-core (96 hardware threads) Intel Xeon Gold 6252 machine
clocked at 2.10 GHz with 374 GiB of main memory.

46

4.4 Results

4.4 Results

In the following, the results of the evaluation are presented and used to reject or validate the
hypotheses introduced in Section 3.1. First, it is evaluated if CHERI RISC-V exhibits a reduced
frequency of two failure modes. Section 4.4.1 discusses if and when the added protection measures
of CHERI RISC-V lead to less unsignaled content failures. It specifically analyses, how different levels
of indirection, compilation flags, and architectural parameters affect the failure distribution for the
bubblesort benchmark. Next, Section 4.4.2 explores the effect of CHERI RISC-V’s control-flow
protective measures with regards to late timing failures. Finally, Section 4.4.3 evaluates if CHERI
RISC-V offers improved detection of specific failure modes.

4.4.1 Hypothesis: Reduced Frequency of Unsignaled Content Failures

As discussed in Section 3.1, memory-protected architectures generally better protect programs that
use a lot of indirection when accessing data. Consequently, CHERI RISC-V programs that make
heavy use of indirection should exhibit less unsignaled content failures, in comparison to programs
that use few or no indirection.

Figure 4.1a shows the number of faults that result in SDC errors for each architecture and each
of the three implementation variants of the bubblesort benchmark. All variants are built without
optimizations or memory padding. Additionally, the 32-bit variant of each architecture is evaluated.
The figure shows combined absolute error counts, i.e., the number of SDC errors originating from
register and memory faults have been summed up and are weighted by the length of their equivalence
interval.

For the static variant, CHERI RISC-V shows a 31 percent increase in SDC errors when combining
both fault classes and in comparison to RISC-V. However, when considering register faults separately,

static single double
102

103

104

105

106

107

RISC-V
CHERI

(a) Number of SDC errors for each variant com-
piled without optimizations

static single double
102

103

104

105

106

107

RISC-V
CHERI

(b) Number of SDC errors for each variant com-
piled with optimizations

Figure 4.1 – Number of faults that result in a SDC error for each bubblesort implementation
variant and architecture. All variants are built without memory padding and evaluated on 32-bit
architecture variants of CHERI RISC-V and RISC-V.

47

4.4 Results

SDC errors decrease by 32 percent. The overall increase is, therefore, mostly due to memory faults,
which show a 36 percent increase in SDC errors.

The single benchmark variant, similarly, shows an overall increase of 19 percent in SDC errors,
when considering combined faults. However, in comparison to the static variant the overhead
of CHERI RISC-V is reduced by nearly half, most likely due to the additional indirection in the
single variant. That being said, both architectures show a general increase in SDC errors for the
single variant (150 percent on average), most likely due to the added complexity of the linked-list
handling. Regarding the error difference between memory and register faults, CHERI RISC-V shows
an increase of both SDC errors which originate from register faults (+13 percent) and memory faults
(+19 percent) in comparison to RISC-V for the single variant.

Although the level of indirection is increased, the double variant shows a larger overall increase
of 30 percent in SDC errors than the single variant, when considering combined faults in comparison
to RISC-V. Nonentheless, the overhead is still smaller than that of the static variant. Again, the
added complexity of the double linked-list increases the number of SDC errors by 47 percent on
average. This increase is smaller than the single variant since the bubble sort algorithm requires
fewer traversals of its list to swap adjacent elements. Similarly to the static variant, SDC errors
caused by register faults are decreased by 22 percent, and SDC errors caused by memory faults
increased by 30 percent.

The unexpected inversion in SDC error overhead with increasing indirection and the overall
increase in SDC errors for CHERI RISC-V can be explained with the large deviation of fault space size
between the architectures. While the complete fault space for the static variant in RISC-V consists of
1,736,768 unique fault points, the same variant has 6,539,752 unique faults points in CHERI RISC-V.
In other words, compiling the static variant for CHERI RISC-V enlarges its fault space by a factor of
3.77.

The single and double variants show a similar increase. Moreover, 70 percent of the additional
fault points for CHERI RISC-V are tolerated faults, i.e., result in the OK error when injected. One
possible explanation for the large fault space increase with mostly no-effect faults could be that
the compiler generates highly redundant, but easily (human-)verifiable code, for CHERI RISC-V.
For a research compiler, like llvm-cheri, this is often convenient during its development, since
the emitted code is often verified manually. The RISC-V compiler, on the other hand, is used in
production and has been tested extensively. It, therefore, emits less readable or verifiable, but
better-optimized code by default.

Next, in Section 4.4.1.1, discusses one mitigation for the fault space inflation – compiler opti-
mization –, and its effect on the relative increase of SDC errors when comparing CHERI RISC-V to
RISC-V. Section 4.4.1.2 explores the effect of the workload’s memory layout and the instruction
length of the evaluated architecture on the number of SDC errors. Finally, Section 4.4.1.3 discusses
the CHERI-P architecture, which extends CHERI RISC-V with parity-protected capabilities, and its
effect on the frequency of unsignaled content failures.

4.4.1.1 Effect of Compiler optimization

Benchmarks compiled for CHERI RISC-V have a much larger fault space than the same benchmark
compiled for RISC-V. Table 4.1 summarizes this size increase for each variant of the bubblesort
benchmark. It presents the fault space sizes for the same benchmark, once with compiler opti-
mizations disabled and once with compiler optimizations enabled (marked (opt.)). Additionally,
the relative increase for each CHERI RISC-V variant is recorded in a separate column (marked
Diff.). For unoptimized variants of the bubblesort benchmark, compiling the same benchmark for
CHERI RISC-V increases the fault space by 250 percent on average. The overhead is the highest for

48

4.4 Results

Variant RISC-V CHERI Diff. [%] RISC-V (opt.) CHERI (opt.) Diff. [%]

static 1,736,768 6,539,752 +276.5 381,888 1,051,960 +175.5
single 5,404,032 17,930,930 +231.8 1,101,536 1,762,670 +60.0
double 5,597,888 19,119,132 +241.5 1,854,848 2,832,000 +52.7

Table 4.1 – Number of unique fault points for RISC-V and CHERI RISC-V for optimzed and
non-optimized variants of the bubblesort benchmark.

the static benchmark variant. However, all variants generate a percentual increase which is close
to the calculated average. The optimized compilation of each benchmark, on the other hand, only
shows a 96 percent increase in fault space size on average. Of the three, the static variant stands
out with a 175 percent increase in fault space size for CHERI RISC-V, whereas the other two only
show a 55 percent average increase. With optimizations, the compiler emits completely stackless
code for the static bubblesort implementation for RISC-V, but is unable to do so when compiling
for CHERI RISC-V. For RISC-V, memory access is, therefore, restricted to the benchmarks sorting
input, and significantly reduced in comparison to CHERI RISC-V and its non-optimized compilation.
Hence, the size of its fault space is unproportionally decreased, which explains the large overhead
for CHERI RISC-V. Nonetheless, compiling the benchmarks with optimizations still halves the fault
space size overhead on average.

Going back to Figure 4.1b, the number of faults that result in SDC errors is shown for all
benchmarks with enabled optimizations. For the static variant, the previously recorded increase
in SDC errors is even larger (+75 percent) when it is compiled with enabled optimizations. This
can be attributed to the collapsed fault space of its RISC-V variant. However, both the single and
double variant now show an overall decrease in SDC errors (9 percent and 16 percent respectively).
More importantly, this overall decrease in SDC errors increases with the amount of indirection, as
predicted in Section 3.1.

In summary, compiler optimizations are an effective mitigation technique for the fault space
inflation of CHERI RISC-V. Additionally, a comparable fault space size is important when comparing
different architectures. For roughly equally sized fault space CHERI RISC-V shows an overall decrease
in SDC errors for two of the three benchmark variants. Furthermore, this decrease is higher for a
workload, which uses more indirection. To conclude CHERI RISC-V shows less unsignaled content
failures for workloads which use indirection, however, its benefits can be masked by compilation
artifacts.

4.4.1.2 Effect of Instruction Length and memory padding

As discussed in Section 4.2.3, running the same benchmark on different instruction length variants of
CHERI RISC-V can change its runtime behavior and memory layout. The CHERI Concretate encoding
supports various allocations of the available capability bits to its internal fields. Most importantly,
the 32-bit variant of CHERI RISC-V allocates fewer bits to the capabilities’ bounds than its 64-bit
counterpart. Consequently, it requires stronger alignment for objects accessed through capabilities.
This affects the heap layout and, thus, the workload’s behavior when injected. Additionally, the
64-bit variant of CHERI RISC-V has more unused, that is reserved, bits in its capability encoding.
These bits will always produce a no-effect error, i.e., OK error (see Section 4.1).

Figure 4.2a shows the number of faults that result in SDC errors for each architecture and
each of the three implementation variants of the bubblesort benchmark. All variants are built with
optimizations to avoid masking any effects of CHERI RISC-V (see Section 4.4.1.1), but without

49

4.4 Results

memory padding. To discuss the effect of the instruction length 64-bit variants of each architecture
are evaluated.

In comparison to their 32-bit architecture variant, both CHERI RISC-V and RISC-V only show an
increase of 31 percent in SDC errors averaged over all benchmark variants for its 64-bit architecture
variant. Their relative SDC errors follow a pattern similar to the 32-bit variant: For the static variant,
SDC errors are increased by 52 percent, while the single and double variants show decreased SDC
errors (−11 percent and −16 percent respectively), when comparing CHERI RISC-V to RISC-V. To
conclude, most of the additional bits in each data word do not lead to additional silent data corrup-
tion. Therefore, CHERI RISC-V reduces the frequency of unsignaled content failures, regardless of
instruction length.

Similarly to the alignment changes with 64-bit architectures memory padding changes the
memory layout of the benchmark. This can can affect the number of faults that lead to SDC
errors on RISC-V. Figure 4.2b shows the number of faults that result in SDC errors for each
architecture and each of the three implementation variants of the bubblesort benchmark with
enabled memory padding. Again, all variants are built with optimizations to avoid masking any
effects of CHERI RISC-V (see Section 4.4.1.1). 64-bit variants of each architecture are evaluated,
allowing a better comparison to the unpadded variants presented in Figure 4.2a. However, all results
discussed for the memory padding apply similarly to the 32-bit variants of each architecture.

As expected, RISC-V shows a slight overall increase in SDC errors (+1.14 percent), whereas
CHERI RISC-V shows almost no overall increase (< 0.1 percent). The largest difference is detected
for the single variant. Here, CHERI RISC-V shows a 14 percent decrease in SDC errors compared
to RISC-V. Its unpadded variant, however, only showed a 11 percent decrease. Both the static and
double variants, on the other hand, show no difference in the frequency of SDC errors, compared to
their unpadded variants.

To summarize, the memory layout of a benchmark has a mostly neglible impact on frequency of
unsignaled content failures. As expected, it increases the amount of SDC errors for the unprotected

static single double
102

103

104

105

106

107

RISC-V
CHERI

(a) Number of SDC errors for each variant com-
piled without memory padding

static single double
102

103

104

105

106

107

RISC-V
CHERI

(b) Number of SDC errors for each variant com-
piled with memory padding

Figure 4.2 – Number of faults that result in a SDC error for each bubblesort implementation
variant and architecture. All variants are built with optimizations and are evaluated on 64-bit
architecture variants of CHERI RISC-V and RISC-V.

50

4.4 Results

architectures. However, this increase is too small on average and only translates to improvements
for the single variant. Therefore, in conclusion the memory layout has a small non-deterministic
effect on silent data corruptions, and it should not be generally assumed thatSDC errors are reduced
for larger binaries in CHERI RISC-V.

4.4.1.3 Effects of parity-protected capabilities

In contrast to other CHERI-enabled architectures, CHERI RISC-V uses the compressed CHERI Con-
centrate encoding exclusively for its capabilities (see Figure 2.4b). A single-bit fault in the loaded
capability, can either affect its flags, its tag, its object type, its bounds, or its base address. While faults
in the bounds, flags or tags often lead to a trap, since their validity is checked before usage, faults
which occur in the base address are much harder to detect. In the CHERI Concentrate representation,
a capabilities’ base and bounds are encoded relative to its base address and are still valid even when
it changes. In other words, a fault that changes the base address of a capability, simply moves the
pointed-to memory area while retaining valid bounds. In this case, the CHERI protection-model
is unable to detect the capability corruption because its encoding is still valid. In consequence, its
ability to detect faults is restricted. However, such faults could be detected, if each capability had a
simple checksum mechanism, which could detect such single-bit changes to its fields.

Therefore, the CHERI RISC-V architecture was extended to add a per-capability parity bit. This
extension is called CHERI-P in the following. When CHERI-P writes a capability to memory or into
a register this calculates an even parity bit. It is 1 if there is an even number of ones in the memory
representation of the capability and 0 otherwise. The parity bit is saved to an unused bit of the
capability, before writing the modified version to memory. During a memory or register read which
accesses a capability, this tag bit is then used to verifiy the integrity of the capability. If the integrity
check fails, a trap is raised, which results in a TRAP error.

Figure 4.3 shows the number of faults that lead to SDC errors for each bubblesort implemen-
tation variant and the RISC-V and CHERI-P architecture. All benchmark variants are built with
optimizations, without padding and for 32-bit variants of each benchmark.

static single double
102

103

104

105

106

107

RISC-V
CHERI

Figure 4.3 – Number of faults that result in a SDC error for each bubblesort implementation
variant and the RISC-V and parity-protected CHERI-P architecture. All variants are built with
optimizations and without padding and are evaluated on 32-bit architecture variants.

51

4.4 Results

For the static variant, CHERI-P shows a decreased overhead of 45 percent in SDC errors in
comparison to RISC-V and compared to optimized benchmark variant on non-parity protected
CHERI RISC-V. Without parity-protection, the static variant shows a 75 percent increase.

For the single variant, CHERI-P decreases the number of SDC errors by 42 percent, which nearly
quadruples the effect of the non-parity protected CHERI RISC-V (9 percent). With additional memory
padding, this can be further improved to a 45 percent decrease in SDC errors.

The double benchmark also shows an additional decrease of CHERI-P (up to 28 percent) in SDC
errors in comparison to RISC-V. The non-parity protected CHERI RISC-V, on the other hand, only
showed a 16 percent decrease. However, in comparison to the single variant, the improvement
achieved by parity-protection is smaller.

In summary, adding parity-protection to CHERI RISC-V’s capabilties significantly reduces the
number of SDC errors in comparison to RISC-V. Especially for the single benchmark variant, this
reduction nearly halves the number of unsignaled content failures in CHERI RISC-V. Therefore,
CHERI’s capabilities should be parity-protected, if used in a dependable system.

4.4.1.4 Summary

In summary, CHERI RISC-V reduces the frequency of unsignaled content failures in most cases.
However, special consideration must be given to the compilation options of its workloads. If it is
compiled without optimizations enabled, CHERI RISC-V’s fault space inflation will often mask its
reduction in silent data corruption. Workloads that use more indirection benefit more from the
added protection of the CHERI-protection model. At most CHERI RISC-V reduces the frequency of
SDC errors by 16 percent for the bubblesort benchmark variant. The instruction length of the CHERI
architecture and the workloads memory layout, on the other hand, have a negligible influence on
the soft-error resilience of CHERI RISC-V. Additionally, the influence of the compressed capability
encoding on the vulnerabilty of the CHERI RISC-V architecture has been discussed. Protecting each
capability with an additional parity can significantly improve the recorded decrease in unsignaled
content failures for CHERI RISC-V. For the single variant, CHERI-P nearly halves the frequency of
unsignaled content failures in comparison to the unprotected RISC-V. In conclusion, CHERI-P is
even more resilient to soft-errors than CHERI RISC-V with regard to unsignaled content failures.

4.4.2 Hypothesis: Reduced Frequency of Late Timing Failures

As discussed in Section 3.1 CHERI RISC-V should offer better protection against late timing failures
due to the added protection of control-flow related information in memory. Consequently, bench-
marks which store a lot of control-flow information, such as loop-counters or return addresses in
memory should experience fewer late timing failures.

Figure 4.4a shows the number of faults that result in a TIMEOUT error, for the two implementation
variants of the fibonacci benchmark and both architectures. Similar to the bubblesort benchmark,
memory and register faults are weighted according to the length of their equivalence interval and
summed up. Again, a uniform distribution of faults across both register and memory is assumed.
Both variants are compiled without optimizations or memory paddings, and are evaluated on 32-bit
variants of each architecture.

Without optimizations, CHERI RISC-V shows a 40 percent increase in TIMEOUT errors for the
iterative variants in comparison to RISC-V. This can be explained by the fact that only its loop-
counter variable is control-flow related and could provide a benefit regarding TIMEOUT errors in
CHERI RISC-V. Additionally, the non-optimized variants shows a enlarged fault space compared
to the optimized variants. While the non-optimized benchmark’s fault space contains 54,912

52

4.4 Results

ifib fib

(a) Number of TIMEOUT
errors for each vari-
ant, compiled without
optimizations.

ifib fib
102

103

104

105

RISC-V
CHERI

(b) Number of TIMEOUT er-
rors for each variant, com-
piled with optimizations.

ifib fib

(c) Number of TIMEOUT er-
rors for each variant, com-
piled with optimizations,
and evaluated on 64-bit ar-
chitectures.

ifib fib

(d) Number of TIMEOUT er-
rors for each variant, com-
piled with optimizations
and padding, and evaluated
on 64-bit architectures.

Figure 4.4 – Number of faults that result in a TIMEOUT error for each fib implementation
variant and various architecture variants. ifib refers to the iterative implemention and fib to the
recursive implementation.

unique fault points for the RISC-V architecture, the same benchmark has 299,079 fault points for
CHERI RISC-V, constituting an increase by factor 5.45. Similar to SDC errors (see Section 4.4.1.1),
this inflation might shadow any benefits provided by CHERI RISC-V.

The recursive variant, however, shows a 31 percent decrease in TIMEOUT errors when comparing
CHERI RISC-V to RISC-V. In contrast to the iterative implementation, most of its memory content is
control-flow related. Namely, its stack stores the return addresses for the recursively called function.
Similar to the iterative implementation its fault space is increased by a factor of 4.19. The overall
decrease in TIMEOUT errors leads to the conclusion that the benefit provided by the additional
protection of the return addresses is significant and outweighs the fault space size increase.

In summary, the decrease in TIMEOUT errors is related to the amount of control-flow related
information which a program keeps in memory. For recursion heavy programs CHERI RISC-V shows
a reduced frequency of TIMEOUT errors and, in turn, late timing failures, even when its fault space
is heavily inflated in comparison to RISC-V. In the following, the number of TIMEOUT errors are
evaluated for different compilation variants and architecture variants. First, Section 4.4.2.1 discusses
the effect of compiler-optimizations, which successfully mitigated the fault space inflation for SDC
errors (see Section 4.4.1.1). Then, Section 4.4.2.2 discusses the effect of instruction length and
memory padding on the number of late timing failures. Finally, Section 4.4.2.3 evaluates the CHERI-P
architectural variant with regards to TIMEOUT errors, after which Section 4.4.2.4 summarizes the
results.

4.4.2.1 Effect of optimization

Table 4.2 shows the size of the fault space for optimized (marked (opt.)) and unoptimized variants of
the fibonacci benchmark. Additionally to their absolute sizes, I record the relative difference (named
Diff.) between CHERI RISC-V and RISC-V. Similar to the bubblesort benchmark, CHERI RISC-V
increases the size of the fault space by 382 percent on average for unoptimized builds. For these the

53

4.4 Results

Variant RISC-V CHERI Diff. [%] RISC-V (opt.) CHERI (opt.) Diff. [%]

fib 2,303,488 9,644,670 +318.7 1,076,480 3,325,560 +208.9
fib-iter 54,912 299,079 +444.7 9,216 20,727 +124.9

Table 4.2 – Number of unique fault points for RISC-V and CHERI RISC-V for optimzed and
non-optimized variants of the fibonacci benchmark.

inflation decreases to 167 percent on average. In other words, building a benchmark with enabled
optimizatons halves its fault space inflation.

Going back to Figure 4.4b, both variants are evaluated with enabled optimizations. The iterative
variant benefits from enabled optimizations and shows a 6 percent decrease in TIMEOUT errors.
The recursive variant, however, shows a slightly lower decrease in TIMEOUT errors (20 percent)
with optimizations than without optimizations, where it decreased TIMEOUT errors by 31 percent .
This decrease can be attributed to large reduction in TIMEOUT errors for RISC-V (−18 percent) in
comparison to the small reduction for CHERI RISC-V (−6 percent). This, in turn, might be due to
the badly optimized default code generation for recursive code by the RISC-V compiler.

In contrast to Section 4.4.1.1, enabling optimizations does not result in less frequent TIMEOUT
errors, and thus late timing failures in CHERI RISC-V for workloads, which keep most control-flow
related information in memory. Nonetheless, the fault space inflation is halved for optimized builds.
To better distinguish the effects of CHERIs additional protection, only optimized are evaluated
variants further.

4.4.2.2 Effect of instruction length and memory padding

As discussed in Section 4.2.3 and Section 4.4.1.2, evaluating the same benchmark for different
instruction length variants of CHERI RISC-V can change its runtime behavior and memory layout.

Figure 4.4c shows the number of faults, which result in TIMEOUT errors for all variants of the
fibonacci benchmark and 64-bit variants of RISC-V and CHERI RISC-V. All variants are built with
optimizations and without padding.

For the iterative variant, CHERI RISC-V again shows a slight decrease of 4 percent in TIMEOUT
errors in comparison to RISC-V. The recursive variant, however, shows a large decrease in TIMEOUT
errors for the 64-bit variant of CHERI RISC-V. Compared to 64-bit RISC-V, it decreases TIMEOUT
errors by 59 percent , whereas this decrease was only 20 percent for its 32-bit variant. Overall, the
increased instruction length leads to a 51 percent increase in TIMEOUT errors averaged over both
benchmark variants and architectures. Again, this can be attributed to additional no-effect bits in
the 128-bit capabilities used for CHERI RISC-V, and the additional alignment requirements for its
capabilities.

To summarize, CHERI RISC-V shows less late timing failures when a lot of control-flow related
information is saved in memory in both 32- and 64-bit architecture variants. However, the reduction
is nearly tripled for the 64-bit variant.

As discussed in Section 4.2.3, increasing the pool of valid, but incorrect addresses increases
the number of undetectable faults for unprotected architectures. This effect can only provide a
benefit for CHERI RISC-V when the workload uses pointers. However, the return addresses, which
are stored in memory, can be seen as a form of a control-flow pointer. Figure 4.4d shows the number
of faults that lead to a TIMEOUT error, for both benchmark variants, built with optimizations and
memory padding enabled. They are evaluated for 64-bit variants of each architecture.

54

4.4 Results

As expected, evaluating the recursive variant with enabled memory padding increases the number
of TIMEOUT errors recorded for RISC-V by 24 percent. This translates to a 67 percent decrease
in recorded TIMEOUT errors when comparing CHERI RISC-V to RISC-V, which is higher than the
decrease for the 64-bit variant without padding (59 percent as shown in Figure 4.4c). A similar
result is found, when 32-bit variants of each architecture are evaluated. Here, CHERI RISC-V shows
a 33 percent decrease in TIMEOUT errors for the padded variant, and 20 percent for the unpadded
variant, in comparison to RISC-V.

In summary the memory padding has an overall positive effect on the frequency of TIMEOUT
errors and late timing failures. Consequently, CHERI RISC-V will exhibit less late timing failures for
large binaries, or workloads which have a lot of static data.

4.4.2.3 Effects of parity

As discussed in Section 4.4.1.3, due to the capability encoding used by CHERI RISC-V certain
capability corruptions cannot be detected. However, by adding a parity bit, which is verified any
usage of the capability, they can be detected.

Figure 4.5a shows the number of faults that result in TIMEOUT errors for both benchmark variants
evaluated on 32-bit variants of RISC-V and CHERI-P. Both variants show a complete absence of
TIMEOUT errors when evaluated for the CHERI-P architecture. Consequently, all TIMEOUT errors
that were recorded in the non-parity protected CHERI RISC-V architecture must be due faults in
capabilities, which are undetectable due to the encoding.

Figure 4.5b, on the other hand, shows the number of faults that result in TIMEOUT errors for
both variants evaluated on 64-bit variants of RISC-V and CHERI-P. Here, the recursive variant sees a
smaller decrease of 93 percent in comparison to RISC-V. The iterative variant, sees a slight decrease
of 4 percent, which is similar to the decrease observed for the non-parity protected CHERI RISC-V.
The observation, that an increased instruction length worsen the benefits of CHERI RISC-V is in
contrast to the result obtained in Section 4.4.2.2, where an increased instruction length leads to a
decrease of the observed TIMEOUT errors.

ifib fib
102

103

104

105

RISC-V
CHERI

(a) Number of TIMEOUT er-
rors for each variant, built
with optimizations, eval-
uated for 32-bit architec-
tures.

ifib fib
102

103

104

105

RISC-V
CHERI

(b) Number of TIMEOUT er-
rors for each variant, built
with optimizations, eval-
uated for 64-bit architec-
tures.

ifib fib
102

103

104

105

RISC-V
CHERI

(c) Number of TIMEOUT er-
rors for each variant, built
without optimizations, eval-
uated for 32-bit architec-
tures.

ifib fib
102

103

104

105

RISC-V
CHERI

(d) Number of TIMEOUT er-
rors for each variant, built
without optimizations, eval-
uated for 64-bit architec-
tures.

Figure 4.5 – Number of faults that result in a TIMEOUT error for each fib implementation variant
evaluated for RISC-V and CHERI-P. ifib, refers to the iterative implemention and fib to the
recursive implementation. Both 32-bit and 64-bit architectures of each architecture are shown.

55

4.4 Results

However, this observation can be attributed to optimization artifacts. Figure 4.5c, and Figure 4.5d
show the number of TIMEOUT errors recorded for both variants of the fibonacci benchmark, compiled
without optimizations, for 32-bit and 64-bit variants of RISC-V and CHERI-P. Without optimizations,
TIMEOUT errors are decreased for an increased instruction length. While the recursive benchmarks
shows a 71 percent decrease in TIMEOUT errors for 32-bit architectures, the same benchmark shows
a 99 percent decrease for 64-bit architectures.

In summary, CHERI-P shows an additional improvement over CHERI RISC-V with regard to its
frequency of late timing failures. However, its effect is highly dependent on the optimization level
and instruction length for which the workload is evaluated.

Nonetheless, a 32-bit instruction length CHERI-P can eliminate TIMEOUT errors completely, if
the workload is built with optimizations.

4.4.2.4 Summary

To summarize, CHERI RISC-V exhibits less late timing failures for workloads, which make heavy
use of recursion, i.e., workloads that save a lot of control-flow related information in memory.
For these, CHERI RISC-V reduced the frequency of late timing failures by 31 percent , even with a
significantly enlarged fault space for unoptimized builds. Similar to unsignaled content failures, the
fault space inflation skews the obtained results. Enabling compiler optimizations, however, does not
further reduce the frequency of late timinig failures in CHERI RISC-V. Instead, CHERI RISC-V shows
a smaller decrease in TIMEOUT errors of 20 percent in comparison to RISC-V. Considering the
effects of instruction length, CHERI RISC-V fares better in its 64-bit architectural variant. Compared
to the 32-bit variant, it shows a 59 percent reduction in late timing failures. Enabling memory
padding further improves this to a 67 percent reduction. Therefore, the frequency of TIMEOUT
errors is closely related to the memory layout of the workload and the instruction length of the
architecture. Finally, parity-protected capabilities significantly reduce the frequency of late timing
failures. The 32-bit variant of CHERI-P even eleminates TIMEOUT errors, if the benchmark is built
with optimizations. The effect is more nuanced for the 64-bit variant of CHERI-P, however, TIMEOUT
errors are still significantly decreased by 93 percent. In conclusion, CHERI RISC-V effectively reduces
the frequency of late timing failures, which its workloads experience, and is, therefore, more resilient
to soft-errors than RISC-V.

4.4.3 Hypothesis: Improved Detection of Existing Failure Modes

Another aspect of a system that is resilient to soft-errors, is its ability to detect erroneous conditions
during its execution. A system that allows early and consistent detection of faults, is more resilient
than a system that only detects a fault when it caused an unrecoverable error. Consequently,
consistent and early fault detection is a cornerstone of a fault-tolerant and, therefore, resilient
systems. To evaluate the fault detection capabilities of a system, the number of faults that cause a
TRAP error are recorded. TRAP errors indicate that the system detected that an erroneous condition
occurred and stopped execution. Therefore, a system that exhibits more TRAP errors better or, in
other words, more consistently detects faults. Section 4.4.3.1 presents the recorded frequency of
TRAP errors for each benchmark and architectural variant.

Additionally, the fault detection delay, that is the time between the faults inception and the
resulting TRAP error, is recorded. Systems which show a lower fault detection delay are more resilient
to soft-errors, since they can correct observed faults earlier. This is especially important for real-time
systems, which often have fixed execution deadlines for their workloads. These deadlines must be
met even if they encounter a fault during their execution. Section 4.4.3.1 discusses the observed

56

4.4 Results

detection latency for each benchmark and architectural variant. Finally, Section 4.4.3.3 summarizes
the results and draws a conclusion about the enhanced detection capabilities of CHERI RISC-V.

4.4.3.1 TRAP errors

Figure 4.6 shows the number of faults, which result in a TRAP error for each benchmark, evaluated
on 32-bit and 64-bit variants of RISC-V and CHERI RISC-V. All benchmarks are compiled with
optimizations and without padding. In constrast to Section 4.4.1.1 and Section 4.4.2.1 unoptimized
variants of each benchmark are not evaluated due to the previously shown fault space inflation.

For 32-bit architectures, CHERI RISC-V increases the number of TRAP errors by 143 percent
on average in comparison to RISC-V. The static bubblesort variant shows the largest increase of
322.35 percent. Additionally, CHERI RISC-V shows a smaller benefit, i.e., increase of TRAP errors,
for workloads which use more indirection, or store more control-flow information on the stack. This
can be attributed this to the way CHERI RISC-V accesses stack variables. While RISC-V addresses
variables saved on the stack directly through the current frame pointer, CHERI RISC-V introduces
an additional level of indirection. To guarantee its protection model for stack objects, it must always
indirectly address them through capabilities, which are also stored on the stack, and are loaded
through the current frame pointer. Therefore, CHERI RISC-V uses more indirection by default, even
if the workload is mostly stack-bound and does not use much indirection itself. This additional
indirection leads to the observed large increase for workloads, which operate with little to no
indirection, such as the static bubblesort variant (322 percent increase) and the iterative fibonnaci
implementation (63 percent increase).

For 64-bit architectures a similar pattern is observed. CHERI RISC-V increases the number of
TRAP errors by 151 percent averaged over all benchmarks. Again, stack-bound workloads show the
largest increase in TRAP errors for CHERI RISC-V. In comparison to the 32-bit architectures, faults
more often result in a TRAP error for CHERI RISC-V in 64-bit architectures. However, the difference

static single double ifib fib
102

103

104

105

106

107

RISC-V
CHERI

(a) Number of TRAP errors for each benchmark, evaluated
on 32-bit variants of RISC-V and CHERI RISC-V.

static single double ifib fib
102

103

104

105

106

107

RISC-V
CHERI

(b) Number of TRAP errors for each benchmark, evaluated
on 64-bit variants of RISC-V and CHERI RISC-V.

Figure 4.6 – Number of faults that result in a TRAP error for each benchmark evaluated for RISC-V
and CHERI RISC-V. All benchmarks are compiled with optimizations and without padding.

57

4.4 Results

is small (+8 percent), and can be attributed to the changed memory layout of the workload. To
summarize, the instruction length of CHERI RISC-V only has a small effect on its fault detection
capabilities.

Next, the effect of padding on the frequency of TRAP errors is evaluated. Similar to the changed
instruction length, memory padding affects the memory layout of the benchmark. Figure 4.7 shows
the number of faults that result in a TRAP error for each benchmark and both architectures. All
benchmarks are compiled with optimizations and padding and are evaluated for 64-bit variants of
each architecture. For the padded benchmarks CHERI RISC-V shows a 155 percent average increase
in TRAP errors in comparison to RISC-V. Consequently, CHERI RISC-V shows only 4 percent more
TRAP errors in comparison to the unpadded variant. Most of this increase can be attributed to
the static and single variant of the bubblesort benchmark, where TRAP errors are increased by
376 percent and 113 percent respectively. The double bubblesort variant and the recursive fibonnacci
implementation, conversely, show no increase in the number of TRAP errors recorded.

In conclusion, there is no clear pattern in the type of benchmark for which padding increases the
number of detected faults. Nonetheless, it never worsen the fault detection for any of the evaluated
benchmarks. Therefore, it can be assumed that the number of faults detected by CHERI RISC-V is
not negatively affected by the memory layout or size of the workload’s binary.

Finally, Figure 4.8 shows the number of faults that result in TRAP errors for each benchmark
evaluated on 64-bit variants of RISC-V and the parity-protected CHERI-P. All benchmarks are
built with enabled optimizations and disabled memory padding. TRAP errors are increased by
626 percent on average in comparison to RISC-V. This constitutes a 475 percent increase over
non-parity CHERI RISC-V. However, a large increase is expected since any fault, which occurs in a
capability, is now detected as a TRAP error. For the uniformly-distributed single-bit fault model that

static single double ifib fib
102

103

104

105

106

107

RISC-V
CHERI

Figure 4.7 – Number of faults that
result in a TRAP error for each
benchmark evaluated for RISC-V and
CHERI RISC-V. All benchmark are
compiled with optimizations and with
padding, and are evaluated on 64-bit
architectures.

static single double ifib fib
102

103

104

105

106

107

RISC-V
CHERI

Figure 4.8 – Number of faults that
result in a TRAP error for each
benchmark evaluated for RISC-V and
CHERI-P. All benchmarks are com-
piled with optimizations and without
padding, and are evaluated on 64-bit
architectures.

58

4.4 Results

is assumed for thesis, this encompasses all possible capability faults. Assuming that most memory
and register data in CHERI RISC-V is a capability, the large increase can be explained.

To summarize, CHERI-P increases the number of detected faults significantly in comparison to
the non-parity protected CHERI RISC-V. Therefore, most of its faults must happen in its memory or
register capabilities.

4.4.3.2 Detection Latency

A system that shows improved detection of existing failure modes is more resilient to soft-errors.
In addition to an increased frequency of TRAP errors, a system can also show improved detection
capabilities through a lower fault detection latency. The fault detection latency is the amount of time
that passes after the inception of a fault, i.e., its injection point in FI experiments, and its detection
by the system. In this thesis a is considered to be fault detected by the system if it shows a signaled
halt failure, or in other words, stops with a TRAP error.

Figure 4.9 shows the fault detection latency averaged over all benchmarks, which are grouped by
their variants (see Section 4.2.3). Going from left to right, noopt refers to all benchmarks compiled
without optimizations, and without padding, while opt refers to all benchmarks compiled with
optimizations, but without padding. Next, padding accumulates all benchmark variants, which are
built with optimizations and padding. Finally, parity averages the detection latency of all benchmarks
variants, built with optimizations and without padding. However, in contrast to noopt, opt and
padding, which compare RISC-V and CHERI RISC-V, parity compares RISC-V and the parity-protected
CHERI-P. Both 32-bit (Figure 4.9a) and 64-bit (Figure 4.9b) variants of the respective architectures
are evaluated.

Due to the usage of def/use pruning, special consideration must be taken to weigh the recorded
fault latency correctly. For each recorded crash time, its average detection delay is calcualted with

tdela y,avg = tcrash + 1− (tbegin + tend)/2 (4.1)

where tbegin and tend refer to begin and end time of the equivalence interval respectively. This
average delay is then again averaged over all benchmark variants for in respective class, and plotted
in Figure 4.9.

For 32-bit architectures CHERI RISC-V consistently shows an average fault detection latency that
is lower than in RISC-V. Relatively speaking, this decrease in detection is the lowest for non-optimized
benchmark variants, where CHERI RISC-V shows a 35 cycle average delay and RISC-V shows a 135
cycle average, constituing a 74 percent decrease. For optimized variants this relative difference is
even larger at −95 percent. Compiling each benchmark with optimizations and padding, further
enlarges the average detection latency of RISC-V (now 2,101 cycles), whereas CHERI RISC-V shows
no difference in its detection latency. Given that the additional memory padding only affects errors,
that occur due to faulty pointers which CHERI RISC-V protects by default, this result is reasonable.
Again, this increases the relative difference in detection latency to −97 percent. Finally, adding a
parity-protection to each capability decreases the average detection latency for CHERI RISC-V to
an average of 1.2 cycles. This corresponds to 100 percent decrease in comparison to RISC-V. The
median detection latency for CHERI-P is 1 cycles. Averaging the obtained result over all non-parity
variant groups yields an average detection of 499 cycles for RISC-V and 37 cycles for CHERI RISC-V,
which corresponds to a relative difference of −93 percent.

For the 64-bit variants of each archictecture, CHERI RISC-V also shows a significantly decreased
average fault detection latency. In comparison to the 32-bit variants, however, the relative difference
is much more consistent across the different benchmark variant groups. Averaged over all groups,
which are evaluated for the non-parity protected CHERI RISC-V, it decreases the fault detection

59

4.4 Results

latency by 91 percent. With parity-protected capabilities, the average detection latency further
decreased to 7 cycles, which constitutes a 96 percent decrease in comparison to RISC-V.

In summary, CHERI RISC-V significantly improves the average fault detection latency for all
evaluated benchmarks. Regardless of the instruction length, CHERI RISC-V’s fault detection latency
is at least an order of magnitude lower than that of RISC-V.

4.4.3.3 Summary

At the beginning of this section, it was proposed that an architecture that improves detection of
existing failure modes is more resilient to soft-errors. To improve detection, it must either exhibit
more signaled halt failures, which can be corrected in fault-tolerant systems, or reduce the fault
detection latency. CHERI RISC-V significantly increased signaled halt failures regardless of the
evaluated instruction length, compilations options, and parity protection. Additionally, it improved
detection latency by at least an order of magnitude, regardless of its evaluated instruction length, or
benchmark variant. In conclusion CHERI RISC-V is more resilient to soft-errors than RISC-V when
considering the improved detection of existing failure modes.

4.4.4 Summary

This section evaluated the soft-error resilience of both RISC-V and CHERI RISC-V. First the fault
model was presented with which one data-heavy sorting benchmark, and one control-flow heavy
recursion benchmark was evaluated. For both benchmark different implementation variants were
discussed, which are especially designed to exhibit features, for which I predicted an improved
soft-error resilience in Section 3.1. Addtionally, four compile-time variants of each benchmark
were shown that are also evaluated to minimize the effect of the different code generation for both
architectures. Each of the hypothesis made in Section 3.1 to evaluate, if and by how much the
CHERI-protection model improved the soft-error resilience.

noopt opt padding parity
100

101

102

103

RISC-V
CHERI

(a) Average latency for 32-bit architectures.

noopt opt padding parity
100

101

102

103

RISC-V
CHERI

(b) Average latency for 64-bit architectures.

Figure 4.9 – Detection latency in cycles averaged over all benchmarks grouped by their variants.
Both 32-bit and 64-bit architectures of CHERI RISC-V, CHERI-P and RISC-V are shown.

60

4.4 Results

With regards to unsignaled content failures, CHERI RISC-V reduces their frequency in comparison
to the unprotected RISC-V. However, special consideration must be given to the compilation options
of each benchmark. If it is compiled without enabled optimizations, CHERI RISC-V’s fault space
inflation will often mask its reduction in the frequency of unsignaled content failures. At most,
CHERI RISC-V showed a 16 percent decrease in unsignaled content failures. Additionally, the
hypothesis that CHERI RISC-V fares better, that is more effectively prohibits these failures when
the workload uses a lot of indirection, could be validated. Finally, an extended version of the
CHERI RISC-V architecture was discussed that protects its capabilities’ integrity with an additional
parity bit. This CHERI-P architecture could reduce the frequency of unsignaled content failures by
45 in comparison to the unprotected RISC-V architecture.

A similar behavior was observed regarding to late timing failures. In comparison to the unsignaled
content failures CHERI RISC-V significantly reduced their frequency. CHERI RISC-V reduced late
timing failures the most for 64-bit architectures and workloads with padded memory. For the
recursive variant of the fibonacci benchmark it reduced the number of late timing failures by a factor
of 67 in comparison to RISC-V architecture. Evaluating the CHERI-P architecture showed a further
decrease of late timing failures, and even eliminated them for certain benchmark and architecture
configurations.

Finally, the improved error detection mechanism of CHERI RISC-V were discussed. It was ob-
served that CHERI RISC-V significantly increased the number of signaled halt failures in comparison
to RISC-V, often by more than a magnitude. CHERI RISC-V especially detects error more frequently if
its capabilities are parity-protected. Additionally, the average detection latency of faults was derived
for RISC-V, CHERI RISC-V and CHERI-P in different variants. In summary, CHERI RISC-V signifi-
cantly decreases the fault detection delay, regardless of the evaluated benchmark or architecture
variant.

Overall, all hypotheses presented in Section 3.1 could be validated. The CHERI protection model
improves a systems error resilience to soft-errors.

61

5C O N C LU S I O N

This thesis evaluated the effect of capability-based memory protection on the soft-error resilience
of a system. To evaluate the influence of memory protection two variants of the same architecture
are evaluated, of which one has a memory protection system and the other has no protection.
Specifically, RISC-V and CHERI RISC-V, which is an implementation of the CHERI protection model
for RISC-V, are compared. To gauge their resilience to soft-errors multiple micro-benchmarks are
evaluated on both architecture variants using the fault forecasting technique fault injection. For this,
the FAIL* fault injection meta-framework is extended to allow fault injection experiments for the
CHERI RISC-V architecture.

First, both architectures are compared in the frequency with which they exhibit unsignaled content
and late timing failures in response to the injected faults. I find that CHERI RISC-V significantly
reduces the number of unsignaled content failures. This reduction increases if more indirection
is used by the evaluated benchmark. Similarly, CHERI RISC-V exhibits late timing failures less
frequently than the unprotected RISC-V. Nonetheless, I observe that the obtained results are highly
dependent on the instruction length of the evaluated architecture variant and the compilation options
of the evaluated benchmark. Especially benchmarks compiled without compiler optimizations inflate
the fault space for CHERI RISC-V and skew the obtained results. Additional research is required to
evaluate the representativeness of the obtained results.

Secondly, both architectures are evaluated for the number of faults, which they detect, and
their average detection latency. I discover that CHERI RISC-V generally detects more faults through
signaled halt failures. Additionally, it also detects such faults much faster than the unprotected
RISC-V.

Last, I observe that adding a simple parity-bit to each capability further improves the obtained
results. CHERI RISC-V now exhibits unsignaled content failures and late timing failures less frequently
and more faults can be detected.

In summary, I conclude that CHERI RISC-V shows increased soft-error resilience in comparison
to RISC-V. Consequently, capability-based memory protection can be used as a protection technique
against soft-errors. Although it increases the system attack surface, its additional protection is
significant and surmounts the additional susceptibility.

Future work could evaluate more complex benchmarks to validate the obtained results for
larger systems. Additionally, capability-based operating system, such as CheriOS, that use the
compartmentalization mechanism of CHERI could be evaluated. Additional encapsulation of the
evaluated software could be beneficial to the system’s soft-error resilience. Furthermore, only
uniformly-distributed single-bit faults were evaluated. CHERI’s split memory architecture could be
evaluated under the assumption that different types of memory have different inherent susceptibilities
to faults. In this context multi-bit faults could be evaluated too. Finally, other memory protection

63

5 Conclusion

schemes, such as classic MPU-based protection could be compared to the additional protection
provided by CHERI. CHERI also works side-by-side with existing MPU and, therefore, a combination
of both protections is also possible and might provide further benefits.

64

L I S T O F A C R O N Y M S

BPSG Borophosphosilicateglass

SOI Silicon-on-insulator

MBU Multi-bit upset

ECC Error-correcting code

SMT simultaneous multithreading

CFC control-flow checking

COTS commercial off-the-shelf

MMU memory-managment unit

MPU memory-protection unit

LLVM low-level virtual machine

CHERI Capability Hardware Enhanced RISC Instructions

RISC reduced instruction set computer

PCC program counter capability

DDC default data capability

ISA instruction set architecture

TCB Trusted Computing Base

PLT procedure linkage table

TLS thread-local storage

FI fault injection

EEA execution environment abstraction

HTIF host-target interface

CSR control-and-status register

65

L I S T O F F I G U R E S

2.1 A particle strikes a transistor which gate is floating or below the threshold voltage (a),
creating a wave of minority and majority charge carriers in its wake. Subsequently,
a depletion funnel is formed which collects most majority charge carriers into the
nearest depletion region (b) and subsequently the nearest gate, causing a large current
spike. Finally, most generated charge carriers have recombined, but a small diffusion
current remains (c). 4

2.2 In the “chain of threats” faults activate errors, which propagate to failures, that
themselves cause new faults. Errors are propagated across interfaces and can cause
failures in the external system behavior or connected components. 7

2.3 Visualization of CHERIs protection properties. 17
2.4 Compressed (128 bit) and uncompressed (256 bit) capability representations. 20

3.1 Structure of the FAIL* plumbing layer, or in other words, its FI abstraction. Taken
from [Sch16]. 27

3.2 Sequence diagram of a typical control-flow between an experiment procedure and
the simulator which has been extended with an EEA layer. Taken from [Sch16]. . . . 28

3.3 Structure of FAIL* assessment layer. It consists of four steps – tracing, import, pruning
and injection –, which store their (intermediary) results in the internal database.
Finally, during post-injection analysis, this database can be queried to extract results
for the FI campaign. Taken from [Sch16]. 29

3.4 The class diagram for the virtual fault space implementation. 34
3.5 Example for equivalence intervals in a masked byte-addressed fault space. Each

interval is indicated by a green color. 36
3.6 Sail register declarations with the corresponding generated C code for differently

typed registers. lbits is a multi precision number type defined by the Sail standard
library. 40

4.1 Number of faults that result in a SDC error for each bubblesort implementation variant
and architecture. All variants are built without memory padding and evaluated on
32-bit architecture variants of CHERI RISC-V and RISC-V. 47

4.2 Number of faults that result in a SDC error for each bubblesort implementation variant
and architecture. All variants are built with optimizations and are evaluated on 64-bit
architecture variants of CHERI RISC-V and RISC-V. 50

4.3 Number of faults that result in a SDC error for each bubblesort implementation variant
and the RISC-V and parity-protected CHERI-P architecture. All variants are built with
optimizations and without padding and are evaluated on 32-bit architecture variants. 51

67

LIST OF FIGURES

4.4 Number of faults that result in a TIMEOUT error for each fib implementation variant
and various architecture variants. ifib refers to the iterative implemention and fib to
the recursive implementation. 53

4.5 Number of faults that result in a TIMEOUT error for each fib implementation variant
evaluated for RISC-V and CHERI-P. ifib, refers to the iterative implemention and
fib to the recursive implementation. Both 32-bit and 64-bit architectures of each
architecture are shown. 55

4.6 Number of faults that result in a TRAP error for each benchmark evaluated for RISC-V
and CHERI RISC-V. All benchmarks are compiled with optimizations and without
padding. 57

4.7 Number of faults that result in a TRAP error for each benchmark evaluated for RISC-V
and CHERI RISC-V. All benchmark are compiled with optimizations and with padding,
and are evaluated on 64-bit architectures. 58

4.8 Number of faults that result in a TRAP error for each benchmark evaluated for RISC-V
and CHERI-P. All benchmarks are compiled with optimizations and without padding,
and are evaluated on 64-bit architectures. 58

4.9 Detection latency in cycles averaged over all benchmarks grouped by their variants.
Both 32-bit and 64-bit architectures of CHERI RISC-V, CHERI-P and RISC-V are shown. 60

68

L I S T O F TA B L E S

2.1 The CHERI capability data type. “~” refers to a variable sized field. 18
2.2 Selection of permission bits in the MIPS implementation of the CHERI protection

model. Adopted from [Wat+19b]. 19
2.3 Existing CHERI implementations, adapted from [WSWMN19] 22

4.1 Number of unique fault points for RISC-V and CHERI RISC-V for optimzed and non-
optimized variants of the bubblesort benchmark. 49

4.2 Number of unique fault points for RISC-V and CHERI RISC-V for optimzed and non-
optimized variants of the fibonacci benchmark. 54

69

L I S T O F L I S T I N G S

71

L I S T O F A L G O R I T H M S

3.1 FINDMATCHING . 37
3.2 PURGEMATCHING . 38

73

R E F E R E N C E S

[Acc+86] Mike Accetta et al. “Mach: A New Kernel Foundation for UNIX Development.” In:
1986, pp. 93–112.

[AJJ04] Folkesson J. Aidemark J. and Karlsson J. “Experimental Dependability Evaluation
of the Artk68-FT Real-time Kernel.” In: Proceedings of the 10th IEEE International
Conference on Embeddded and Real-Time Computing Systems and Applications (RTCSA
’04). Gothenburg, Sweden, Aug. 2004.

[Arma] ARM Architecture Reference Manual for ARMv8. URL: https://developer.arm.
com/documentation/ddi0487/latest/ (visited on 10/01/2020).

[Armb] Alasdair Armstrong. “Sail architectural description language.” In: (). URL: https:
//www.cl.cam.ac.uk/∼pes20/sail/ (visited on 01/10/2020).

[Aus99] Todd M. Austin. “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture
Design.” In: Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture. MICRO 32. USA: IEEE Computer Society, 1999, 196–207. ISBN:
076950437X.

[Avi+04] A. Avizienis et al. “Basic concepts and taxonomy of dependable and secure com-
puting.” In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004),
pp. 11–33.

[Avi85] A. Avizienis. “The N-Version Approach to Fault-Tolerant Software.” In: IEEE Transac-
tions on Software Engineering SE-11.12 (1985), pp. 1491–1501.

[Avr] AVR Instruction Set Manual. 2020. URL: http://ww1.microchip.com/downloads/
en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf.

[Bar77] William B. Barker. Longitudinal parity generator for use with a memory. U.S. Patent
4 035 766. July 1977.

[Bau05] R. C. Baumann. “Radiation-induced soft errors in advanced semiconductor technolo-
gies.” In: IEEE Transactions on Device and Materials Reliability 5.3 (2005), pp. 305–
316.

[Bau+09] Christoph Baumann et al. “Formal Verification of a Microkernel Used in Dependable
Software Systems.” In: Proceedings of the 28th International Conference on Computer
Safety, Reliability, and Security. SAFECOMP ’09. Hamburg, Germany: Springer-
Verlag, 2009, 187–200. ISBN: 9783642044670. DOI: 10.1007/978-3-642-04468-
7_16. URL: https://doi.org/10.1007/978-3-642-04468-7_16.

[Bau+95] R. Baumann et al. “Boron as a primary source of radiation in high density DRAMs.”
In: 1995 Symposium on VLSI Technology. Digest of Technical Papers. 1995, pp. 81–82.

75

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://www.cl.cam.ac.uk/~pes20/sail/
https://www.cl.cam.ac.uk/~pes20/sail/
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/AVR-Instruction-Set-Manual-DS40002198A.pdf
https://doi.org/10.1007/978-3-642-04468-7_16
https://doi.org/10.1007/978-3-642-04468-7_16
https://doi.org/10.1007/978-3-642-04468-7_16

REFERENCES

[BB84] R. D. Bannon and M. M. Bhansali. Digital data storage error detecting and correcting
system and method. U.S. Patent 0 042 966. Apr. 1984.

[BF93] R. W. Butler and G. B. Finelli. “The infeasibility of quantifying the reliability of
life-critical real-time software.” In: IEEE Transactions on Software Engineering 19.1
(1993), pp. 3–12.

[BSH75] D. Binder, E. C. Smith, and A. B. Holman. “Satellite Anomalies from Galactic Cosmic
Rays.” In: IEEE Transactions on Nuclear Science 22.6 (1975), pp. 2675–2680.

[Bud20] Marcel Budoj. “Schotbruch: Automatisierte Ableitung von Injektionsplattformen für
transiente Hardwarefehler aus formalen Prozessormodellen.” PhD thesis. May 8,
2020. URL: https://www.sra.uni-hannover.de/Theses/2019/budoj_20_ma.
pdf.

[Chea] Cheri-OS micro kernel, Project Page. URL: https://github.com/CTSRD-CHERI/
cherios.

[Cheb] cheribsd Project Page. URL: https://github.com/CTSRD-CHERI/cheribsd.

[Che89] C.-L. Chen. Double error correction - triple error detection code for a memory. U.S.
Patent 0 107 038. Aug. 1989.

[CWA00] S. Chatterjee, C. Weaver, and T. Austin. “Efficient checker processor design.” In:
Proceedings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000. 2000, pp. 87–97.

[CZ85] James A. Cairns and James F. Ziegler. Coated ceramic substrates for mounting inte-
grated circuits. U.S. Patent 4 528 212A. July 1985.

[Dav+07] Francis M. David et al. “Improving Dependability by Revisiting Operating System
Design.” In: Proceedings of the 3rd Workshop on on Hot Topics in System Dependability.
HotDep’07. Edinburgh, UK: USENIX Association, 2007, 1–es.

[Dav+19a] Francis M. David et al. “Curios: Improving reliability through operating system
structure.” English (US). In: Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008. Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2008. 8th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008
; Conference date: 08-12-2008 Through 10-12-2008. USENIX Association, Jan.
2019, pp. 59–72.

[Dav+19b] Brooks Davis et al. “CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-Time Environment.” In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Association
for Computing Machinery, 2019, 379–393. ISBN: 9781450362405. DOI: 10.1145/
3297858.3304042.

[Del97] Timothy J. Dell. “A white paper on the benefits of chipkill-correct ecc for pc server
main memory.” In: 1997.

[Dev+08] Joe Devietti et al. “Hardbound: Architectural Support for Spatial Safety of the
C Programming Language.” In: SIGPLAN Not. 43.3 (Mar. 2008), 103–114. ISSN:
0362-1340. DOI: 10.1145/1353536.1346295. URL: https://doi.org/10.1145/
1353536.1346295.

76

https://www.sra.uni-hannover.de/Theses/2019/budoj_20_ma.pdf
https://www.sra.uni-hannover.de/Theses/2019/budoj_20_ma.pdf
https://github.com/CTSRD-CHERI/cherios
https://github.com/CTSRD-CHERI/cherios
https://github.com/CTSRD-CHERI/cheribsd
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/1353536.1346295
https://doi.org/10.1145/1353536.1346295
https://doi.org/10.1145/1353536.1346295

REFERENCES

[DH12] Bjoern Doebel and Hermann Haertig. “Who Watches the Watchmen? Protecting
Operating System Reliability Mechanisms.” In: Eighth Workshop on Hot Topics in
System Dependability (HotDep 12). Hollywood, CA: USENIX Association, Oct. 2012.
URL: https://www.usenix.org/conference/hotdep12/workshop-program/
presentation/D{\"o}bel.

[DW11] A. Dixit and A. Wood. “The impact of new technology on soft error rates.” In: 2011
International Reliability Physics Symposium. 2011, 5B.4.1–5B.4.7.

[Fil+20] N. Wesley Filardo et al. “Cornucopia: Temporal Safety for CHERI Heaps.” In: 2020
IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, May 2020, pp. 608–625. DOI: 10.1109/SP40000.2020.00098. URL:
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00098.

[Gar66] H. L. Garner. “Error Codes for Arithmetic Operations.” In: IEEE Transactions on
Electronic Computers EC-15.5 (1966), pp. 763–770.

[Gol+96] Ian Goldberg et al. “A Secure Environment for Untrusted Helper Applications
Confining the Wily Hacker.” In: Proceedings of the 6th Conference on USENIX Security
Symposium, Focusing on Applications of Cryptography - Volume 6. SSYM’96. San
Jose, California: USENIX Association, 1996, p. 1.

[GSZ09] B. Gill, N. Seifert, and V. Zia. “Comparison of alpha-particle and neutron-induced
combinational and sequential logic error rates at the 32nm technology node.” In:
2009 IEEE International Reliability Physics Symposium. 2009, pp. 199–205.

[HAR15] G. Hubert, L. Artola, and D. Regis. “Impact of scaling on the soft error sensitivity of
bulk, FDSOI and FinFET technologies due to atmospheric radiation.” In: Integration
50 (2015), pp. 39 –47. ISSN: 0167-9260. DOI: https://doi.org/10.1016/j.
vlsi.2015.01.003. URL: http://www.sciencedirect.com/science/article/
pii/S0167926015000048.

[Hen+13] Jörg Henkel et al. “Reliable On-Chip Systems in the Nano-Era: Lessons Learnt
and Future Trends.” In: Proceedings of the 50th Annual Design Automation Confer-
ence. DAC ’13. Austin, Texas: Association for Computing Machinery, 2013. ISBN:
9781450320719. DOI: 10.1145/2463209.2488857. URL: https://doi.org/10.
1145/2463209.2488857.

[Hof+14] Martin Hoffmann et al. “Effectiveness of Fault Detection Mechanisms in Static and
Dynamic Operating System Designs.” In: Proceedings of the 17th IEEE International
Symposium on Object/Component/Service-oriented Real-time Distributed Computing
(ISORC ’14). Ed. by IEEE Computer Society. Reno, NV, USA, 2014, pp. 230–237.
DOI: 10.1109/ISORC.2014.26. URL: http://www4.cs.fau.de/Publications/
2014/hoffmann_14_isorc.pdf.

[Hof+15a] Martin Hoffmann et al. “dOSEK: The Design and Implementation of a Dependability-
Oriented Static Embedded Kernel.” In: Proceedings of the 20th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS ’15). Ed. by Richard West.
Seatlle, WA, USA, 2015, pp. 259–270. DOI: 10.1109/RTAS.2015.7108449. URL:
http://danceos.org/publications/RTAS-2015-Hoffmann.pdf.

[Hof+15b] Martin Hoffmann et al. “dOSEK: The Design and Implementation of a Dependability-
Oriented Static Embedded Kernel.” In: Proceedings of the 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS ’15). Best Paper. Piscataway,
NJ, USA: IEEE Press, Apr. 2015, pp. 259–270. DOI: 10.1109/RTAS.2015.7108449.

77

https://www.usenix.org/conference/hotdep12/workshop-program/presentation/D{\"o}bel
https://www.usenix.org/conference/hotdep12/workshop-program/presentation/D{\"o}bel
https://doi.org/10.1109/SP40000.2020.00098
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00098
https://doi.org/https://doi.org/10.1016/j.vlsi.2015.01.003
https://doi.org/https://doi.org/10.1016/j.vlsi.2015.01.003
http://www.sciencedirect.com/science/article/pii/S0167926015000048
http://www.sciencedirect.com/science/article/pii/S0167926015000048
https://doi.org/10.1145/2463209.2488857
https://doi.org/10.1145/2463209.2488857
https://doi.org/10.1145/2463209.2488857
https://doi.org/10.1109/ISORC.2014.26
http://www4.cs.fau.de/Publications/2014/hoffmann_14_isorc.pdf
http://www4.cs.fau.de/Publications/2014/hoffmann_14_isorc.pdf
https://doi.org/10.1109/RTAS.2015.7108449
http://danceos.org/publications/RTAS-2015-Hoffmann.pdf
https://doi.org/10.1109/RTAS.2015.7108449

REFERENCES

[Hof16] Martin Hoffmann. “Konstruktive Zuverlässigkeit: Eine Methodik für zuverlässige
Systemsoftware auf unzuverlässiger Hardware.” doctoralthesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), 2016.

[Inta] Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Corporation.
2019.

[Intb] Intel Architecture Software Developer’s Manual. Intel Corporation. Santa Clara,
California, USA, 1999.

[JA88] J. . Jou and J. A. Abraham. “Fault-tolerant FFT networks.” In: IEEE Transactions on
Computers 37.5 (1988), pp. 548–561.

[Jim+02] Trevor Jim et al. “Cyclone: A Safe Dialect of C.” In: Proceedings of the General Track
of the Annual Conference on USENIX Annual Technical Conference. ATEC ’02. USA:
USENIX Association, 2002, 275–288. ISBN: 1880446006.

[JSK02] Robert L. Jardine James S. Klecka William F. Bruckert. Error self-checking and recovery
using lock-step processor pair architecture. U.S. Patent 6 393 582 B1. May 2002.

[Kem80] Gary H. Kemmetmueller. RAM error correction using two dimensional parity checking.
U.S. Patent 4 183 463. Jan. 1980.

[Kim77] D. Robert Kim. Longitudinal parity generator for use with a memory. U.S. Patent 4
016 409. Apr. 1977.

[Lay+98] P.J. Layton et al. “Single-Event Latchup Protection of Integrated Circuits.” In:
(1998). URL: https://www.techbriefs.com/component/content/article/
tb/supplements/etb/briefs/1836 (visited on 10/28/2020).

[Li+16] Tuo Li et al. “Processor Design for Soft Errors: Challenges and State of the Art.” In:
ACM Comput. Surv. 49.3 (Nov. 2016). ISSN: 0360-0300. DOI: 10.1145/2996357.
URL: https://doi.org/10.1145/2996357.

[LV62] R. E. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redundancy to Improve
Computer Reliability.” In: IBM Journal of Research and Development 6.2 (1962),
pp. 200–209.

[Lyo00] Daniel Lyons. “Sun Screen.” In: (2000). URL: https://web.archive.org/web/
20100528111258/https://www.forbes.com/forbes/2000/1113/6613068a.
html (visited on 07/21/2020).

[Mah+10] N. N. Mahatme et al. “Analysis of soft error rates in combinational and sequential
logic and implications of hardening for advanced technologies.” In: 2010 IEEE
International Reliability Physics Symposium. 2010, pp. 1031–1035.

[Mah+14] N. N. Mahatme et al. “Impact of technology scaling on the combinational logic
soft error rate.” In: 2014 IEEE International Reliability Physics Symposium. 2014,
5F.2.1–5F.2.6.

[MBS08] A. Meixner, M. E. Bauer, and D. J. Sorin. “Argus: Low-Cost, Comprehensive Error
Detection in Simple Cores.” In: IEEE Micro 28.1 (2008), pp. 52–59.

[Mic+05] S. E. Michalak et al. “Predicting the number of fatal soft errors in Los Alamos
national laboratory’s ASC Q supercomputer.” In: IEEE Transactions on Device and
Materials Reliability 5.3 (2005), pp. 329–335.

[Mip] MIPS32 Architecture for Programmers Volume IV-a: The MIPS16 Application Specific
Extension to the MIPS32 Architecture. 2001.

78

https://www.techbriefs.com/component/content/article/tb/supplements/etb/briefs/1836
https://www.techbriefs.com/component/content/article/tb/supplements/etb/briefs/1836
https://doi.org/10.1145/2996357
https://doi.org/10.1145/2996357
https://web.archive.org/web/20100528111258/https://www.forbes.com/forbes/2000/1113/6613068a.html
https://web.archive.org/web/20100528111258/https://www.forbes.com/forbes/2000/1113/6613068a.html
https://web.archive.org/web/20100528111258/https://www.forbes.com/forbes/2000/1113/6613068a.html

REFERENCES

[MJ81] Joseph T. Marino Jr. DES Parity check system. U.S. Patent 4 262 358. Apr. 1981.

[MTI97] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. “Fault injection techniques and tools.”
In: Computer 30.4 (1997), pp. 75–82.

[Muk08] Shubu Mukherjee. Architecture Design for Soft Errors. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2008. ISBN: 9780080558325.

[MW79] T. C. May and M. H. Woods. “Alpha-particle-induced soft errors in dynamic memo-
ries.” In: IEEE Transactions on Electron Devices 26.1 (1979), pp. 2–9.

[Nag+09] Santosh Nagarakatte et al. “SoftBound: Highly Compatible and Complete Spatial
Memory Safety for c.” In: Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’09. Dublin, Ireland:
Association for Computing Machinery, 2009, 245–258. ISBN: 9781605583921.
DOI: 10.1145/1542476.1542504. URL: https://doi.org/10.1145/1542476.
1542504.

[Nar+18] B. Narasimham et al. “Scaling trends and bias dependence of the soft error rate
of 16 nm and 7 nm FinFET SRAMs.” In: 2018 IEEE International Reliability Physics
Symposium (IRPS). 2018, pp. 4C.1–1–4C.1–4.

[Nic10] Michael Nicolaidis. Soft Errors in Modern Electronic Systems. 1st. Springer Publishing
Company, Incorporated, 2010. ISBN: 1441969926.

[NMW02] George C. Necula, Scott McPeak, and Westley Weimer. “CCured: Type-Safe Retrofitting
of Legacy Code.” In: SIGPLAN Not. 37.1 (Jan. 2002), 128–139. ISSN: 0362-1340.
DOI: 10.1145/565816.503286. URL: https://doi.org/10.1145/565816.
503286.

[OG65] G. A. Oliver and E. L. Glaser. “System Design of a Computer for Time-Sharing
Applications.” In: Managing Requirements Knowledge, International Workshop on.
Los Alamitos, CA, USA: IEEE Computer Society, Oct. 1965, p. 197. DOI: 10.1109/
AFIPS.1965.95. URL: https://doi.ieeecomputersociety.org/10.1109/
AFIPS.1965.95.

[OSM02a] N. Oh, P. P. Shirvani, and E. J. McCluskey. “Control-flow checking by software
signatures.” In: IEEE Transactions on Reliability 51.1 (2002), pp. 111–122.

[OSM02b] N. Oh, P. P. Shirvani, and E. J. McCluskey. “Error detection by duplicated instructions
in super-scalar processors.” In: IEEE Transactions on Reliability 51.1 (2002), pp. 63–
75.

[PF82] Patel and Fung. “Concurrent Error Detection in ALU’s by Recomputing with Shifted
Operands.” In: IEEE Transactions on Computers C-31.7 (1982), pp. 589–595.

[PGK88] David Patterson, Garth Gibson, and Randy Katz. “A case for Redundant Arrays of
Inexpensive Disks (RAID).” In: ACM SIGMOD Record 17 (July 1988). DOI: 10.1145/
50202.50214.

[Pic82] J. C. Pickel. “Effect of CMOS Miniaturization on Cosmic-Ray-Induced Error Rate.”
In: IEEE Transactions on Nuclear Science 29.6 (1982), pp. 2049–2054.

[RB90] A. L. N. Reddy and P. Banerjee. “Algorithm-based fault detection for signal processing
applications.” In: IEEE Transactions on Computers 39.10 (1990), pp. 1304–1308.

[RB96] A. Roy-Chowdhury and P. Banerjee. “Algorithm-based fault location and recovery for
matrix computations on multiprocessor systems.” In: IEEE Transactions on Computers
45.11 (1996), pp. 1239–1247.

79

https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/565816.503286
https://doi.org/10.1145/565816.503286
https://doi.org/10.1145/565816.503286
https://doi.org/10.1109/AFIPS.1965.95
https://doi.org/10.1109/AFIPS.1965.95
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1965.95
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1965.95
https://doi.org/10.1145/50202.50214
https://doi.org/10.1145/50202.50214

REFERENCES

[Rei+05] G. A. Reis et al. “SWIFT: software implemented fault tolerance.” In: International
Symposium on Code Generation and Optimization. 2005, pp. 243–254.

[RJS19] Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. “Control Flow
Checking or Not? (For Soft Errors).” In: ACM Trans. Embed. Comput. Syst. 18.1
(Feb. 2019). ISSN: 1539-9087. DOI: 10.1145/3301311. URL: https://doi.org/
10.1145/3301311.

[RM06] Amir Rajabzadeh and Seyed Ghassem Miremadi. “CFCET: A hardware-based con-
trol flow checking technique in COTS processors using execution tracing.” In:
Microelectronics Reliability 46.5 (2006), pp. 959 –972. ISSN: 0026-2714. DOI:
https://doi.org/10.1016/j.microrel.2005.07.108. URL: http://www.
sciencedirect.com/science/article/pii/S0026271405002921.

[Rot99] Eric Rotenberg. “AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessors.” In: 1999, pp. 84–91.

[Rus] Rust: A language empowering everyone to build reliable and efficient software. URL:
https://www.rust-lang.org (visited on 08/09/2020).

[San+08] P. N. Sanda et al. “Soft-error resilience of the IBM POWER6 processor.” In: IBM
Journal of Research and Development 52.3 (2008), pp. 275–284.

[SB13] Matthew S. Simpson and Rajeev K. Barua. “MemSafe: ensuring the spatial and
temporal memory safety of C at runtime.” In: Software: Practice and Experience 43.1
(2013), pp. 93–128. DOI: 10.1002/spe.2105. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.2105. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2105.

[Sch10] Ute Schiffel. “Hardware Error Detection Using AN-Codes.” PhD thesis. TU Dresden,
Dec. 2010. URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-
69872.

[Sch+15] H. Schirmeier et al. “FAIL*: An Open and Versatile Fault-Injection Framework for
the Assessment of Software-Implemented Hardware Fault Tolerance.” In: 2015 11th
European Dependable Computing Conference (EDCC). 2015, pp. 245–255.

[Sch16] Horst Schirmeier. “Efficient Fault-Injection-based Assessment of Software-Implemented
Hardware Fault Tolerance.” Dissertation. Technische Universität Dortmund, July
2016. DOI: 10.17877/DE290R-17222.

[Sla11] C. Slayman. “Soft error trends and mitigation techniques in memory devices.” In:
2011 Proceedings - Annual Reliability and Maintainability Symposium. 2011, pp. 1–5.

[Sle+99] T. J. Slegel et al. “IBM’s S/390 G5 microprocessor design.” In: IEEE Micro 19.2
(1999), pp. 12–23.

[Sti12] Michael Stilkerich. “Memory Protection at Option - Application-Tailored Memory
Safety in Safety-Critical Embedded Systems.” doctoralthesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), 2012.

[Wah+93] Robert Wahbe et al. “Efficient Software-Based Fault Isolation.” In: In Proceedings of
the 14th ACM Symposium on Operating Systems Principles. 1993, pp. 203–216.

[Wat+19a] Andrew Waterman et al. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Version 20191213. Tech. rep. EECS Department, University of California, Berkeley,
2019. URL: https://github.com/riscv/riscv- isa- manual/releases/
download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

80

https://doi.org/10.1145/3301311
https://doi.org/10.1145/3301311
https://doi.org/10.1145/3301311
https://doi.org/https://doi.org/10.1016/j.microrel.2005.07.108
http://www.sciencedirect.com/science/article/pii/S0026271405002921
http://www.sciencedirect.com/science/article/pii/S0026271405002921
https://www.rust-lang.org
https://doi.org/10.1002/spe.2105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2105
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2105
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2105
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2105
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-69872
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-69872
https://doi.org/10.17877/DE290R-17222
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

REFERENCES

[Wat+19b] Robert N. M. Watson et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 7). Tech. rep. 927. Cambridge, United Kingdom:
University of Cambridge, Computer Laboratory, 2019. URL: https://www.cl.cam.
ac.uk/techreports/UCAM-CL-TR-927.pdf (visited on 08/09/2020).

[Woo+14] J. Woodruff et al. “The CHERI capability model: Revisiting RISC in an age of risk.”
In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA).
2014, pp. 457–468.

[Woo+19] J. Woodruff et al. “CHERI Concentrate: Practical Compressed Capabilities.” In: IEEE
Transactions on Computers 68.10 (2019), pp. 1455–1469.

[Woo99] Alan Wood. “Data integrity concepts, features, and technology.” In: White paper,
Tandem Division, Compaq Computer Corporation (1999).

[WSWMN19] Robert N. M. Watson, Peter Sewell Simon W. Moore, and Peter G. Neumann. An
Introduction to CHERI. Tech. rep. 941. Cambridge, United Kingdom: University
of Cambridge, Computer Laboratory, 2019. URL: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-927.pdf (visited on 08/09/2020).

[Xia+19] Hongyan Xia et al. “CHERIvoke: Characterising Pointer Revocation Using CHERI Ca-
pabilities for Temporal Memory Safety.” In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO ’52. Columbus, OH, USA:
Association for Computing Machinery, 2019, 545–557. ISBN: 9781450369381.
DOI: 10.1145/3352460.3358288. URL: https://doi.org/10.1145/3352460.
3358288.

[Ziv+19] Darko Zivanovic et al. “DRAM Errors in the Field: A Statistical Approach.” In:
Proceedings of the International Symposium on Memory Systems. MEMSYS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, 69–84. ISBN:
9781450372060. DOI: 10.1145/3357526.3357558. URL: https://doi.org/10.
1145/3357526.3357558.

[ZL79] J. F. Ziegler and W. A. Lanford. “Effect of Cosmic Rays on Computer Memories.”
In: Science 206.4420 (1979), pp. 776–788. ISSN: 0036-8075. DOI: 10.1126/
science.206.4420.776. eprint: https://science.sciencemag.org/content/
206/4420/776.full.pdf. URL: https://science.sciencemag.org/content/
206/4420/776.

81

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.pdf
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3357526.3357558
https://doi.org/10.1145/3357526.3357558
https://doi.org/10.1145/3357526.3357558
https://doi.org/10.1126/science.206.4420.776
https://doi.org/10.1126/science.206.4420.776
https://science.sciencemag.org/content/206/4420/776.full.pdf
https://science.sciencemag.org/content/206/4420/776.full.pdf
https://science.sciencemag.org/content/206/4420/776
https://science.sciencemag.org/content/206/4420/776

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 A Brief History of Soft-Errors
	2.1.1 Technology Scaling Effects

	2.2 Faults, Errors, Failures and Resilience
	2.2.1 Faults, Errors and Failures
	2.2.2 Dependability and Resilience

	2.3 Fault Forecasting Through Fault Injection
	2.4 Related Work: Protection Schemes
	2.4.1 Architectural Level
	2.4.2 Software Level
	2.4.3 Summary

	2.5 Memory Protection
	2.5.1 Basic Definitions
	2.5.1.1 Sandboxing
	2.5.1.2 Memory Safety

	2.5.2 The CHERI Protection Model
	2.5.2.1 Capabilities
	2.5.2.2 The CHERI hardware architecture
	2.5.2.3 The CHERI software architecture

	2.6 Summary

	3 Architecture
	3.1 Soft-Error Resilience Through Memory Protection
	3.2 The FAIL* Framework
	3.3 CHERI-FAIL: Combining Fault Injection with Memory Protection
	3.3.1 CHERI-FAIL: Challenges
	3.3.2 CHERI-FAIL: Extensions
	3.3.2.1 A virtual fault space
	3.3.2.2 A bitwise fault space

	3.3.3 CHERI-FAIL: Integration

	3.4 Summary

	4 Analysis
	4.1 Fault Model
	4.2 Benchmarks
	4.2.1 The fibonacci Benchmark
	4.2.2 The bubblesort Benchmark
	4.2.3 Variants

	4.3 Evaluation Procedure
	4.4 Results
	4.4.1 Hypothesis: Reduced Frequency of Unsignaled Content Failures
	4.4.1.1 Effect of Compiler optimization
	4.4.1.2 Effect of Instruction Length and memory padding
	4.4.1.3 Effects of parity-protected capabilities
	4.4.1.4 Summary

	4.4.2 Hypothesis: Reduced Frequency of Late Timing Failures
	4.4.2.1 Effect of optimization
	4.4.2.2 Effect of instruction length and memory padding
	4.4.2.3 Effects of parity
	4.4.2.4 Summary

	4.4.3 Hypothesis: Improved Detection of Existing Failure Modes
	4.4.3.1 TRAP errors
	4.4.3.2 Detection Latency
	4.4.3.3 Summary

	4.4.4 Summary

	5 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Bibliography

