
Lehrstuhl für Informatik 4 · Verteilte Systeme und Betriebssysteme

Multiverse: Compiler Assisted Dynamic Variability
Management in the Linux kernel

Florian Rommel

Masterarbeit im Fach Informatik

2. November 2017

Please cite as:
Florian Rommel, “Multiverse: Compiler Assisted Dynamic Variability
Management in the Linux kernel” Master’s Thesis, University of Erlangen,
Dept. of Computer Science, November 2017.

www4.cs.fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Verteilte Systeme und Betriebssysteme

Martensstr. 1 · 91058 Erlangen · Germany

http://www4.cs.fau.de

Multiverse: Compiler Assisted Dynamic Variability
Management in the Linux kernel

Masterarbeit im Fach Informatik

vorgelegt von

Florian Rommel

geb. am 31. Dezember 1990
in Kaiserslautern

angefertigt am

Lehrstuhl für Informatik 4
Verteilte Systeme und Betriebssysteme

Department Informatik
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Prof. Dr.-Ing. habil. Wolfgang Schröder-Preikschat
Prof. Dr.-Ing. habil. Daniel Lohmann
Christian Dietrich, M.Sc.
Andreas Ziegler, M.Sc.

Beginn der Arbeit: 1. Mai 2017
Abgabe der Arbeit: 2. November 2017

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Declaration

I declare that the work is entirely my own and was produced with no assistance from
third parties.
I certify that the work has not been submitted in the same or any similar form for
assessment to any other examining body and all references, direct and indirect, are
indicated as such and have been cited accordingly.

(Florian Rommel)
Erlangen, 2. November 2017

AB STRACT

Linux can be considered as a prime example of variability and configurability in software
systems, regarding its various areas of operation from small embedded devices to su-
percomputers. In most cases, variability requirements are resolved statically, during the
compilation of the kernel, by selecting and inserting the configured features into the final
compilation product. However, configuration can not always be determined statically.
Sometimes, it is necessary to defer the adaption of a software system to the run-time,
making the configuration dynamic.

Dynamic variability is, due to its application at run-time, often linked to considerable
performance penalties, arising from branches in the control flow. In the Linux kernel,
run-time binary patching mechanisms are applied in order to eliminate these performance
issues by removing branches in the control flow. Unfortunately, such live patching
techniques are often difficult to apply and usually incorporate complex implementations
which increase maintainability costs.

Function Multiverse is a new approach to handle dynamic variability requirements. In
this work its applicability as an alternative method to the current solutions in the Linux
kernel is investigated. Due to its compiler-based approach, Multiverse promises to make
binary patching easier and more efficient to realize.

As part of this work, Multiverse was successfully applied in the Linux kernel. Results
from microbenchmarks show an increased performance in many cases. Besides this, a
possible complexity reduction in the source code is suggested in case of a more extensive
use of Multiverse throughout the kernel.

v

KURZFASSUNG

Linux ist mit seinen vielseitigen Einsatzgebieten, vom kleinsten eingebetteten Gerät bis
hin zum Supercomputer, ein Paradebeispiel für Variabilität und Konfigurierbarkeit in
Softwaresystemen. In den meisten Fällen werden die Variabilitätsanforderungen statisch,
also zum Zeitpunkt der Kompilierung des Betriebssystemkerns, aufgelöst, indem die
konfigurierten Leistungsmerkmale ausgewählt und in das Kompilat integriert werden.
Konfiguration kann jedoch nicht immer statisch festgelegt werden. Um die Flexibilität eines
Systems zu gewährleisten, kann es nötig sein, bestimmte Anpassungen erst dynamisch,
während der Ausführung des Programms vorzunehmen.

Dynamische Variabilität ist, bedingt durch die Anwendung zur Laufzeit, oft mit erhebli-
chen Leistungseinbußen verbunden, welche durch Verzweigungen im Kontrollfluss entste-
hen. Um diese Einbußen möglichst auszuräumen, werden im Linux-Betriebssystemkern
Mechanismen zur Code-Ersetzung (Binary-Patching) während der Laufzeit angewendet,
mit dem Ziel die Verzweigungen zu eliminieren. Solche Binary-Patching-Techniken sind
jedoch oft schwierig anzuwenden und bringen in der Regel komplexe Implementierungen
mit, was den Wartungsaufwand des Quelltextes erhöht.

Mit dem Einsatz von Function Multiverse, einem neuen Ansatz zur Behandlung dyna-
mischer Variabilitätsanforderungen, wird in dieser Arbeit eine alternative Methode zu den
bisherigen Lösungen im Linux-Kern untersucht. Durch seinen compiler-basierten Ansatz
verspricht Multiverse Binary-Patching zur Laufzeit einfacher und effizienter umsetzen zu
können.

Multiverse konnte im Rahmen der Arbeit erfolgreich im Linux-Kern eingesetzt werden.
Messergebnisse von Microbenchmark-Tests zeigen in vielen Fällen eine Verbesserung
der Leistung. Es wird außerdem für eine mögliche Reduzierung der Komplexität des
Quellcodes argumentiert, ausgehend von der Annahme einer umfassenderen Anwendung
von Multiverse im Linux-Kern.

vii

CONTENTS

Abstract v

Kurzfassung vii

1 Introduction 1

2 Fundamentals 3
2.1 Variability in software systems . 3
2.2 Definition of dynamic variability . 5
2.3 Common approaches to manage dynamic variability 6

2.3.1 Dynamic dispatch in object-oriented languages 6
2.3.2 Dynamic linking . 7
2.3.3 Dynamic control flow modification . 10

2.4 Dynamic variability in Synthesis . 11
2.5 Summary . 11

3 Dynamic variability in the Linux kernel 13
3.1 Coarse-granular variability via loadable kernel modules 13
3.2 Application-specific solutions . 14

3.2.1 Run-time patching of instructions based on processor capabilities . 15
3.2.2 Run-time modification for uniprocessor systems 18
3.2.3 Operations for paravirtualized kernels (PV-Ops) 19

3.3 Summary . 21

4 Function Multiverse 23
4.1 Motivation and Concept . 24
4.2 Components . 24

4.2.1 GNU C Compiler plugin . 25
4.2.2 Run-time library . 26

4.3 Compile-time functionality . 27
4.3.1 Variant generation . 27
4.3.2 Descriptor construction . 27

ix

Contents

4.4 Run-time functionality . 29
4.4.1 Initialization of run-time data structures 29
4.4.2 Variant switching via binary patching 29

4.5 Supporting different architectures and platforms 30
4.6 Summary . 30

5 Multiverse in the Linux kernel 33
5.1 Expected benefits . 33

5.1.1 Maintainability improvements . 33
5.1.2 Performance improvements . 34

5.2 Multiverse in kernel space . 34
5.3 Application of Multiverse in the Linux kernel 35

5.3.1 Spin-lock elimination in uniprocessor systems 35
5.3.2 Operations for paravirtualized kernels (PV-Ops) 36

5.4 Summary . 39

6 Evaluation 41
6.1 Performance comparison via microbenchmarks 41

6.1.1 Method . 41
6.1.2 Results . 43

6.2 Assessment of code complexity . 45
6.2.1 Current status of code complexity related to dynamic variability

mechanisms . 45
6.2.2 Improvements by the usage of Multiverse 46

6.3 Challenges and future work . 47
6.4 Summary . 48

7 Conclusion 49

Lists 51
List of Acronyms . 51
List of Figures . 53
List of Tables . 55
List of Listings . 57
Bibliography . 59

Appendix 63

x

1INTRODUCTION

The Linux kernel is well-known for its versatility. Despite not initially designed with
variability in mind, Linux now supports a variety of different hardware architectures,
peripheral devices and different features, making it one of the most adaptable software
systems. One and the same operating system kernel is used on embedded devices, desktop
computers, servers, smartphones and supercomputers.

Of course, although running Linux, the different target systems do not run the same
binary code. Linux’s extensive configurability allows to build highly customized binaries,
tightly tailored to the specified requirements during compilation. This type of build-time
variation is referred to as static variability.

Although, static variability being the backbone of the kernel’s flexibility, it is not
sufficient for all configuration determinations. Sometimes, it is required or simply more
convenient to defer a variation decision to the run-time. The need of this dynamic form
of variability is heavily dependent on the target system the kernel runs on. For instance,
an embedded system with fixed hardware components that will never change, may not
need the kernel to employ dynamic variability mechanisms. In contrast, a Linux-based
desktop operating system, which is meant to run on a variety of different processors
and to communicate with diverse peripheral hardware, has for sure dynamic variability
requirements.

Dynamic variability is, due to its application at run-time, often linked to considerable
performance penalties. This is caused by branches in the control flow which are needed
to establish the desired adaption to the run-time-determined configuration. To eliminate
the performance issues, binary patching mechanisms are used in some places in the
Linux kernel. Binary patching uses code modification to remove branched code, replacing
it with non-branching variants according to the current configuration. Unfortunately,
such patching techniques are often difficult to apply and usually incorporate complex
implementations. This makes them difficult to maintain and limits their profitable usage
in the kernel.

Function Multiverse is a dynamic variability approach, proposed and developed by
Rothberg et al. [29]. It is designed to combine the flexibility and simplicity of control
flow branches with the performance of binary patching. Therefore, Multiverse provides a
compiler-assisted hybrid approach between dynamic and static variability. Configuration

1

1 Introduction

possibilities are detected during compilation and used as a basis to compile specialized
code manifestations which are put in place at run-time.

In this work the applicability of Multiverse in the Linux kernel is investigated and
assessed. The main objectives consist of finding appropriate use cases in the kernel and
adapting Multiverse to be usable for these application areas. Furthermore an evaluation
of possible benefits and drawbacks, compared to other dynamic variability solutions, is
also part of this work.

The thesis is structured as follows. In Chapter 2, a detailed definition of dynamic vari-
ability is given, before examining common solutions to dynamic variability requirements.
After that an overview of run-time variability in the Synthesis project is given. Chapter 3
elaborates on current solutions to dynamic variability in the Linux kernel. This includes
loadable kernel modules, machine instruction patching and operations for paravirtualized
kernels (PV-Ops). A detailed overview of Function Multiverse is given in Chapter 4. Its
concepts, components and functionality are explained. As part of this work, Multiverse
was applied in two places in the Linux kernel. In Chapter 5, these application targets
are presented and expected benefits resulting from the use of Multiverse are discussed.
Furthermore, problems and challenges, that were caused by the application of Multiverse
in the kernel, are described. In Chapter 6, the results of microbenchmarks, which were
performed to compare Multiverse to current dynamic variability solutions, are presented.
Beside this, it is elaborated on possible code complexity reductions. The chapter closes
with a brief outlook to possible future work.

2

2FUNDAMENTALS

This chapter tries to give an overview of fundamental concepts and common techniques
related to variability in software systems. First, detailed definitions of variability in general
and dynamic variability are given. After that, the two common concepts of dynamic
dispatch and dynamic binding are revisited in the light of dynamic variability. The chapter
concludes with a short disgression to the variability approach applied by the Synthesis
kernel.

2.1 Variability in software systems

Variability describes the ability of a software architecture to be modifiable in a preplanned
way [8, p. 31] in order to produce derivatives, differing from the original architecture
in certain well-defined aspects. Thus, it enables the adaption of a software artifact by
configuration, so that different user requirements can be met. Variability can be realized
at different stages during a software artifact’s lifecycle. This includes variations during
architecture design (architecture derivation), compilation, linking or run-time [36].

The basis of variability are variation points, which represent a single point in the code
where a choice between distinct variants can be made based on some type of configuration.
There is a lot of terminology in use that is linked to software variability. The following
list gives an overview of the terms that are used in this thesis. They are based on the
terminology in other works [36, 1, 37].

• Variant. This can be described as a manifestation of code, realizing a defined piece
of the modifiable behaviour in the software system.

• Variation point. This denotes a point in the software system where a choice
between different variants can be made. Oftentimes a collection of specific variants
is tied to it.

• Configuration. It represent a certain choice that can be made, concerning vari-
ability. It is used to determine the active variant in a variation point. Therefore, it
must have a suitable form (e.g. a run-time variable or a preprocessor symbol).

3

2.1 Variability in software systems

Variant B

Variant A

Variation Point

➊

confguration ➊ or ➋

➋

Figure 2.1 – Variation point with two variants A and B. They are selected according
to the configuration state 1 and 2 respectively.

Figure 2.1 illustrates an example variation point with two associated variants that are
selected according to a configuration state.

Variation points can be seen as the basic building blocks of variability management.
They are often aggregated to features, which model coherent, high-level configuration
entities [32]. Features are an abstraction of requirements [36]. Especially in complex
systems, features may be arranged in a tree structure with constraints and dependencies
between them.

Not only extraordinary large and complex programs but most of non-trivial software
artifacts may need to realize variability at some point. Most variability mechanism kick
in during compile-time or link-time1, and thus are applied before the system is deployed.
This is referred to as static variability.

As an example for a simple static variability implementation consider Listing 2.1:
a C preprocessor (CPP) conditional statement produces different code depending on a
configuration switch. The two branches are the variants in this case. They are tied to the
variation point which is denoted by the #ifdef preprocessor directive. The preprocessor
symbol CONFIG_X represents the configuration.

1 #ifdef CONFIG_X
2 // Implementation of the desired behaviour when X is "switched on"
3 #else
4 // Implementation of the alternative behaviour
5 #endif

Listing 2.1 – A variation point realized by the use of the C preprocessor (CPP)

1Note that link-time refers to static linking in this case. See Section 2.3.2 for a detailed look at dynamic
linking.

4

2.2 Definition of dynamic variability

2.2 Definition of dynamic variability

Besides the described static variability, there is also a dynamic form of variability. The
difference between the two forms is in the time the configuration gets evaluated and
applied. Dynamic variability is about resolving the configuration at run-time, rather
than during the design or build process of a program [15]. This means that variants at
variation points are selected and bound during the execution of a program – opposed to
the build-time or design-time binding in static variability.

Of course this implicates that configuration variables, variants and variation points
must be somehow contained in the executable form of the software artifact. This is
different to static variability, where all the appliance connected to this form of variability
is removed after building the program.

There is a possibility in between run-time and build-time binding: load-time binding.
This means that the variant selection and binding occurs when the program is loaded
by the operating system. Loading happens before the actually execution of the program
but after building the executable. I regard this type as dynamic variability. The reason
for this is that it can be seen as conceptually more similar to run-time binding due to its
occurrence after the deployment of the software system, leading to a regular re-evaluation
of the configuration on every start of the program.

Unlike variant binding, the generation of possible variants must not necessarily
happen during run-time or load-time in dynamic variability. Often, the software artifact is
equipped with all the necessary variants generated before its deployment2 [15]. However,
there exist dynamic variability solutions were variant generation is performed during
run-time as well. A prominent example is the Synthesis kernel that is described in
Section 2.4.

In the previous section the C preprocessor (CPP) was employed to express static
variability (see Listing 2.1). CPP macros will expand during compilation; therefore, the
configuration variable, the variation point and its variants will have totally disappeared
in the executable. To migrate the example to dynamic variability it is sufficient to replace
the #ifef with a C conditional statement (an “ordinary” if) and to change the CONFIG_X
switch to be a C variable. Listing 2.2 shows the migrated example.

1 if (config_x) {
2 // Implementation of the desired behaviour when X is "switched on"
3 } else {
4 // Implementation of the alternative behaviour
5 }

Listing 2.2 – A variation point realized by a conditional statement

2Rothberg et al. [29] refer to this approach as “hybrid technique” due to its static aspect, regarding the
precompiled variants.

5

2.2 Definition of dynamic variability

Using standard language techniques, like such a simple conditional statement, is a
straightforward way to realize dynamic variability. In some cases, however, run-time
performance may considerably suffer from the constant re-evaluation of the configuration
variable.

Therefore, there exist more advanced dynamic variability mechanisms that involve
installing a variant permanently without re-evaluating the configuration variable in every
pass. The usual way to achieve this is to modify the executable code at run-time. This is
called run-time (or live) binary patching. In contrast to ordinary control flow modification
techniques, binary patching implementations usually do not have programming language
support and require specific knowledge of the processor architecture and the run-time
environment.

2.3 Common approaches to manage dynamic variability

Dynamic variability requirements have been around for a long time during the history of
software engineering. This section introduces dynamic dispatch and dynamic linking – two
common approaches of dynamic variability management. Furthermore the relationship
between control flow modification by standard language features and dynamic variability
is elaborated.

2.3.1 Dynamic dispatch in object-oriented languages

Polymorphism via dynamic dispatch in object-oriented programming (OOP) can be cond-
sidered as a form of run-time variability. Polymorphism is an important principle in
object-oriented languages, meaning that a variable can be of more than one possible
type [7]. This is in contrast to monomorphic languages where each variable has fixed
static type.

Listing 2.3 shows a simple example written in C++. Template metaprogramming is
used to realize polymorphism. Function call_foo takes a parameter of any type that
provides a fitting method named foo. Variability results from varying implementations
of foo in different type definitions. These implementations can be considered to be the
variants, whereas the method call is the variation point.

1 template <typename T>
2 void call_foo(T poly_param) {
3 poly_param.foo();
4 }

Listing 2.3 – Static polymorphism via template metaprogramming in C++.
Function call_foo takes a parameter (poly_param) of any type that provides
a fitting method named foo.

6

2.3 Common approaches to manage dynamic variability

However, the decision which parameter type is used for a specific invocation of
call_foo is resolved during compile-time. Thus, the polymorphic behaviour in List-
ing 2.3 is static. Dynamic variability can only be realized by using the dynamic form of
polymorphism. It allows the developer to defer the decision which type is used to the
run-time.

Sticking with the previous example, using dynamic polymorphism involves creating
an abstract class and declaring the method foo as virtual (see Listing 2.4). In this case
polymorphic behaviour is realized via dynamically dispatching the correct implementation
for foo depending on the specific type of the argument (in this case a sub-class of the
abstract class Fooable). This allows the type implementation to be selected at run-time.

1 class Fooable {
2 public:
3 virtual void foo() = 0;
4 };
5

6 void call_foo(Fooable *poly_param) {
7 poly_param ->foo();
8 }

Listing 2.4 – Dynamic polymorphism via dynamic dispatch in C++. An abstract
class is used. Potential types for the call_foo parameter are required to inherit
from this class.

In statically typed languages, such as C++, dynamic dispatch is usually implemented
involving lookup tables for each type [26]. The correct member function is called in-
directly using the appropriate pointer in the table. Despite the employment of various
optimized mechanisms, dynamic dispatch causes a performance loss on modern pro-
cessor architectures mainly due to the indirect invocations [25]. This is even worse in
dynamically typed languages where all the method calls are dynamically dispatched [26,
39].

2.3.2 Dynamic linking

Dynamic linking is the prevailing method to link libraries to the program during load-time
or run-time. It is realized by modifying and extending the binary data of a process in the
main memory. Traditionally, the main goal is to reduce the memory footprint of programs,
but it is also used to satisfy patching and variation requirements. Thus, dynamic linking
can be seen as variability mechanism in the broader sense.

In contrast to static linking which is carried out after compilation, dynamic linking
allows global symbols in the code (variables and procedures) to stay undefined until the
program’s execution [16]. This is accomplished by deferring the binding of these symbols
to the launch of the program or even to a later point. This comes with many benefits,

7

2.3 Common approaches to manage dynamic variability

such as memory savings (due to sharing code between processes) and the possibility to
patch libraries without modifying the referencing programs [2].

The basis of linking are modules. Each module encapsulates types, variables and
procedures. Some of these symbols are exported to be used (imported) by other modules,
which on their part may also export symbols. This results in an acyclic dependency
hierarchy [14]. Some modules constitute a program, whereas others are combined to
form a library, depending on their position in the dependency hierarchy. Figure 2.2 shows
an example hierarchy consisting of a program and its dependencies.

The job of a dynamic linker is to find the libraries which a program depends on,
load them and establish the links to the imported symbols. This is a recursive process
because the libraries can have dependencies themselves [14]. To make this possible,
every compiled module (also referred to as object file) contains two directories: the entry
table which lists the exported symbols together with their position in the code, and the
link table which contains all the module’s imports [14].

There are various strategies to realize dynamic linking. They differ in the point in
time the linking is done (load-time vs. run-time) and the way how the actual links to
external symbols are established.

The simpler methods of dynamic linking install all modifications to the process’
memory at load-time, that is, before the program is actually running. This is what many

Program

Library A

Library B

Library C

Figure 2.2 – Program and library modules and their dependencies. An arrow denotes
a dependency relationship.

8

2.3 Common approaches to manage dynamic variability

Unix-like operating systems implement [16]. Regarding link-establishment, either a table
lookup approach or a code modification mechanism is used.

In the table lookup approach [14] the linker loads all libraries that the program
depends on and replaces the symbolic references in the link tables with actual pointers
to the respective memory locations. Each reference in the code can then be resolved
indirectly through the module’s link table.

Due to the indirect access, a table lookup on each reference is problematic when
it comes to performance on modern processors. The code modification [14] method
improves this by replacing references to external symbols directly in the code, making the
indirection obsolete. Due to the modification of actual executable code, this method can
be considered as a typical binary patching approach. This implicates that every reference
to an imported symbol must be somehow recorded to be available to the dynamic linker.
As a drawback, the method may reduce the ability to reuse code pages in the main
memory due to modifications tailored to the specific memory layout of the process.

Besides these widespread load-time mechanisms, there are different approaches to
defer the dynamic linking process to the run-time. The historic Multics system, which was
the first system to implement dynamic linking [9], uses a table lookup approach but delays
the establishment of links to the run-time. In Multics, dependent modules are loaded on
demand [18]. The link table, which lists the external reference data, is called linkage
segment [10]; it contains a pointer pair for each referenced symbol, allowing to indirectly
access the symbol. Initially these pointer pairs are set to an invalid value because the
referenced modules have not been loaded yet. When the pointer pair is accessed for the
first time, the invalid value causes the processor to trap [18, 10], transferring control
to the dynamic linker. The system is then able to load the needed dependencies into
memory, replace the invalid link section pointer with the respective address and finally
continue with the program’s execution beginning with a restart of the interrupted access
operation. This approach makes dynamic linking in Multics very flexible. The technique
uses tables and indirect access, and thus makes it very similar to the mechanisms used to
realize dynamic dispatch in object-oriented languages (see Section 2.3.1).

As stated earlier, many Unix-like systems implement load-time dynamic linking, which
does not offer the same flexibility that Multics had. However, some of them provide
another technique [38, 16], next to the common load-time approach, which allows to
realize dynamic linking at run-time. It takes the dynamic linking concept one step further
by making the access to external modules entirely programmable. This is accomplished
by a library-based dynamic linker that can be used by the program during run-time. The
library provides functions that allow the loading of arbitrary libraries, searching them
and retrieving pointers to their symbols.

The mechanism is also known as dynamic loading and is available in POSIX-compliant
operating systems and in Microsoft Windows [21, pp. 107ff.]. Dynamic loading is different
from other dynamic linking approaches, as it makes references to external symbols
programmable – opposed to the compile-time determined placement of links in other
approaches. This allows to have references which must not be known at compile-time or

9

2.3 Common approaches to manage dynamic variability

link-time, making this technique a powerful variability tool. For example, it can be used
in a program to load user-provided plugins – an use-case not possible to realize with any
of the other dynamic linking methods.

In summary, the term dynamic linking is used to refer to various different approaches
which defer the linking process past build-time. All mechanisms have in common that
they extend the executable code by loading additional modules (usually aggregated in
libraries) to the process’ memory. Some mechanisms run during load-time, before the
program is executed, others are applied during run-time. Another difference is the used
link establishment method. Either indirect referencing or binary-patching-enabled direct
access can be used to resolve links to external modules.

2.3.3 Dynamic control flow modification

Complex approaches of dynamic variability management were introduced in the previous
sections. However, the most straightforward realization of dynamic variability is to use
standard language facilities to modify the control flow. This is called dynamic control
flow modification in this work. It refers to conditional statements (branches) and function
pointers.

At this point, the reader might ask if plain conditional statements can really be
considered as a realization of dynamic variability. The answer that is suggested here is: it
depends. Variability is determined by intention. That means identifying variability is not
a question of the applied method but of the developer’s objective. A control structure can
be considered as a variability mechanisms when it is not part of the program’s application
logic. A variability mechanism embodies a variation point connected to a configuration
variable. Usually the variation point can be removed (by hard-coding one specific variant)
without breaking the application logic.

Take a conditional statement as an example. It could be used in the validation of
user input in which case it is absolutely vital for the program’s application logic. Thus,
it is not a variability mechanism; removing it would break the program. In contrast, a
conditional statement realizing a choice between two possible input methods can be
seen as a variability implementation. It could be omitted in favor of always using one
specific method. Of course this would somehow restrict the program but it will not turn
it incorrect.

Binding in dynamic control flow modifications happens during run-time. Actually,
for conditional statements, binding occurs immediately before executing the variant
because the configuration is re-evaluated every time the control flow reaches the variation
point. With function pointers this may be different, in cases where the pointer is not
simultaneously regarded as the configuration variable – then binding occurs when the
function pointer variable is assigned a new value.

Variants are defined manually during development. They are fixed at compile-time
and statically embedded in the binary code. In case of function pointer usage, the specific

10

2.3 Common approaches to manage dynamic variability

variant count is not bounded. Theoretically every function with a matching signature can
be used. However these functions are still statically defined.

2.4 Dynamic variability in Synthesis

The Synthesis kernel goes one step further in realizing dynamic variability than the
previously discussed approaches. Synthesis is an operating system kernel that aims
to offer higher performance than traditional kernels by employing a variety of new
techniques, including run-time code synthesis [23, pp. 1f.]. This is a technique that allows
to create executable machine code at run-time to adapt frequently used kernel routines
to their precise requirements at a specific system state.

The idea of run-time code synthesis arises from the observation that traditional oper-
ating system kernels, when handling kernel calls, spend considerable time in traversing
data structures (e.g. linked lists), before performing the actual functionality [24, p. 8].
This is because the system state is maintained in these data structures. The kernel has to
first reach the starting state that is needed for the current operation, before executing it.
Later the previous state has to be restored. The idea behind code synthesis is to generate
new code at run-time that captures the system state at a specific point in time. This is
called data-dependent optimization [23, p. 24].

Of course, this synthesized code is only valid for a specific time until a relevant system
state change happens. Therefore it has to be recreated frequently at run-time. This is
done by the kernel code generator [23, pp. 23ff.]. It does essentially what a compiler
does but during run-time. In contrast to the compiler which runs as an offline process,
run-time code generation is a more performance critical task. Therefore, it has to be more
careful with performing expensive code optimization operations. The code generator in
Synthesis mainly uses three types of efficiently applicable optimizations: constant folding,
constant propagation and procedure inlining [23, p. 25]. This is sufficient to reach
significantly better performance in data-dependent code than by using the respective
generic implementations.

Run-time code synthesis is used in various places throughout the Synthesis kernel. [23,
pp. 30ff.]. This includes buffers and queues, context switches, interrupt handling and
system calls.

2.5 Summary

Dynamic variability is a form of variability that is realized during the run-time or load-time
of a program. Like static variability, it is based on variation points associated with a set
of implementations (variants) realizing the configuration possibilities. Implementing
dynamic variability is usually complex and often comes with some sort of run-time penalty.
However, many programs require variability during run-time. Three common approaches
of dynamic variability management were introduced in this chapter:

11

2.5 Summary

• Run-time polymorphism by means of dynamic dispatch in object-oriented pro-
gramming (OOP)

• Dynamic linking

• Dynamic control flow modification via conditional statements and function point-
ers

Another rather exotic method is employed by the Synthesis operating system. It uses a
run-time code generation approach that is very powerful but adds a lot of complexity to
the software.

12

3DYNAMIC VARIABIL ITY IN THE
LINUX KERNEL

As many other pieces of system software, the Linux kernel has various variability require-
ments which result from the need to support different architectures, peripheral hardware,
and different features. Most of the variability requirements are solved statically. This
means that choices are specified before compilation, and then realized by the C prepro-
cessor or conditional compilation. In general, this is a good solution, as it provides full
flexibility during compile-time with zero run-time overhead. For some features, however,
it is required to be not compile-time determined. Most commonly, these are features that
are dependent on volatile properties of the target system, such as the specific hardware
configuration. In these cases, using static solutions would result in the undesirable situ-
ation that the binary is very tightly tailored to the specific setting. In contrast to static
variability, there is no generic solution for dynamic variability requirements in the Linux
kernel. Instead, there exist various application-specific mechanisms.

3.1 Coarse-granular variability via loadable kernel modules

Loadable kernel modules provide a generic dynamic variability mechanism in the Linux
kernel. They allow to add and remove functionality in the kernel at run-time [6, p. 11].
Loadable kernel modules usually consist of multiple functions, global variables and type
definitions. This makes them operating on a coarse-granular level, compared to the other
variability methods in the Linux kernel that work with much smaller code units (on the
level of single functions or instructions).

The use of loadable modules helps to keep the kernel small by making higher-level
components not part of the main binary. Modules are separate ELF object files [6, p. 844],
allowing the user to load them as required. They run in the privileged kernel mode. Many
device drivers, file systems and network layers can be compiled as kernel modules [6,
p. 842]. This lets Linux support a variety of different high-level features without increasing
the kernel binary size or having to build highly specialized versions. Loading kernel
modules is done either explicitly from user-space via a command line program or, in some
cases, automatically when the functionality is requested [6, pp. 850f.].

13

3.1 Coarse-granular variability via loadable kernel modules

A loadable kernel module can interact with the static kernel code and other mod-
ules. Many global symbols in the kernel can be referenced from module code. The
kernel uses special kernel symbol tables to store their addresses in order to be able to
resolve these references when loading a module [6, p. 846]. This means that the ker-
nel replaces all the references to kernel symbols with the corresponding symbols’ real
addresses at the load-time of a module. C preprocessor (CPP) macros (EXPORT_SYMBOL
or EXPORT_SYMBOL_GPL) are used to make a specific symbol in the static kernel code
accessible. Modules can also export symbols themselves by using the same macros. When
a module is loaded, these symbols are then available to other modules, just like the
exported kernel symbols [6, p. 846].

Module-to-module interaction via referencing symbols results in dependency relation-
ships between modules. For example, a module A using a function from module B requires
B to be already in memory before A can be loaded. To keep track of this, every module
knows its dependencies and the kernel maintains a list of depending modules for each
loaded module [6, p. 847]. Loading a module only succeeds when all the dependencies
are met. Unloading can only happen if there are currently no dependent modules loaded.

Loadable kernel modules differ from other variability mechanisms in that the variation
points are less tangible. In general, variability is realized on a higher level than in other
approaches. Consider module-based file system implementations as an example; different
file system drivers are implemented by kernel modules which can be considered as
the variants in this case. The common interface code, using the different file system
implementations to make them available as a file hierarchy, provides the variation points.

Variant generation, which is the compilation of the modules, happens usually in the
kernel build process. However, modules can also be built separately. A module can, for
example, be programmed, compiled and then immediately loaded into the currently
running kernel. So, variant generation may happen during run-time but it is usually done
with the kernel build process. The binding of variants, which is the loading of modules,
happens at run-time.

There are similarities between loadable kernel modules and dynamic link libraries
(see Section 2.3.2). They are both separate files and get loaded into memory at some
point. Loading kernel modules is particularly similar to the dynamic linking approach
that is known as dynamic loading. Both mechanisms allow arbitrary units of code to be
loaded at any time during execution.

3.2 Application-specific solutions

Loadable kernel modules are very generic in that they are not tailored to a single use
case. The mechanism is not specific to a special kind of problem. But kernel modules
cannot be used for every kind of dynamic variability requirement due to the generic and
coarse-granular design. In the following section there are introduced application-specific
variability approaches. They have built-in knowledge about the variability requirement
that they are used for.

14

3.2 Application-specific solutions

3.2.1 Run-time patching of instructions based on processor capabilities

The alternatives patching mechanism is a low-level variability mechanism in the Linux
kernel. It allows to switch between two or more machine instruction sequences at run-
time, depending on the availability of certain CPU features. Currently, this mechanism is
implemented for the x86 [20] and the arm64 [28] processor architecture. The alternatives
mechanism allows the use of new processor capabilities in generic kernel binaries without
breaking the support for older CPUs of the same processor family.

The mechanism is based on C preprocessor (CPP) macros that can be used to denote
a variation point in the architecture-specific code. The variants of this variation point are
specified as assembler instruction sequences. Variant selection is based on the availability
of specific features in the computer’s main (bootstrap) CPU. Listing 3.1 shows the anatomy
of such an alternatives application site.

1 alternative(<original instructions >,
2 <alternative instructions >,
3 <CPU feature >)

Listing 3.1 – Anatomy of an alternatives application site. The alternative
macro takes three arguments: the original instruction sequence that will be
placed into the executable statically, the alternative instruction sequence and
the processor feature that is used as configuration variable to determine if the
original instructions should be replaced by the alternative sequence.

The instruction sequence, that is specified by the developer to be the original one,
is placed into the application site during compilation to be the default variant. The
alternative sequence gets written to a special ELF section of the kernel binary. Furthermore,
an entry in another section is created which holds metadata about this alternatives
application site. This includes its position in the binary, a pointer to the alternative
instruction sequence and the CPU feature the variation depends on. Figure 3.1 gives an
overview of the section layout.

The actual patching is executed during kernel startup, before other CPUs are initialized,
to avoid problems with additional processors executing code that is currently being
patched [20]. The mechanism has to iterate over the generated metadata section to
perform the patching. The section has all the necessary information to determine if the
original instructions should be replaced or not.

The alternatives approach was initially introduced to be able to replace legacy memory
barrier instructions with better ones that were newly introduced with the Pentium 4
processor [20]. Listing 3.2 shows the definition of the C preprocessor (CPP) macro that
is used to place a memory barrier in the kernel.

15

3.2 Application-specific solutions

1 #define mb() alternative("lock; addl $0 ,0(%% esp)", "mfence", ↘
X86_FEATURE_XMM2)

Listing 3.2 – Memory barrier macro definition using alternatives. The original
instruction sequence is the legacy memory barrier operation. The mfence
instruction is faster and can be used on modern processors. X86_FEATURE_XMM2
is the feature flag that is used to identify the availability of the mfence instruction.

In recent kernel versions, there can be used instruction sequences of different sizes
for the original and the alternative variants [5]. In case the original sequence is shorter
than the alternative, the missing space is padded with NOPs by the alternative macro.
This makes the replacement with the alternative sequence possible without overwriting
the following instructions. If the original sequence is longer than the alternative then the
run-time patching code will add padding NOPs when the replacement happens.

An example for differently sized instruction sequences is the kernel’s usage of Intel’s
Supervisor Mode Access Prevention (SMAP) technology [3]. This security feature allows to
prevent the kernel from accessing user pages when a specific processor flag is set [17,
p. 4/4].

Listing 3.3 shows the definition of the STAC operation which is used to set the SMAP-
enable processor flag. Due to the fact that SMAP is only supported on recent Intel
processors, the operation is realized as an alternative sequence. The original instruction
sequence is empty because there is no corresponding operation on processors that do
not support the SMAP technology. Thus, in this case the size of the original sequence is
zero. The alternative macro will make sure that the space is padded with appropriate
NOP instructions to allow the STAC operation to be patched in correctly.

1 static __always_inline void stac(void)
2 {
3 alternative("", __stringify(__ASM_STAC), X86_FEATURE_SMAP);
4 }

Listing 3.3 – STAC operation implementation using alternatives. The STAC
instruction is only available when the processor supports the SMAP technology
(X86_FEATURE_SMAP). There is no equivalent on other processor models. Thus,
the original instruction sequence is empty.

There are also versions of the alternatives macro that can use more than one alternative
instruction sequence [4]. In this case the developer has to provide one CPU feature flag
for each alternative because the availability of a processor feature is a binary choice.
Patching the instructions is done in sequence [4]. This causes the last patch to overwrite
all previous ones. Thus, the last specified feature flag takes precedence over the others.

The alternatives patching is a straightforward dynamic variability mechanism. The
variation points and the variants are clearly defined. Its narrow use case, only with

16

3.2 Application-specific solutions

processor features, and the variant specification on assembler level are restrictions of
the mechanism. On the other hand, it gives the developer detailed control over the used
instructions. This matches the main use cases of the mechanism: Increase performance
through the use of the best available instructions and work around bugs in specific
processor models [28].

Variant generation in the alternatives variability management method happens at
compile-time, when the alternative macros are expanded and the specified instruction
sequences get embedded into the code. Variant binding occurs at run-time. However, it is
only done once, early in the kernel’s bootstrap process [20]; the ELF sections holding the
variant information are discarded after the kernel startup is finished. In this regard the
alternatives mechanism is more similar to load-time binding approaches than to other
run-time patching mechanisms that allow to change the configuration at any time during
execution.

kernel binary

...

...

original (source) instruction sequence (patch-site)

...

ta
bl

e
 e

nt
r
y

patch-site pointer (as offset)

alternative (replacement) instruction sequence pointer (as offset)

CPU feature specification

size information

source instruction length

replacement instruction length

pad length

...

...

...

alternative (replacement) instruction sequence

text section
(the kernel's

executable code)

altinstructions
section

(meta-data table)

altinstr_replacement
section

(list of alternative
instruction sequences)

offset based on the
table-entry's address

Figure 3.1 – Conceptual overview of sections involved in the alternatives patch-
ing mechanism. The figure shows a patch-site, its associated metadata entry and
alternative instruction sequence.

17

3.2 Application-specific solutions

3.2.2 Run-time modification for uniprocessor systems

Run-time modification for uniprocessor systems is a specialized version of the alternatives
mechanism. It is also referred to as SMP alternatives and allows to switch at run time
between customized code versions for uniprocessor (UP) and symmetric multiprocessor
(SMP) systems [22]. The mechanism is only available for the x86 architecture.

The originally proposed approach of SMP alternatives included a general instruction
sequence patching facility, just like the processor feature based alternatives method [22].
In current kernels, SMP alternatives patching handles only lock prefixes. The ability to
patch arbitrary instructions based on the running system’s UP/SMP property has been
removed [19].

The lock instruction prefix in x86 CPUs causes an atomic read-modify-write operation
when the prefixed instruction is accessing memory [17, p. 2/25]. It is used for reliable
interprocessor communication. Thus it is not required in UP systems.

A C preprocessor (CPP) macro is provided that is used whenever the lock prefix is
needed in the kernel code in inline assembly statements or separate assembler files. Like
in the feature based alternatives mechanism, pointers to the lock prefix occurrences are
placed into a special ELF section, but in this case without extra metadata. The pointers
can then be used to remove the lock prefixes in cases where the kernel is not running on
a SMP system. The prefixes are not replaced with NOP instructions but with meaningless
DS segment override prefixes. This saves an extra CPU cycle for each patch-site.

In contrast to the processor feature based alternatives mechanism, patching in SMP
alternatives is reversible and can be initiated at any time – not only during startup [22].
This is especially useful for CPU hotplugging.

The code shown in Listing 3.4 is taken from the atomic.h file in the x86 architecture
specific code in the Linux kernel. It provides a set of atomic operations for general use
inside the kernel. The CPP macro LOCK_PREFIX places the lock prefix into the inline
assembly statement and creates the patch-site.

1 static __always_inline void atomic_add(int i, atomic_t *v)
2 {
3 asm volatile(LOCK_PREFIX "addl %1,%0"
4 : "+m" (v->counter)
5 : "ir" (i));
6 }

Listing 3.4 – Atomic add operation with lock prefix using SMP alternatives. The
macro LOCK_PREFIX inserts an lock prefix and creates a patch-site.

As in the CPU feature based approach, variant generation in the SMP alternatives
variability management method happens at compile-time. Variant binding occurs at
run-time. In contrast to the feature based approach the binding can be re-evaluated at
any time during execution – not only during the kernel startup.

18

3.2 Application-specific solutions

3.2.3 Operations for paravirtualized kernels (PV-Ops)

Paravirtualization is a very performance-critical field, where dynamic variability mecha-
nisms are applied in the Linux kernel. The term paravirtualization refers to a virtualization
technique in which the emulated platform is not exactly reproduced by the virtualization
layer. Instead, features that are difficult or expensive to reproduce are replaced by a
simpler interface [33, pp. 159f.]. This change of the virtualized architecture requires the
software, that runs inside the virtualization, to be aware and to adapt of the modified
interface.

The Linux kernel can run as a guest system inside a hypervisor that uses paravirtu-
alization. A general problem with paravirtualized operating systems is that the kernel
cannot run in the most privileged processor mode anymore, because the hypervisor takes
this place [33, p. 160]. The kernel code is executed in a less privileged mode in this
case. Usually (e.g. in the x86 architecture) this implicates that certain operations, such
as enabling or disabling interrupts, are not directly available anymore. To execute one of
these operations, the kernel has to delegate it to the hypervisor. The mechanism, that is
usually employed to achieve this is called hypercall [33, p. 161]. It is similar to a system
call in user-space programs.

Thus, to make the Linux kernel work as a paravirtualized guest, all the privileged
operations have to be replaced with appropriate hypercalls matching the used hypervisor’s
interface. For the x86 architecture, Linux uses a generalized approach, encapsulating all
sensitive operations in a common interface that is implemented by the different hypervisor
adaptions [30]. The set of these operations is referred to as operations for paravirtualized
kernels (PV-Ops).

PV-Ops are realized as function pointers. Depending on whether the kernel is running
on real hardware or in a paravirtualized environment, appropriate functions are assigned
to these function pointers. They either implement the native operation or perform a call
to a specific hypervisor [31, 40]. The method can be interpreted as a run-time variability
management approach; a function pointer usage defines a variation point, whereas the
PV-Ops implementations constitute the variants. The approach allows to use the same
kernel binary for native hardware and all paravirtualized environments.

Using function pointers involves indirect calls which are much slower than direct calls
on modern processor architectures. Due to performance issues with heavily used PV-Ops
like interrupt manipulation operations, the variability approach has been equipped with
a binary patching facility to get rid of the indirect calls [41].

The binary patching mechanism replaces the slow indirect function pointer invoca-
tions with fast direct calls. Additionally, the binary patching function itself is implemented
as a paravirtualized operation. This allows different paravirtualization implementations
to modify the patching behaviour according to their needs. The native PV-Ops imple-
mentation uses this to replace some indirect calls with inlined function bodies. This is
possible in cases where the function body is shorter than the indirect call instruction that

19

3.2 Application-specific solutions

it overrides. It is done for a few manually selected, performance-critical operations, like
enabling or disabling interrupts.

Similar to the alternatives patching method (see Section 3.2.1), this mechanism uses
a special ELF section to store information about the PV-Ops patch-sites. This information
is used at run-time to enable the patching. Figure 3.2 gives an overview of the section
layout.

Currently, the patching mechanism is executed once on startup, shortly after the
paravirtualization detection and the PV-Ops variant selection. Thus, like in the alternatives
approach, this variability solution is more comparable to load-time mechanisms than
to other run-time solutions. The functions that can be assigned to the function pointer
variables can be seen as the variants. They are defined statically; therefore, variant
generation happens at compile-time.

kernel binary

...

...

function body

...

original indirect call to function pointer (patch-site)

...

ta
bl

e
 e

n
t
r
y patch-site pointer (as offset)

type (kind of PV-Op)

...

data section

parainstructions
section

(meta-data table) size of patch-site

register-clobbering information

...

function pointer

...

text section
(the kernel's

executable code)

Figure 3.2 – Conceptual overview of sections involved in the PV-Ops patching
mechanism. The figure shows a patch-site and its associated metadata entry in the
kernel. The metadata table is used by the binary patching code to find and classify
the patch-sites.

20

3.3 Summary

3.3 Summary

The Linux kernel comes with different dynamic variability management solutions. Load-
able kernel modules can be seen as a coarse-granular mechanism. They allow to load units
of code into a running kernel and thus, are comparable to dynamic linking in user-space
programs. A more low-level dynamic variability solution is provided by the alternatives
patching approach based on CPU capabilities. It allows to patch machine instruction
sequences to adapt the kernel to the underlying hardware at run-time. Very similar to
this is the SMP alternatives mechanism which is able to optimize the kernel based on the
availability of symmetric multiprocessing (SMP).

The solutions have different properties concerning the time of variant generation and
variant binding. Table 3.1 gives an overview of these properties. Note that variant binding
occurs at run-time in all approaches. However, it can be restricted to a specific stage
during run-time. This is the case in the alternatives and the PV-Ops patching approaches
where variant binding is only done once during kernel startup.

Table 3.1 – Time of variant generation and variant binding of dynamic variability
mechanisms in the Linux kernel

Variability mechanism Time of variant generation Time of variant binding

Loadable kernel modules run-time run-time
Alternatives patching compile-time kernel startup
SMP alternatives patching compile-time run-time
PV-Ops compile-time kernel startup

21

4FUNCTION MULTIVERSE

Function Multiverse (or Multiverse) is a generic, compiler-based approach to address
dynamic variability requirements. The main objective is to provide a tool to realize
run-time variability efficiently by means of binary patching, without the need to develop
application-specific solutions. Furthermore Multiverse tries to keep the run-time overhead
small by doing as much work as possible during compilation. This chapter tries to give an
overview of the components and functionality of Multiverse, and explains its objectives
and use-cases.

{
 if (A) {
 do_a();
 }

 if (B) {
 do_b();
 }
}

function f

var A

f [A=0, B=0]

var B

f [A=0, B=1]

f [A=1, B=0]

f [A=1, B=1]

f [A=?, B=?]

call f [A=?,B=?]

A = 1, B = 0

call f [A=1,B=0]

Compile-time Run-time

Figure 4.1 – Conceptual overview of Multiverse’s functionality. Function f references
two config variables A and B (first column). Besides the generic version, the compiler
generates additional variants of function f, determined to each particular value
combination of A and B (second column). During run-time each callsite of f is
patched to call the variant corresponding to the current configuration (third column).

23

4.1 Motivation and Concept

4.1 Motivation and Concept

The ability to adapt to different environmental conditions and user needs is a basic
requirement for many programs. Responding to such parameters can either happen
by implementing static or dynamic variability (see Chapter 2). In many cases, static
variability is the preferred form due to its ease of use and the absence of any run-time
performance penalty. Sometimes however, it is necessary or simply more convenient to
delay variation determination to the run-time of a program.

This usually results in implementing dynamic variability based on control flow mod-
ification using standard language facilities (see Section 2.3.3). This way, variability is
easy to realize but it can lead to serious performance problems caused by variation points
in the control flow depending on rarely changing configuration variables. In contrast
to their counterparts in static variability, these variation points increase the amount of
executed instructions, cause register clobbering and cache pollution.

Run-time binary patching is a common way to overcome this performance drawback
caused by dynamic variability (see Chapter 3). However, implementations are often tightly
tailored to fit the specific use case, and are difficult to express in high-level languages,
which usually results in non-canonical code.

Multiverse aims to solve this problem by allowing to use the same notation for binary
patching enabled variation points as in ordinary control flow modification. Concretely,
this allows the use of conditional statements to enable binary patching in a program. In
Multiverse, the variability configuration constitutes of developer-selected global variables,
called config variables [29]. The mechanism works on a function level granularity. During
compilation, Multiverse will generate specialized variants for each function referencing
one or more config variables (e.g. using them in a conditional statement). The specialized
variants can then be used during run-time by a dedicated binary patching facility, which is
able to patch all callsites to point to the function variant matching the current configuration
(see Figure 4.1).

Thus, Multiverse employs an approach in between static configuration and fully
dynamic variability [29]. Possible configuration values are detected during compilation
and then used as a basis to compile code specialized to the respective configuration
manifestations.

4.2 Components

As a result of its hybrid approach, Multiverse consists of two components, a plugin for the
GNU C Compiler (GCC) and a run-time support library. In this section a brief overview of
the components and their basic functionality is given. A detailed description of the inner
workings follows in the next sections.

24

4.2 Components

4.2.1 GNU C Compiler plugin

The compiler is responsible to generate all the function variants that will be necessary
at run-time. For this purpose the GCC’s ability to be extended via plugins is used. Such
extensions can add new functionality on all levels during the compilation process. Plugins
are added to the compiler as dynamic libraries. They can use a subset of the GCC’s API,
e.g. connecting to different events during the compilation process or even adding new
passes [34, pp. 637ff.].

To cause the Multiverse plugin to become active, the developer has to annotate the
declaration of every designated config variable with a special attribute. This determines
the set of variables considered as configuration base for variability management.

Config variables must be global and of enumeral or integer type. The variables will
be used to generate different specialized instances of the functions that are influenced by
the configuration. Each generated instance is a variant of the original (generic) function,
with the difference that every occurrence of a config variable is set to a specific constant
value. The entirety of variants for a function is referred to as the function’s multiverse.
The plugin also collects and records all callsites of these functions for later use by the
run-time library.

Listing 4.1 shows a simple example with a single config variable and a function that
uses this variable. Alongside the original generic version, there will be generated two
additional variants of this function for each value of A (true or false).

1 bool __attribute__ ((multiverse)) A;
2

3 void __attribute__ ((multiverse)) foo() {
4 if (A)
5 do_a();
6 else
7 do_b();
8 }

Listing 4.1 – Declaration of a config variable and a function annotated with the
Multiverse attribute.

1 void foo_A_true () {
2 do_a();
3 }
4 void foo_A_false () {
5 do_b();
6 }

Listing 4.2 – Specialized variants (equivalent C code) of function foo depending
on the boolean config variable A.

25

4.2 Components

Listing 4.2 shows the equivalent C code for the variants that will be generated. Note that
not only the config variable but also the function has to be annotated with the Multiverse
attribute in order to be considered for variant generation.

4.2.2 Run-time library

After compiling a program using Multiverse, all the specialized function variants will
be part of the generated binary. However, there are still the original generic instances
in place. The run-time support library is capable of performing the actual switching
between different variants. This is accomplished by binary patching the appropriate
callsites previously recorded by the compiler plugin. The library exposes a set of methods
to switch between the variants of multiverse functions to the current state of configuration
(see Table 4.1).

Presuming the function and config variable from Listing 4.1, the developer would
have to call one of the commit functions after changing the value of A and before calling
foo the next time (see Listing 4.3).

1 A = true;
2 multiverse_commit_refs (&A);
3 ...
4 foo();

Listing 4.3 – Update all functions that reference a variable. To avoid undefined
behaviour, the commit function must be called after changing the value of A and
before calling foo the next time.

Table 4.1 – Library functions for updating multiverse variants (excerpt)

Function Description

multiverse_commit Update all function variants to match the current con-
figuration.

multiverse_commit_fn Update only a single function to use the instance that
matches the current configuration.

multiverse_commit_refs Update all functions referencing a specific config variable
to use the instance that matches the current configura-
tion.

26

4.3 Compile-time functionality

4.3 Compile-time functionality

As previously described, the GCC plugin is chronologically the first part that springs into
action when using Multiverse. The plugin itself consists of two main parts, the variant
generation and the descriptor construction.

4.3.1 Variant generation

Variant generation consists of three steps added to the compilation process: examination
of config variables, variant generation itself and a subsequent pass to eliminate duplicate
variants.

After registering the multiverse attribute in the compiler, the plugin iterates through
all variables annotated in such way. The goal is to determine possible values for every
config variable in the compilation unit. This finally results in a configuration vector for
each one of the variables [29]. For a boolean variable this configuration vector consists
of the two possible values, true and false. For variables of enumeral type it contains the
respective enum variants. Integer types are more difficult because they have too many
values to cover them all. In this case, Multiverse tries to infer relevant values from context,
or otherwise, falls back to an configuration vector consisting of 0 and 1.

In the variant generation process the configuration vector is then used to generate
specialized instances for the multiversed functions. This is accomplished by finding
all references to config variables within each annotated function and then generating
variants for combinations of possible assignments based on the configuration vectors.
This is achieved by simply replacing each config variable reference with the constant
value determined by the respective combination. Unreachable branches will be cut off
later in compilation process by the compiler’s standard optimization passes [29].

Besides the specialized instances, the unmodified generic body of a multiversed
function is still preserved. In case a specialized variant gets installed for this multiversed
function, an appropriate jump instruction to this variant gets written to the start of the
function body. This is necessary for cases that will not be accessible for the dynamic
patching facility, e.g. the use of pointers to multiversed functions.

It may occur that two or more generated variants are equivalent. This can result from
simply using only one of many enum variants in a conditional expression or from using
logical operators to combine different config variables. Therefore a dedicated pass is
executed after variant generation. It detects and merges duplicate variants.

4.3.2 Descriptor construction

After variant generation, the compiler has to gather and store all the information that
is needed during run-time. Therefore, the plugin generates descriptors for function
multiverses, variants, config variables and callsites and embeds them in the compilation
output.

27

4.3 Compile-time functionality

Figure 4.2 shows a simplified overview of the descriptors and illustrates their rela-
tionships. Each function that possesses a multiverse gets a descriptor containing the
function’s name, a pointer to the body (the actual code) and a lists of its associated
variants’ descriptors. A variant descriptor contains, aside from the body pointer, a list of
all involved config variables in the form of special assignment descriptors. Config variable
descriptors hold a pointer to the actual variable. To be able to access all places where
a multiversed function is used, the compiler has to also collect and record all callsites
of these functions. The corresponding descriptors include the address to the respective
callsite (the call label) and a pointer to the function it refers to.

The plugin cannot overlook the whole program. Due to its operation in the compiler,
it works on the level of compilation units. Therefore, there are separate sets of descriptors
embedded in every unit (object file) that contains multiversed functions. It is the run-time
library’s task to merge the separate descriptors to a global list that is valid for the whole
program.

function multiverse {

 name

 body pointer

 variants

}

variant {

 body pointer

 assignments

}

assignment {

 value bounds

 variable

}

config variable {

 name

 location

}

callsite {

 function pointer

 call label

}

indirect relationship
through function pointer

1 N

1

N

1

1

1

N

Figure 4.2 – Overview of descriptors and their relationships (simplified)

28

4.4 Run-time functionality

4.4 Run-time functionality

To actually use the generated function multiverses and switch between different vari-
ants, the run-time support library is required. It exposes an interface that allows the
programmer to update callsites according to the current state of the config variables.

4.4.1 Initialization of run-time data structures

Multiverses uses constructor functions, a special GCC feature. It allows the automated
execution of code prior to the program’s actual entry point [35, pp. 432f.]. The compiler
plugin emits such a constructor in each compilation unit. It will add the unit’s descriptors
to a global list which lives in the run-time library. This is necessary due to the compiler
plugins inability to generate a joint list for all the compilation units. The global list’s head
pointer is hard-coded in each constructor function and defined in the library.

Before actually using the library, the developer has to manually call the run-time
library’s initialization function. It will add further information to the descriptors and
connect them to allow efficient variant switching.

Most importantly, the initialization code has to connect each config variable assignment
to the config variable it refers to. This must be done at run-time because a config variable
is not necessarily defined inside the same compilation unit in which it is referenced by
a multiversed function. The code will not only connect the assignment descriptors to
the variable descriptors but also add a list of all referencing functions to each variable
descriptor. The result is that it is now possible to efficiently retrieve referencing functions
for each config variable and the other way round. This is required for the use of the
commit functions (see Table 4.1).

On some architectures, the library detects special variants for later optimization pur-
poses. The objective is to enable direct inlining of code during the variant switching
process, instead of placing function calls. Inlining is possible if the variant body’s instruc-
tions length is shorter or equal to the length of the call instruction that it aims to replace.
This is achieved by analyzing the variants’ function bodies. The architecture dependent
code will detect some hard-coded body types like empty bodies (NOPs) or simple value
returns. It will add an additional data structure to the variant descriptor that identifies
the special body type and, in some cases, holds additional information, for instance the
value in a simple value return.

4.4.2 Variant switching via binary patching

The switching between different function variants is the core part of the run-time func-
tionality. The developer has to manually trigger the binary patching process by calling one
of the commit functions (see Table 4.1). This has to be done every time the configuration
is changed.

During the process, the descriptors are used to identify the relevant callsites that need
to be updated to match the current state of the config variables. The selected callsites are

29

4.4 Run-time functionality

then replaced by calls to the new function variant. This involves operations specific to
the platform and architecture.

As a first step, Multiverse must be able to write to the memory regions in which the
machine code resides. Usually the platform (the underlying operating system in most
cases) prevents this type of access due to security considerations. The run-time library
will call the platform to repeal this protection before the patching code runs. After the
replacement is done, it will request the platform to restore the write protection and to
trigger a processor instruction cache cancellation for the affected memory region.

Of course, the actual patching is architecture-dependent. The current call instructions
to the generic function or to a function variant will be replaced with call instructions to
the newly identified variant. This requires the library to assemble a suitable instruction
that works as intended on the processor architecture. In some cases, special function
bodies allow inlining code into the callsite itself. This is currently implemented for the
Intel x86 processor architecture. It relies on the previously classified special function
bodies.

4.5 Supporting different architectures and platforms

Multiverse aims to not depend at all on the used hardware architecture and software
platform from the perspective of an user of the tool. Internally, it is designed to be easily
extended to support to different architectures and platforms.

The GCC plugin is completely independent from both, architecture and platform.
Since it operates on the part of the compiler’s backend that is independent fro the target
architecture, it works with an abstract, hardware-independent representation of the
program code [34, pp. 117ff.].

As previously described, there are dependencies in the run-time library due to the
binary patching functionality but it is designed to be easily ported to new architectures
and platforms. This is achieved by encapsulating dependent code in distinct modules that
implement a generic interface. This keeps the remaining parts of the library independent.

4.6 Summary

Multiverse is designed as a generic solution to efficiently realize dynamic variability
independently from architecture and application. The approach is based on boolean,
enumeral or integral configuration variables and works on function-level granularity. It
employs a hybrid technique with pre-compiled function variants and run-time binary
patching.

The tool consists of two components, a GCC plugin and a run-time support library.
The first creates multiple specialized versions of functions, based on the possible values of
specially annotated configuration variables. The latter is used during run-time to switch

30

4.6 Summary

between the generated variants according to match the current state of configuration.
The switching is accomplished by patching the respective function callsites.

31

5MULTIVERSE IN THE LINUX
KERNEL

As stated in Chapter 3, there are various mechanisms built into the Linux kernel that
address dynamic variability requirements. This chapter describes the employment of
Multiverse in places where it substitutes current variability mechanisms or in completely
new areas. Expected advantages over current mechanisms are discussed. Furthermore,
specialties of the application in operating system kernels and the resulting extensions to
Multiverse are explained.

5.1 Expected benefits

Applying Multiverse is connected with the expectation of benefits which result from
Multiverse’s objective to provide a generic and performance-oriented dynamic variability
management solution.

5.1.1 Maintainability improvements

Using Multiverse as an unified solution to dynamic variability management is expected
to improve source code maintainability in the Linux kernel. All mentioned dynamic
variability management mechanisms in the kernel use run-time patching. Such live patch-
ing techniques are always specific to the processor architecture and usually incorporate
complex implementations. In some cases there must be even made assumptions about
compiler behaviour or compiler determinations have to be overridden explicitly.

Multiverse addresses this by placing the implementation of dynamic variability com-
pletely into the compiler and the support library. Responsibility is taken away from the
kernel source code, and thus from the kernel developer. Various application-specific binary
patching mechanisms could be removed if current solutions were replaced completely by
Multiverse.

33

5.1 Expected benefits

5.1.2 Performance improvements

Performance improvements are primarily expected in areas where special variability
mechanisms have not yet been applied. This refers to locations which have dynamic
variability requirements that are currently handled by ordinary control flow modification,
without applying further performance optimization techniques.

The compiler-based approach makes it easy to apply Multiverse in such cases. In
contrast to other dynamic variability solutions, Multiverse does not interfere with the
semantic structure of the programming language. Conditional statements can just stay as
they are. It is sufficient to enhance the code by annotating the targeted function with
the Multiverse attribute and calling one of the commit functions after a configuration
variable change.

Thus, Multiverse could be much more easily applied in the kernel than the current
mechanisms, while adding only little complexity. Assuming that this facilitation actually
leads to a broader use of dynamic variability optimization mechanisms, it could increase
overall kernel performance.

5.2 Multiverse in kernel space

Running code in an operating system kernel imposes certain difficulties that are not
present in user space programs. This is also the case for the Multiverse run-time library.

From the beginning, the library has been designed to be easily portable to new
software platforms (see Section 4.5). An extension to this design was made to also
allow the application in unhosted environments where at most a freestanding standard
library implementation is available [35, p. 6]. However, the platform has to provide basic
dynamic memory management functionality, as this is essential to build the run-time
data structures. In hosted platforms this is implemented by standard library functions. In
Linux, its kernel equivalents must be used.

Current dynamic variability mechanisms in the Linux kernel often kick in on early
stages during the bootstrap process [20], before multiple CPUs are enabled and preemp-
tion is initiated. Despite this being an easy way to avoid concurrency problems during
binary patching, it is a problem for the application of Multiverse. The reason is, that
certain functionality is not available during startup. There are no dynamic memory
capabilities available at this point. Multiverse requires GCC constructor functions to
be called at startup to initialize its run-time data structures. Constructor functions can
be used in the kernel, after enabling them via configuration switch [27], but they will
not have been called at this early stage. The problems cannot be easily worked around.
Therefore, replacing such variability solutions with Multiverse may implicate redesigns
of the respective solutions in the kernel.

34

5.3 Application of Multiverse in the Linux kernel

5.3 Application of Multiverse in the Linux kernel

In principle, most of the dynamic variability solutions presented in Chapter 3 can be
replaced by Multiverse. But there are also new places where Multiverse can be applied
which are currently not covered by special variability mechanisms. As part of this work,
Multiverse was applied in two places in the Linux kernel. The implementation and its
challenges are described in this section.

5.3.1 Spin-lock elimination in uniprocessor systems

Spin-locks are used all over the kernel to synchronize access to shared resources in
symmetric multiprocessor (SMP) systems. Threads acquire spin-locks through a busy-
waiting process until the current holder releases the lock. Spin-locks are necessary in
cases of true parallel execution. In uniprocessor (UP) systems there is no need to use
them. Due to the fact that Linux is a SMP-capable kernel, the employment of locking
mechanisms is mandatory when accessing shared resources. Thus, spin-locks are used
by default, even if the kernel is running on an UP system. To improve performance on
such systems, Linux can be configured to disable SMP support (via a build system config
switch). This static configuration option causes all spin-lock operations to be removed
completely. This saves processor cycles but results in a kernel targeted to run exclusively
in an UP configuration3.

Multiverse is able to combine the performance benefits from statically disabling spin-
locks with the flexibility of run-time patching. Listing 5.1 illustrates the application of
Multiverse in the kernel’s spin-lock implementation. It shows the function used to acquire
a spin-lock. The boolean config variable (mv_uniprocessor_locks), that is referenced
there, is set up during kernel startup according to the hardware’s SMP/UP configuration.
In this case, the compiler plugin generates two variants of the function, each specialized
to implement one arm of the branch. The __LOCK macro used by the UP variant is no
actual spin-lock implementation. It is used to satisfy compile-time requirements, like
parameter usage, and it disables preemption in the kernel.

Applying Multiverse in Linux’s spin-lock implementation enables SMP kernels to adapt
to the machine’s processor count. Effectively, it allows a configuration option, previously
only determinable during compile-time, to be set up at run-time.

3At least in the x86 architecture, a kernel without SMP support will run on a SMP system but it will only
be able to use a single CPU.

35

5.3 Application of Multiverse in the Linux kernel

1 void __lockfunc __attribute__ ((multiverse)) ↘
_raw_spin_lock(raw_spinlock_t *lock)

2 {
3 if (mv_uniprocessor_locks) {
4 __LOCK(lock);
5 } else {
6 __raw_spin_lock(lock);
7 }
8 }

Listing 5.1 – Multiversed spin-lock acquire function. The variable
mv_uniprocessor_locks is a boolean config variable determining if the kernel
is running on an UP system or not. The function __raw_spin_lock contains
the actual lock implementation. __LOCK is a macro, satisfying compile-time
requirements (instruction ordering, parameter usage) and disabling preemption.

5.3.2 Operations for paravirtualized kernels (PV-Ops)

Operations for paravirtualized kernels (PV-Ops) in the x86 architecture are already han-
dled by a specialized variability mechanism (see Section 3.2.3). The current mechanism
uses function pointers to allow changing the functionality of operations when paravirtual-
ization is enabled. Binary patching is used to replace the indirect function pointer calls to
these operations with direct calls. The current approach allows to simply activating new
implementations for PV-Ops by assigning new values to the respective function pointer
variables and re-running the patching process.

This solution differs from the way Multiverse works. It conflicts with the idea that
variants are derived from a generic function. Instead, a special variant generation process
is not necessary in this case, as the variants are manually provided and installed by
the developer (via function pointer assignment). This discrepancy concerning variant
generation prevents replacing the current solution with the original version of Multiverse.
Apart from this problem, the Multiverse run-time library is very well suited to replace the
PV-Ops replacement mechanism, regarding the very similar binary patching methodology.
To allow the application in cases like this, Multiverse was extended to support the
described function pointer usage.

Implementing the support for specially recognized function pointers in Multiverse
requires changes in the compiler plugin and in the run-time library. First of all, with
annotating function pointers, there is now a third way how the Multiverse attribute can be
used (next to annotating functions and config variables). Therefore, the compiler plugin
was modified to generate a function multiverse descriptor for every annotated function
pointer. No actual variants are placed into the descriptor, as there are none of them
determined during compile-time – they originate at run-time by assigning some value
(a function body) to the pointer variable. The library uses the multiverse descriptor’s
emptiness as a marker to differentiate between function pointers and functions. On

36

5.3 Application of Multiverse in the Linux kernel

committing a new configuration state, the library creates a temporary variant descriptor,
pointing to the function body that is currently assigned to the function pointer variable.
This descriptor is then used to determine the active variant for the binary patching process.
A call to a commit function will completely remove the old descriptor and replace it with
a newly generated one. There are also differences in the callsites. Instead of direct calls,
callsites associated with function pointers involve indirect calls. On the x86 architecture
this results in differently sized instructions, which has to be taken into account by the
patching code.

Listing 5.2 illustrates how multiversed function pointers work from a users perspective.
Note that the function pointers are not recognized as config variables by Multiverse
(though they conceptually are). Instead, they are associated with a multiverse descriptor
at run-time. They can be seen as function multiverses without predefined variants.

1 int foo1(void) {
2 return 23;
3 }
4

5 int foo2(void) {
6 return 42;
7 }
8

9 __attribute__ ((multiverse)) int (*fp)(void);
10

11 int main(void) {
12 multiverse_init ();
13

14 fp = foo1;
15 multiverse_commit_fn (&fp);
16 assert(fp() == 23); // foo1 is called
17

18 fp = foo2;
19 multiverse_commit_fn (&fp);
20 assert(fp() == 42); // foo2 is called
21 }

Listing 5.2 – Using a multiversed function pointer. Different values are assigned
to the annotated function pointer fp. A call to the commit function patches the
callsite to perform a direct call to the function hold by the pointer.

The described extension is a step forward towards the usage of Multiverse for PV-Ops.
However, there is another issue that causes incompatibilities. In current kernels, PV-Ops
are grouped into structures according to their area of operation. Listing 5.3 shows the
definition of two of the groups in the x86 architecture code as an example. Reasons for
the grouping might be the improvement of code structure or the minimization of global
namespace pollution. Multiverse, however, does only work with global variables and
functions. Allowing C struct members to be Multiverse attributed would be problematic

37

5.3 Application of Multiverse in the Linux kernel

since struct variables can also be declared locally. Therefore, the PV-Ops design must be
changed in order to apply Multiverse. This means suspending the groups and declaring
the function pointers as global variables.

1 struct pv_irq_ops pv_irq_ops = {
2 .save_fl = __PV_IS_CALLEE_SAVE(native_save_fl),
3 .restore_fl = __PV_IS_CALLEE_SAVE(native_restore_fl),
4 .irq_disable = __PV_IS_CALLEE_SAVE(native_irq_disable),
5 .irq_enable = __PV_IS_CALLEE_SAVE(native_irq_enable),
6 .safe_halt = native_safe_halt ,
7 .halt = native_halt ,
8 /* Additional members ommited */
9 };

10

11 struct pv_cpu_ops pv_cpu_ops = {
12 .cpuid = native_cpuid ,
13 .get_debugreg = native_get_debugreg ,
14 .set_debugreg = native_set_debugreg ,
15 .read_cr0 = native_read_cr0 ,
16 .write_cr0 = native_write_cr0 ,
17 /* Additional members ommited */
18 }

Listing 5.3 – PV-Ops grouped in structures according to the area of operation
(x86 architecture). This snippet shows two groups: interrupt related operations
(pv_irq_ops) and CPU related operations (pv_cpu_ops). In total, there are
seven groups in Linux, version 4.13.

Two PV-Ops were migrated to use Multiverse: irq_enable (enable processor inter-
rupts) and irq_disable (disable processor interrupts). Listing 5.4 shows them, declared
as global function pointer variables. Suspending the groups also involves changing calls
to the function pointers accordingly. Luckily, the PV-Ops pointers are generally not ref-
erenced directly, but instead called through wrapper functions. Thus, the impact of the
design change is limited.

1 extern __attribute__ ((multiverse)) void (* pv_irq_enable)(void);
2 extern __attribute__ ((multiverse)) void (* pv_irq_disable)(void);

Listing 5.4 – PV-Ops for enabling and disabling interrupts as multiversed function
pointers

38

5.4 Summary

5.4 Summary

The usage of Multiverse for dynamic spin-lock elimination and PV-Ops implementation
prove that the tool is applicable in the Linux kernel. However, a modification to Multiverse
was necessary to make it feasible: The tool was extended to support function pointer
based dynamic variability. Expected benefits of using Multiverse in the Linux kernel are
maintainability improvements due to code reduction and performance improvements
mainly in new areas where dynamic variability mechanisms are currently not applied.

39

6EVALUATION

Section 5.1 lists expected benefits when applying Multiverse in the Linux kernel, replacing
current dynamic variability management mechanisms. Besides the unification of different
solutions, performance improvements and code complexity reduction were suggested.
To verify these claims, the Multiverse applications in the kernel (see Section 5.3) are
evaluated in this chapter.

6.1 Performance comparison via microbenchmarks

Micro-benchmarks were performed to asses the performance of Multiverse in the Linux
kernel and compare it to current dynamic variability solutions. This section presents the
results, after a short explanation of the benchmarking methodology and the experimental
setup.

6.1.1 Method

According to Ehliar & Liu [11] there are two practical approaches to benchmarking:
application level benchmarks and microbenchmarks. Application level benchmarking
refers to performance measurements of typical applications of the whole program, whereas
microbenchmarks are targeted to single aspects of the software artifact.

Microbenchmarks were used to measure the performance changes caused by the
modifications that were applied to the Linux kernel. This decision is based on the high
specificity of the changes and a general difficulty with application level benchmarking in
operating system kernels.

Multiverse was applied in two places in the kernel: dynamic spin-lock elimination
and PV-Ops patching (see Section 5.3). Both applications of Multiverse were compared
to the respective standard kernel implementations by using microbenchmarks. Linux,
version 4.13 was used for all measurements. The benchmarks were run after the startup
stage of the kernel, shortly before the invocation of the first user-space process. This point
was selected to minimize the interference with other kernel activities. The measurements
were not only performed on native hardware but also in a paravirtualized environment,

41

6.1 Performance comparison via microbenchmarks

using the XEN hypervisor4. Furthermore, two systems with different processors were
used:

• Intel® CoreTM i7-2677M CPU – a recent multi-core processor (symmetric multi-
processor (SMP) system).

• Intel® Pentium® 4 HT 640 – an older single-core processor. It comes with Intel’s
hyperthreading technology which provides two virtual CPUs, making it a SMP
processor. However, hyperthreading can be turned off in this model. This makes
measurements in a real uniprocessor (UP) configuration possible.

Listing 6.1 shows the benchmarking code. The operations to measure have a very
short run-time and are thus repeatedly executed (100000 times) to get a measurable
result. A monotonic high-resolution clock (ktime_get) is used to measure the elapsed
time in nanoseconds. The results are written to the standard kernel output buffer (via
printk).

1 {
2 int i;
3 ktime_t t1, t2;
4 t1 = ktime_get ();
5 for (i = 0; i < 100000; ++i) {
6 /* Measure PV-Ops by disabling and enabling interrupts */
7 local_irq_disable ();
8 local_irq_enable ();
9 }

10 t2 = ktime_get ();
11 printk("BENCHMARK PV-OPS: elapsed time: %llu\n", t2 - t1);
12 }
13 {
14 int i;
15 ktime_t t1, t2;
16 t1 = ktime_get ();
17 for (i = 0; i < 100000; ++i) {
18 /* Measure spin -lock performance by locking and unlocking ↘

a lock variable */
19 spin_lock (& test_lock);
20 spin_unlock (& test_lock);
21 }
22 t2 = ktime_get ();
23 printk("BENCHMARK SPIN -LOCK: elapsed time: %llu\n", t2 - t1);
24 }

Listing 6.1 – Benchmarking spin-lock and PV-Ops (interrupt operations)

4http://www.xenproject.org

42

6.1 Performance comparison via microbenchmarks

6.1.2 Results

On each processor (Intel Core i7-2677M and Intel Pentium 4 HT 640) the benchmarks, as
described above, were run five times for each hardware configuration (SMP/UP). On
the Pentium processor, switching to UP mode was done on the hardware5. The Core i7
does not allow to disable SMP on a hardware level; therefore, the kernel boot parameter
nosmp was used to force the kernel into UP mode despite the availability of multiple
CPUs.

The described procedure was performed on a kernel that had been extended with
Multiverse as described in Section 5.3 (in the following called “multiversed kernel”) and for
an unmodified kernel (referred to as “standard kernel”). Table 6.1 and Table 6.2 show the
averaged results for the respective runs. The pecentage numbers specify the proportional
measurement differences between the results produced by the the multiversed kernel
in relation to the results produced by the standard kernel. Note that a positive value
indicates a performance loss, whereas a negative value signifies a performance gain
in the multiversed kernel. A percentage change around zero signifies no considerable
differences in performance between the two versions.

Table 6.1 – Averaged benchmark results on a Core i7 processor

standard kernel multiversed kernel
PV-Ops spin-lock PV-Ops spin-lock

SMP 346.476 µs 901.592 µs 277.574 µs 902.088 µs
-19.9 % +0.1 %

UP 419.764 µs 910.869 µs 277.616 µs 519.430 µs
-33.9 % -43.0 %

Table 6.2 – Averaged benchmark results on a Pentium 4 processor

standard kernel multiversed kernel
PV-Ops spin-lock PV-Ops spin-lock

SMP 3649.110 µs 3286.647 µs 3641.483 µs 3266.631 µs
-0.2 % -0.6 %

UP 3650.660 µs 2139.433 µs 3641.763 µs 1940.233 µs
-0.2 % -9.3 %

Regarding the measurements for spin-lock operations, the results are not surprising.
The multiversed kernel comes with a spin-lock elimination mechanism on UP systems (by

5by disabling hyperthreading in the BIOS configuration

43

6.1 Performance comparison via microbenchmarks

employing Multiverse), whereas the standard kernel has no such mechanism. Therefore a
performance gain is measured in UP configurations (on both processor models) but there
are no changes when running in SMP. However, the performance gain is considerably
higher on the newer processor (43.0% vs. 9.3%). A reason for this could be that there is
at least one other operation than the actual spinning connected to the spin-lock function:
disabling preemption (see Section 5.3.1). This operation is also executed in the UP-
variant of the spin-lock implementation. It might be that this is slower on older hardware,
which would in this case result in narrowing the performance benefit that was gained by
eliminating the spinning code.

On the Pentium processor, executing the PV-Ops revealed no performance difference
between the current mechanism and the Multiverse solution. This is as expected because
the current approach already performs binary patching. On the Core i7 however, the
Multiverse solution caused a significant performance increase (19.9% on SMP and 33.9%
on UP). This is surprising, as both binary patching approaches have similar capabilities.
A reason might be the employment of a non-standard calling convention in the current
PV-Ops solution. It expects the caller to preserve more registers than in the standard C
convention, resulting in additional instructions before and after the callsites. However,
this does not explain the fact that the performance differences are only measurable on
the Core i7 processor.

Besides benchmarking the two kernels on bare hardware, it is of interest, especially
regarding to the PV-Ops patching, to also measure the performance in a paravirtualized
environment. Table 6.3 shows the results of the benchmarks. They were performed using
the XEN hypervisor as a paravirtualization host.

Table 6.3 – Averaged benchmark results in paravirtualization

standard kernel multiversed kernel
PV-Ops spin-lock PV-Ops spin-lock

SMP 1046.858 µs 4128.549 µs 1041.850 µs 2090.528 µs
-0.5 % -49.4 %

UP 493.312 µs 1707.445 µs 1037.521 µs 527.295 µs
+110.3 % -69.1 %

As in the previous measurements, there are some unexpected results. The multiversed
spin-lock implementation is considerably faster compared to the standard kernel imple-
mentation. In the case of a SMP system this is surprising. I was not able to determine the
the reason for this behaviour but the observed performance increases might be connected
to the fact that spin-locks are handled specially in paravirtualization. Ticket lock imple-
mentations, like the one used in the kernel, have a negative performance impact when
running on a virtual CPU that is scheduled by a hypervisor [13]. Therefore spin-lock

44

6.1 Performance comparison via microbenchmarks

acquiring is partially implemented as a paravirtualized operation. The current spin-lock
elimination code could interfere with this.

When looking at PV-Ops, the poor performance of the Multiverse solution is particu-
larly striking. The benchmark run-time is more than doubled compared to the current
solution (110.3%). In the SMP configuration, this problem seems to not exist. However,
looking at the single measurements instead of the averaged values reveals an erratic
behaviour in the performance measurements of the standard kernel running on a SMP
configuration (see Table 6.4). The observation can be partially explained by the fact
that the benchmarks are running inside a virtualization environment where the CPUs
are scheduled by the hypervisor. The hypervisor could in this way, spoil the performance
measurements. However, this does not explain why the Multiverse kernel seems not to
be affected by this problem.

Table 6.4 – PV-Ops: measured values in paravirtualized kernels (SMP)

kernel samples (µs)

standard 484.269 1800.810 584.850 562.793 1801.568
multiversed 1057.652 1036.568 1036.574 1036.158 1042.299

6.2 Assessment of code complexity

Current dynamic variability mechanisms in the kernel add a lot of complexity to the
kernel source code. In this section, an overview of difficulties with the current solutions
is given. Furthermore, it will be analysed how the use of Multiverse could improve
this situation. The focus in this section will be on the application-specific variability
mechanisms (alternatives, SMP alternatives and PV-Ops; see Section 3.2), as they are most
comparable to Multiverse regarding the basic functionality and the use cases.

6.2.1 Current status of code complexity related to dynamic variability mech-
anisms

When looking at the code of current dynamic variability solutions, one of the first ob-
servation is that mechanisms to express a variation point often incorporate complex
C preprocessor (CPP) macro invocations and inline assembly statements. This is not
surprising, as it is not trivial to express a binary patching site in a high-level language
like C. In the PV-Ops approach, for example, the operation callsites are denoted by using
a nested preprocessor macro hierarchy, spanning five levels. At the end of the macro
invocation chain resides the code shown in Listing 6.2. It uses assembler directives
and local labels [12, p.33 & 55] to place the metadata into a special ELF section that is

45

6.2 Assessment of code complexity

structured as described in Section 3.2.3. Note that this macro is meant to be used in pure
assembly code. There exists a second version for the usage in C code, which implements
the same functionality in the form of an inline assembly statement.

1 #define _PVSITE(ptype , clobbers , ops , word , algn) \
2 771:; \
3 ops; \
4 772:; \
5 .pushsection .parainstructions ,"a"; \
6 .align algn; \
7 word 771b; \
8 .byte ptype; \
9 .byte 772b-771b; \

10 .short clobbers; \
11 .popsection

Listing 6.2 – CPP macro used to realize a PV-Ops callsite. The macro places the
actual instructions (ops) into the code segment. Information concerning register
clobbering (clobbers) and the type of the operation (ptype) are written into
the metadata section (.parainstructions), together with a pointer to the
callsite (label 771) and its size (difference of 772-771). Numeric local
labels are used to realizes pointers. They can be redefined multiple times; note
the “b” suffix, stating a backward reference.

Undoubtedly, the macro adds a lot of complexity to the kernel, but this piece of
code also reveals another weakness of the PV-Ops patching approach: Every call to a
paravirtualized operation must be realized by using the respective macro. Otherwise it
will not be recognized by the binary patching code.

Other dynamic variability approaches in the kernel, like alternatives and SMP alter-
natives patching, apply very similar techniques and thus, implement virtually the same
mechanisms again, with only little changes to match their use case. In addition, the men-
tioned variability mechanisms (PV-Ops, alternatives, SMP alternatives) are all completely
located in the architecture-specific kernel code. There is no shared code or interface
between different architecture implementations.

In summary, the current dynamic variability implementations incorporate complex,
application-specific code. Defining variation points often does not harmonize well with
the language syntax. Therefore, the usage of these mechanisms tends to be difficult and
error-prone. Furthermore, the dependency of the current implementations on the use
case and the processor architecture results in code duplication.

6.2.2 Improvements by the usage of Multiverse

Multiverse’s compiler-based approach keeps the additional code that must be added to
apply binary patching relatively small. It is reduced to the addition of the multiverse anno-

46

6.2 Assessment of code complexity

tations and calls to the multiverse commit functions after configuration variable changes.
This is in contrast to the current solutions in the kernel that come with mechanisms which
are complex to apply and maintain.

Besides this, Multiverse offers a solution to binary patching which is generic on
different levels. Firstly, it is independent from the use case: It allows variant generation
based on standard language control flow modification methods (conditional statements
and function pointers). Secondly, its usage is architecture-independent. Of course,
internally, the binary patching code is dependent on the target architecture but it is
structured in a way, that keeps the majority of the code shared and makes supporting
new architectures easy (see Section 4.5).

6.3 Challenges and future work

The application of Multiverse in the Linux kernel is still in an experimental state. To be
used productively in the kernel, further work is required.

Executing benchmarks to measure performance showed some improvements com-
pared to current solutions but also revealed some unexpected results and a few open
issues, especially concerning the application in kernels running as paravirtualized guest
systems (see Section 6.1.2). There are performance issues related to the two measured
PV-Ops (enable and disable interrupts). The benchmark results point to a general diffi-
culty of measuring performance in paravirtualization. Solving these issues in a future
work will therefore require more extensive benchmarks.

Other challenges relate to specialties of the application of Multiverse in kernel space
(see Section 5.2). Current run-time patching solutions become active in very early stages
during the kernel startup. This is currently not possible for Multiverse which is relying on
GCC constructor functions and dynamic memory allocation. Both features are available
in the kernel but initialized relatively late in the startup process. In a future work,
alternatives to the usage of these two features could be examined. Solutions, that other
patching mechanisms apply, are of particular interest in this regard, e.g. the usage of ELF
sections.

Another limitation of Multiverse results from its use of the compiler to generate vari-
ants. This makes it currently impossible to use Multiverse in assembler code. Regarding
low level patching mechanisms like PV-Ops or instruction patching, this is a serious draw-
back. It should be investigated if it can be made possible to place Multiverse variation
points in assembler code, at least in some limited form.

An important task is the discovery of more potential use cases in the Linux kernel. A
complex tool like Multiverse will only be acceptable if it can be profitably employed. This
requires the existence of application sites where Multiverse provides real, measurable
benefits.

47

6.4 Summary

6.4 Summary

Multiverse was not just applied successfully in two places in the Linux kernel, but there
are also improvements connected with its application. Performance benefits by applying
Multiverse were measurable in many cases. Improvements concerning code complexity
and maintainability are only hypothetical at this point because only a small portion of an
existing dynamic variability mechanism (PV-Ops patching) was replaced by Multiverse.
However, there are indications suggesting a reduction of code complexity and an overall
improvement of maintainability.

Despite these benefits, the application of Multiverse in the Linux kernel is currently
not ready for productive use. There are unsolved issues concerning the initialization of
run-time data structures in the early kernel startup stage and the impossibility to use
Multiverse in assembler code. Furthermore there are unresolved performance problems
in paravirtualized environments, requiring further research.

48

7CONCLUSION

In this thesis, it is shown that Multiverse can be applied in the Linux kernel to efficiently
realize dynamic variability in performance critical areas. Furthermore, appropriate use
cases are presented and possible benefits and disadvantages compared to other approaches
are assessed.

Linux already comes with its own dynamic variability management mechanisms
in place. The most generic one is the usage of loadable kernel modules. This allows
specially designed compilation units to be loaded to the Linux kernel during run-time.
There are other, more application specific approaches in Linux. The alternatives patching
mechanism is able to replace machine instruction sequences in the code, based on the
availability of certain CPU capabilities. A very similar method is the SMP alternatives
mechanism which allows to install uniprocessor optimizations in the code, in cases
where the underlying system has only one CPU. Another mechanism, called operations
for paravirtualized kernels (PV-Ops), is concerned with adapting the system when it is
running in paravirtualization. All these specialized mechanisms in the Linux kernel use
binary patching to meet high run-time performance requirements.

There are certain drawbacks connected to the current dynamic variability mechanisms
in the Linux kernel. They are often difficult to apply and usually incorporate complex
implementations, making them difficult to maintain and limiting their profitable usage in
the kernel. By replacing current solutions with Multiverse, it is tried to eliminate these
disadvantages.

Multiverse itself is a new dynamic variability approach. It is designed to combine
the flexibility and simplicity of control flow modification with the performance of binary
patching. Therefore, Multiverse provides a compiler-assisted approach to realize dynamic
variability. Configuration possibilities are detected during compilation and used as a basis
to compile specialized code manifestations which are put in place at run-time.

Different modifications were applied to Multiverse to make it usable in the Linux
kernel. This includes changes to make it applicable in kernel-space. Furthermore, the
ability to recognize function pointers as variability sources was added.

Multiverse was applied in two places in the kernel. Two interrupt-related PV-Ops were
migrated to use Multiverse and, as a new use case, spin-lock elimination in uniprocessor
systems was realized. Microbenchmarks show an increased performance in many cases

49

7 Conclusion

but also reveal that further research is required to make a productive and stable use of
Multiverse inside the kernel possible.

The focus in this thesis lies on the research connected to make Multiverse applicable
in the Linux kernel. Measuring performance and analyzing code complexity is not done
extensively in this work. The benchmarks and code complexity assessments should be
seen as a basic evaluation to give an insight into what may be expected from Multiverse
in the Linux kernel. This opens up a variety of possibilities for future work in this field.

50

LIST OF ACRONYMS

CPP C preprocessor

CPU Central pocessing unit

ELF Executable and Linkable Format

GCC GNU C Compiler (also: GNU Compiler Collection)

NOP No operation (command or instruction that does nothing)

OOP Object-oriented programming

PV-Ops Operations for paravirtualized kernels

SMAP Supervisor Mode Access Prevention

SMP Symmetric multiprocessor

UP Uniprocessor

51

LIST OF FIGURES

2.1 Variation point with two variants . 4
2.2 Program and library modules and their dependencies 8

3.1 Conceptual overview of sections involved in the alternatives patching mech-
anism . 17

3.2 Conceptual overview of sections involved in the PV-Ops patching mechanism 20

4.1 Conceptual overview of Multiverse’s functionality 23
4.2 Overview of descriptors and their relationships (simplified) 28

53

LIST OF TABLES

3.1 Time of variant generation and variant binding of dynamic variability
mechanisms in the Linux kernel . 21

4.1 Library functions for updating multiverse variants (excerpt) 26

6.1 Averaged benchmark results on a Core i7 processor 43
6.2 Averaged benchmark results on a Pentium 4 processor 43
6.3 Averaged benchmark results in paravirtualization 44
6.4 PV-Ops: measured values in paravirtualized kernels (SMP) 45

55

LIST OF LISTINGS

2.1 A variation point realized by the use of the C preprocessor (CPP) 4
2.2 A variation point realized by a conditional statement 5
2.3 Static polymorphism via template metaprogramming in C++ 6
2.4 Dynamic polymorphism via dynamic dispatch in C++ 7

3.1 Anatomy of an alternatives application site 15
3.2 Memory barrier macro definition using alternatives 16
3.3 STAC operation implementation using alternatives 16
3.4 Atomic add operation with lock prefix using SMP alternatives 18

4.1 Declaration of a mutiverse variable and function 25
4.2 Specialized variants (equivalent C code) . 25
4.3 Update all functions that reference a variable 26

5.1 Multiversed spin-lock acquire function . 36
5.2 Using a multiversed function pointer . 37
5.3 PV-Ops grouped in structures according to the area of operation 38
5.4 PV-Ops for enabling and disabling interrupts as multiversed function pointers 38

6.1 Benchmarking spin-lock and PV-Ops (interrupt operations) 42
6.2 CPP macro used to realize a PV-Ops callsite 46

57

REFERENCES

[1] Nadeem Abbas, Jesper Andersson, and Welf Löwe. “Autonomic Software Product
Lines (ASPL).” In: Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume. ECSA ’10. Copenhagen, Denmark: ACM, 2010,
pp. 324–331. ISBN: 978-1-4503-0179-4.

[2] Varun Agrawal et al. “Architectural Support for Dynamic Linking.” In: SIGPLAN
Not. 50.4 (Mar. 2015), pp. 691–702. ISSN: 0362-1340.

[3] Peter Anvin. [PATCH 00/11] x86: Supervisor Mode Access Prevention. Linux Kernel
Mailing List. Sept. 2012. URL: https://lkml.org/lkml/2012/9/21/442
(visited on 10/11/2017).

[4] Luca Barbieri. [PATCH 01/10] x86: add support for multiple choice alternatives.
Linux Kernel Mailing List. Feb. 2010. URL: https://lkml.org/lkml/2010/2/
17/72 (visited on 10/10/2017).

[5] Petkov Borislav. [PATCH v2 03/15] x86/alternatives: Add instruction padding.
Linux Kernel Mailing List. Feb. 2015. URL: https://lkml.org/lkml/2015/2/
24/260 (visited on 10/10/2017).

[6] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. Thrid Edition.
O’Reilly Media, 2005. ISBN: 9780596005658.

[7] Luca Cardelli and Peter Wegner. “On Understanding Types, Data Abstraction, and
Polymorphism.” In: ACM Comput. Surv. 17.4 (Dec. 1985), pp. 471–523. ISSN:
0360-0300.

[8] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:
Methods and Case Studies. SEI series in software engineering. Addison-Wesley,
2002. ISBN: 9780201704822.

[9] Fernando J. Corbató. A Letter from Prof. Corbató. Oct. 2000. URL: http://www.
multicians.org/corby-letter.html (visited on 10/04/2017).

[10] Robert C. Daley and Jack B. Dennis. “Virtual Memory, Processes, and Sharing in
Multics.” In: Proceedings of the First ACM Symposium on Operating System Principles.
SOSP ’67. New York, NY, USA: ACM, 1967, pp. 12.1–12.8.

59

https://lkml.org/lkml/2012/9/21/442
https://lkml.org/lkml/2010/2/17/72
https://lkml.org/lkml/2010/2/17/72
https://lkml.org/lkml/2015/2/24/260
https://lkml.org/lkml/2015/2/24/260
http://www.multicians.org/corby-letter.html
http://www.multicians.org/corby-letter.html

REFERENCES

[11] Andreas Ehliar and Dake Liu. “Benchmarking network processors.” In: (Jan.
2002). URL: https://www.researchgate.net/publication/228979633_
Benchmarking_network_processors.

[12] Dean Elsner, Jay Fenlason, et al. Using as – The GNU Assembler Version 7.2.0.
Free Software Foundation. 51 Franklin Street, Boston, USA, 2002. URL: http:
//www.zap.org.au/elec2041-cdrom/gnutools/doc/gnu-assembler.pdf.

[13] Jeremy Fitzhardinge. [PATCH RFC 1/4] x86/paravirt: add hooks for spinlock
operations. Linux Kernel Mailing List. July 2008. URL: https://lkml.org/lkml/
2008/7/7/318 (visited on 10/25/2017).

[14] Michael Franz. “Dynamic Linking of Software Components.” In: IEEE Computer
30 (1997), pp. 74–81.

[15] Matthias Galster et al. “Variability in Software Architecture: Views and Beyond.”
In: SIGSOFT Softw. Eng. Notes 38.1 (Jan. 2013), pp. 46–49. ISSN: 0163-5948.

[16] W. Wilson Ho and Ronald A. Olsson. “An Approach to Genuine Dynamic Linking.”
In: Software: Practice and Experience 21.4 (Apr. 1991), pp. 375–390. ISSN: 0038-
0644.

[17] Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3A. Intel
Corporation. Oct. 2017. URL: https://software.intel.com/sites/default/
files/managed/7c/f1/253668-sdm-vol-3a.pdf.

[18] Introduction to programming on Multics. Honeywell Information Systems. 200
Smith Street, Waltham, USA, 1981. URL: http://www.bitsavers.org/pdf/
honeywell/multics/AG90-03_PgmgIntro_Dec81.pdf.

[19] Andi Kleen. [PATCH] [22/26] i386: Remove smp_alt_instructions. Linux Kernel
Mailing List. Apr. 2007. URL: https://lkml.org/lkml/2007/4/29/384 (visited
on 10/14/2017).

[20] Andi Kleen. [PATCH] Runtime memory barrier patching. Linux Kernel Mailing
List. Apr. 2003. URL: https://lkml.org/lkml/2003/4/21/168 (visited on
10/10/2017).

[21] Ben Klemens. 21st Century C: C Tips from the New School. Second Edition. O’Reilly
Media, 2014. ISBN: 9781491903896.

[22] Gerd Knorr. [patch] SMP alternatives for i386. Linux Kernel Mailing List. Dec. 2005.
URL: https://lkml.org/lkml/2005/12/13/204 (visited on 10/14/2017).

[23] Henry Massalin. “Synthesis: An Efficient Implementation of Fundamental Operat-
ing System Services.” PhD thesis. New York City, NY, USA: Columbia University,
1992. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
29.4871.

[24] Henry Massalin and Calton Pu. An Overview of The Synthesis Operating System.
Tech. rep. New York City, NY, USA: Columbia University, 1989. URL: https:
//academiccommons.columbia.edu/catalog/ac:143176.

60

https://www.researchgate.net/publication/228979633_Benchmarking_network_processors
https://www.researchgate.net/publication/228979633_Benchmarking_network_processors
http://www.zap.org.au/elec2041-cdrom/gnutools/doc/gnu-assembler.pdf
http://www.zap.org.au/elec2041-cdrom/gnutools/doc/gnu-assembler.pdf
https://lkml.org/lkml/2008/7/7/318
https://lkml.org/lkml/2008/7/7/318
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
https://software.intel.com/sites/default/files/managed/7c/f1/253668-sdm-vol-3a.pdf
http://www.bitsavers.org/pdf/honeywell/multics/AG90-03_PgmgIntro_Dec81.pdf
http://www.bitsavers.org/pdf/honeywell/multics/AG90-03_PgmgIntro_Dec81.pdf
https://lkml.org/lkml/2007/4/29/384
https://lkml.org/lkml/2003/4/21/168
https://lkml.org/lkml/2005/12/13/204
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4871
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4871
https://academiccommons.columbia.edu/catalog/ac:143176
https://academiccommons.columbia.edu/catalog/ac:143176

REFERENCES

[25] Scott Milton and Heinz W. Schmidt. Dynamic Dispatch in Object-Oriented Languages.
Tech. rep. CSIRO – Division of Information Technology, 1994.

[26] Martin Müller. “Message Dispatch in Dynamically-Typed Object-Oriented Lan-
guages.” MA thesis. Albuquerque, NM, USA: University of New Mexico, 1995. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.1782.

[27] Peter Oberparleiter. [PATCH 1/4] kernel: constructor support. Linux Kernel Mailing
List. Feb. 2009. URL: https://lkml.org/lkml/2009/2/3/170 (visited on
10/07/2017).

[28] Andre Przywara. [PATCH 0/6] arm64: alternatives runtime patching. Linux Kernel
Mailing List. Nov. 2014. URL: https://lkml.org/lkml/2014/11/14/432
(visited on 10/10/2017).

[29] Valentin Rothberg et al. “Function Multiverses for Dynamic Variability.” In: 9th
International Workshop on Dynamic Software Product Lines - Variability at Run-
time. Augsburg, Germany, Sept. 2016. URL: https://www4.cs.fau.de/
Publications/2016/rothberg_16_dspl.pdf.

[30] Rusty Russell. “lguest: Implementing the little Linux hypervisor.” In: 2007 Linux
Symposium 2 (2007), pp. 173–177. URL: https://www.kernel.org/doc/ols/
2007/ols2007v2-pages-173-178.pdf.

[31] Rusty Russell. [PATCH 3/4] x86 paravirt_ops: implementation of paravirt_ops.
Linux Kernel Mailing List. Aug. 2006. URL: https://lkml.org/lkml/2006/8/
7/6 (visited on 10/20/2017).

[32] Alcemir Rodrigues Santos and Eduardo Santana de Almeida. “Do #Ifdef-based
Variation Points Realize Feature Model Constraints?” In: SIGSOFT Softw. Eng.
Notes 40.6 (Nov. 2015), pp. 1–5. ISSN: 0163-5948.

[33] Diomidis Spinellis and Georgios Gousios. Beautiful Architecture. First Edition.
O’Reilly Media, 2009. ISBN: 9780596517984.

[34] Richard M. Stallman and the GCC Developer Community. GNU Compiler Collection
Internals – for GCC version 7.2.0. Free Software Foundation. 51 Franklin Street,
Boston, USA, 2017b. URL: https://gcc.gnu.org/onlinedocs/gcc-7.2.0/
gccint.pdf.

[35] Richard M. Stallman and the GCC Developer Community. Using the GNU Compiler
Collection – for GCC version 7.2.0. Free Software Foundation. 51 Franklin Street,
Boston, USA, 2017a. URL: https://gcc.gnu.org/onlinedocs/gcc-7.2.0/
gcc.pdf.

[36] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. “A Taxonomy of Variability
Realization Techniques.” In: Software: Practice and Experience 35 (2001), pp. 705–
754.

61

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.1782
https://lkml.org/lkml/2009/2/3/170
https://lkml.org/lkml/2014/11/14/432
https://www4.cs.fau.de/Publications/2016/rothberg_16_dspl.pdf
https://www4.cs.fau.de/Publications/2016/rothberg_16_dspl.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-173-178.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-173-178.pdf
https://lkml.org/lkml/2006/8/7/6
https://lkml.org/lkml/2006/8/7/6
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gccint.pdf
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gccint.pdf
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-7.2.0/gcc.pdf

REFERENCES

[37] Reinhard Tartler et al. “Static Analysis of Variability in System Software: The 90,000
#ifdefs Issue.” In: Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX 2014). Ed. by USENIX Association. Philadelphia, PA, USA, 2014, pp. 421–
432. ISBN: 978-1-931971-10-2. URL: http://www4.cs.fau.de/Publications/
2014/tartler_14_usenix.pdf.

[38] The Open Group Base Specifications Issue 7 – dlopen. The IEEE and The Open
Group, 2008. URL: http://pubs.opengroup.org/onlinepubs/9699919799/
functions/dlopen.html.

[39] Jan Vitek and R. Nigel Horspool. “Compact dispatch tables for dynamically typed
object oriented languages.” In: Compiler Construction: 6th International Con-
ference, CC’96 Linköping, Sweden, April 24–26, 1996 Proceedings. Ed. by Tibor
Gyimóthy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 309–325.
ISBN: 9783540499398.

[40] Chris Wright. [PATCH 0/7] x86 paravirtualization infrastructure. Linux Kernel
Mailing List. Oct. 2006. URL: https://lkml.org/lkml/2006/10/28/191
(visited on 10/21/2017).

[41] Chris Wright. [PATCH 2/7] Patch inline replacements for common paravirt operations.
Linux Kernel Mailing List. Oct. 2006. URL: https://lkml.org/lkml/2006/10/
28/196 (visited on 10/21/2017).

62

http://www4.cs.fau.de/Publications/2014/tartler_14_usenix.pdf
http://www4.cs.fau.de/Publications/2014/tartler_14_usenix.pdf
http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlopen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlopen.html
https://lkml.org/lkml/2006/10/28/191
https://lkml.org/lkml/2006/10/28/196
https://lkml.org/lkml/2006/10/28/196

APPENDIX

The following tables list the detailed results of the performed microbenchmarks. The
results are presented and interpreted in Section 6.1.2.

A.1) Intel Core i7-2677M – Benchmark results for PV-Ops

kernel samples (nanoseconds)

SMP
standard 321026 347042 370229 347041 347041
multiversed 276525 277899 277691 277968 277789

UP
standard 446216 402355 443143 403825 403281
multiversed 276555 277829 277898 277828 277969

A.2) Intel Core i7-2677M – Benchmark results for spin-lock

kernel samples (nanoseconds)

SMP
standard 898772 900114 908635 900184 900254
multiversed 900114 898727 900318 906959 904321

UP
standard 921486 927143 885168 909813 910737
multiversed 517976 519829 519829 519759 519759

B.1) Intel Pentium 4 HT 640 – Benchmark results for PV-Ops

kernel samples (nanoseconds)

SMP
standard 3648579 3646414 3648439 3648929 3653188
multiversed 3642083 3642084 3640966 3641176 3641105

UP
standard 3651023 3650046 3650325 3650535 3651372
multiversed 3641315 3641665 3641805 3642433 3641595

63

REFERENCES

B.2) Intel Pentium 4 HT 640 – Benchmark results for spin-lock

kernel samples (nanoseconds)

SMP
standard 3212420 3300210 3304261 3313829 3302515
multiversed 3296020 3228274 3295601 3216960 3296299

UP
standard 2148248 2148039 2146426 2108090 2146362
multiversed 1937817 1937816 1951225 1943823 1930483

C.1) Paravirtualization – Benchmark results for PV-Ops

kernel samples (nanoseconds)

SMP
standard 484269 1800810 584850 562793 1801568
multiversed 1057652 1036568 1036574 1036158 1042299

UP
standard 507132 507566 483935 483993 483936
multiversed 1035863 1034046 1033188 1043253 1041253

C.2) Paravirtualization – Benchmark results for spin-lock

kernel samples (nanoseconds)

SMP
standard 2133068 6289113 2313216 2318218 7589131
multiversed 2085702 2082613 2115923 2080263 2088139

UP
standard 1693594 1712998 1697075 1714852 1718708
multiversed 518377 518367 542788 518384 538559

64

	Abstract
	Kurzfassung
	1 Introduction
	2 Fundamentals
	2.1 Variability in software systems
	2.2 Definition of dynamic variability
	2.3 Common approaches to manage dynamic variability
	2.3.1 Dynamic dispatch in object-oriented languages
	2.3.2 Dynamic linking
	2.3.3 Dynamic control flow modification

	2.4 Dynamic variability in Synthesis
	2.5 Summary

	3 Dynamic variability in the Linux kernel
	3.1 Coarse-granular variability via loadable kernel modules
	3.2 Application-specific solutions
	3.2.1 Run-time patching of instructions based on processor capabilities
	3.2.2 Run-time modification for uniprocessor systems
	3.2.3 Operations for paravirtualized kernels (PV-Ops)

	3.3 Summary

	4 Function Multiverse
	4.1 Motivation and Concept
	4.2 Components
	4.2.1 GNU C Compiler plugin
	4.2.2 Run-time library

	4.3 Compile-time functionality
	4.3.1 Variant generation
	4.3.2 Descriptor construction

	4.4 Run-time functionality
	4.4.1 Initialization of run-time data structures
	4.4.2 Variant switching via binary patching

	4.5 Supporting different architectures and platforms
	4.6 Summary

	5 Multiverse in the Linux kernel
	5.1 Expected benefits
	5.1.1 Maintainability improvements
	5.1.2 Performance improvements

	5.2 Multiverse in kernel space
	5.3 Application of Multiverse in the Linux kernel
	5.3.1 Spin-lock elimination in uniprocessor systems
	5.3.2 Operations for paravirtualized kernels (PV-Ops)

	5.4 Summary

	6 Evaluation
	6.1 Performance comparison via microbenchmarks
	6.1.1 Method
	6.1.2 Results

	6.2 Assessment of code complexity
	6.2.1 Current status of code complexity related to dynamic variability mechanisms
	6.2.2 Improvements by the usage of Multiverse

	6.3 Challenges and future work
	6.4 Summary

	7 Conclusion
	Lists
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

	Appendix

