Automated Tailoring of System Software Stacks

Von der Fakultat fiir Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universitat Hannover

zur Erlangung des akademischen Grades

DOKTOR-INGENIEUR
(abgekiirzt: Dr.-Ing.)

genehmigte Dissertation

von Herrn
Andreas Ziegler, M.Sc.
geboren am 16. Februar 1989
in Augsburg, Deutschland

2023

Referent: Prof. Dr.-Ing. habil. Daniel Lohmann
Korreferent: Prof. Dr.-Ing. Riidiger Kapitza
Tag der Promotion: 3. November 2023

Abstract

In many industrial sectors, device manufacturers are moving away from expensive special-purpose
hardware units and consolidate their systems on commodity hardware. As part of this change,
developers are enabled to run their applications on general-purpose operating systems like Linux,
which already supports thousands of different devices out of the box and can be used in a wide
range of target scenarios. Furthermore, the Linux ecosystem allows them to integrate existing
implementations of standard functionality in the form of shared libraries.

However, as the libraries and the Linux kernel are designed as generic building blocks in order to
support as many applications as possible, they cannot make assumptions about specific use cases for
a single-purpose device. This generality leads to unnecessary overheads in narrowly defined target
scenarios, as unneeded components do not only take up space on the target system but have to be
maintained over the lifetime of the device as well. While the Linux kernel provides a configuration
system to disable unneeded functionality like device drivers, determining the required features from
over 16 000 options is an infeasible task. Even worse, most shared libraries cannot be customized
even though only around 10 percent of their functions are ever used by applications.

In this thesis, I present my approaches for the automated identification and removal of unnecessary
components in all layers of the software stack. As the configuration system is an integral part of
the Linux kernel, we embrace its presence and automatically generate custom-fitted configurations
for observed target scenarios with the help of an extracted variability model. For the much more
diverse realm of shared libraries, with different programming languages, build systems, and a lack
of configurability, I demonstrate a different approach. By identifying individual functions as logically
distinct units, we construct a symbol-level dependency graph across the applications and all their
required libraries. We then remove unneeded code at the binary level and rearrange the remaining
parts to take up minimal space in the binary file by formulating their placement as an optimization
problem. To lower the number of unnecessary updates to unused components in a deployed system,
I lastly present an automated method to determine the impact of software changes on a target
scenario and provide guidance for developers on whether they need to update their systems.

Applying these techniques to different target systems, I demonstrate that we can disable up to
87 percent of configuration options in a DEBIAN Linux kernel, shrink the size of an embedded
OPENWRT kernel by 59 percent, and speed up the boot process of the embedded system by 21 percent.
As part of the shared library tailoring process, we can remove 13 060 functions from all libraries
in OPENWRT and reduce their total size by 31 percent. In the MEMCACHED Docker container, we
identify 381 entirely unneeded shared libraries and shrink the container image size by 82 percent.
An analysis of the development history of two large library projects over the course of more than two
years further shows that between 68 and 82 percent of all changes are not required for an OPENWRT
appliance, reducing the number of patch days by up to 69 percent.

These results demonstrate the broad applicability of our automated methods for both the Linux kernel
and shared libraries to a wide range of scenarios. From embedded systems to server applications,
custom-tailored system software stacks contribute to the reduction of overheads in space and time.

Keywords — debloating, Linux configuration tailoring, static binary analysis, binary rewriting, patch
impact analysis

iii

Kurzfassung

In vielen Industriezweigen bewegen sich Geratehersteller weg von teuren Spezialzweck-Hardware-
einheiten und konsolidieren ihre Systeme auf handelsiiblicher Hardware. Als Teil dieses Wandels
werden Software-Entwickler in die Lage versetzt, ihre Anwendungen auf Allzweck-Betriebssystemen
wie Linux auszufithren, welches bereits von Haus aus tausende Gerite unterstiitzt und in vielen Sze-
narien eingesetzt werden kann. Dariiber hinaus ermoglicht es ihnen das Linux-Umfeld, vorhandene
Implementierungen von Standard-Funktionalitit in Form von Shared Libraries zu integrieren.

Da Shared Libraries und der Linux-Kernel als generische Bausteine konzipiert sind, um moglichst
viele Anwendungen zu unterstiitzen, konnen sie allerdings keine Annahmen iiber spezifische Anwen-
dungsfélle fiir die jeweiligen Geréte treffen. Diese Generalitit fithrt in eng definierten Szenarien zu
unnétigem Mehraufwand, da nicht benétigte Teile nicht nur Speicherplatz auf dem Gerét belegen,
sondern auch iiber die Lebenszeit hinweg gewartet werden miissen. Der Linux-Kernel bietet zwar ein
Konfigurationssystem, um nicht benétigte Funktionen wie Treiber zu deaktivieren, allerdings ist die
Auswabhl der tatsdchlich bendtigten Features aus {iber 16 000 Optionen eine unzumutbare Aufgabe.
Noch schwerer wiegt die Tatsache, dass die meisten Shared Libraries iiberhaupt nicht anpassbar
sind, obwohl nur etwa 10 Prozent ihrer Funktionen jemals von Anwendungen genutzt werden.

In dieser Arbeit stelle ich meine Ansétze zur automatisierten Erkennung und Entfernung unndtiger
Komponenten in allen Schichten des Software-Stacks vor. Da das Konfigurationssystem ein inte-
graler Bestandteil des Linux-Kernels ist, nutzen wir seine Existenz und generieren mit Hilfe eines
extrahierten Variabilititsmodells passgenaue Konfigurationen fiir beobachtete Zielszenarien. Fiir
den weitaus vielféltigeren Bereich der Shared Libraries mit unterschiedlichen Programmiersprachen,
Build-Systemen und oftmals fehlender Konfigurierbarkeit zeigt diese Arbeit einen anderen Weg auf.
Durch die Identifikation einzelner Funktionen als logisch separate Einheiten erstellen wir einen Ab-
héngigkeitsgraphen auf Symbolebene, der sich iiber die Anwendungen und alle benétigten Libraries
erstreckt. Anschliefend kann ungenutzter Code auf Bindrebene entfernt und die verbleibenden Teile
so angeordnet werden, dass sie moglichst wenig Speicherplatz beanspruchen, indem ihre Platzierung
als Optimierungsproblem formuliert wird. Um die Zahl unnétiger Updates nicht verwendeter Kompo-
nenten in bestehenden Systemen zu verringern, stelle ich schlieBlich ein automatisiertes Verfahren
vor, mit dem die Auswirkungen von Softwarednderungen auf ein Szenario ermittelt werden konnen
und Entwickler bei der Entscheidung, ob sie ihre Systeme aktualisieren miissen, angeleitet werden.

Durch die Anwendung dieser Verfahren auf verschiedene Systeme zeige ich, dass bis zu 87 Prozent der
Konfigurationsoptionen in einem DEBIAN Linux-Kernel deaktiviert werden konnen, ein eingebettetes
System auf Basis von OPENWRT um 59 Prozent verkleinert und dessen Startzeit um 21 Prozent gesenkt
werden kann. Durch die Maf3schneiderung der Shared Libraries werden 13 060 Funktionen aus allen
Libraries in OPENWRT entfernt und deren Gesamtgrof3e um 31 Prozent reduziert. Im MEMCACHED
Docker-Container werden 381 ganzlich ungenutzte Libraries identifiziert und das Container-Image
um 82 Prozent verkleinert. Eine Analyse des Entwicklungsverlaufs zweier grof3er Projekte iiber einen
Zeitraum von mehr als zwei Jahren zeigt auRerdem, dass 68 bis 82 Prozent aller Anderungen fiir
ein OPENWRT-System nicht relevant sind, was die Anzahl der Patch-Tage um 69 Prozent reduziert.

Mit diesen Ergebnissen zeige ich die breite Anwendbarkeit der automatisierten Methoden fiir den
Linux-Kernel und Shared Libraries in einer Vielzahl von Szenarien. Von eingebetteten Systemen bis
hin zu Serveranwendungen tragen maf3geschneiderte Systemsoftware-Stacks zu einer Verringerung
des Speicher- und Wartungsaufwands bei.

Schliisselworter — Debloating, Malischneiderung von Linux-Konfigurationen, Statische Bindranalyse,

Umschreiben von Bindrdateien, Auswirkungsanalyse von Softwarepatches v

Danksagungen

Obwohl eine Dissertation letztendlich das Werk einer einzelnen Person ist, so geht man den Weg hin
zu einem solchen Schriftstiick nur in seltenen Momenten allein. All denjenigen, die mich in den
letzten Jahren bei diesem Projekt begleitet haben, mochte ich hier meinen grof3en Dank aussprechen.

Zunéchst gilt mein ganz besonderer Dank meinem Doktorvater Daniel Lohmann. Du hast mir schon
wahrend des Bachelor-Studiums erste Einblicke in die wundersame Welt der Konfigurierbarkeit
und die Komplexitit von Software-Projekten gegeben, und mir damit eine unvergessliche erste
Konferenzreise ermoglicht. In den guten Phasen konnte ich spiter als Mitarbeiter am 14 die Freiheit
und das Vertrauen genieRen, die das wissenschaftliche Arbeiten mit dir so besonders machen, und
in den unvermeidlichen schlechten Phasen konnte ich immer darauf bauen, gemeinsam eine Idee
fiir den néchsten Schritt zu entwickeln oder meine Perspektive gerade geriickt zu bekommen.

Diese ungemein wertvolle Unterstiitzung aus dem Hintergrund durfte ich auch iiber viele Jahre von
Wolfgang Schréder-Preikschat (,,wosch”) erfahren. Du hast es mir einfach gemacht, den Dualismus
Erlangen-Hannover so reibungslos wie moglich zu gestalten, und fandest in den Momenten, in denen
ich das Projekt fast schon aufgeben wollte, die richtigen Worte.

Nattirlich wére der 14 nichts ohne die Mitarbeiter, die ich in den vergangenen Jahren meine Kollegen
und auch Freunde nennen durfte. Angefangen beim , Team Tracewars“ mit Reinhard, Valentin und
Bernhard, mit denen ich viele Tage und Wochen in der Manlobbi und spéter auch gemeinsamen
Biiros verbracht habe — diese Zeit hat uns, glaube ich, riickblickend alle nachhaltig geprédgt und die
eine oder andere grof3e Lebensentscheidung mit auf den Weg gebracht. Mit Christian wurden auch
die abwegigsten Ideen ,,mal am Wochenende“ oder auf Dienstreise im Wohnmobil Realitat, und bei
den alljahrlichen Reisen nach Hannover waren Schlafplatz und Pierogi stets gesichert. Jens und
Christoph verdanke ich nicht nur Wissen iiber die Bedienung von antiken Textverarbeitungs-Tools,
sondern auch den prézisen Blick auf die Tiicken und Fallstricke der Systemprogrammierung. Von
Gabor durfte ich lernen, wie man Seitenkacheltabellen auf dem Bildschirm erkennt, und gemeinsam
mit Tobias kdmpfte ich mich durch miihselige Etappen im Prozess der Seiten-Entstehung. Trotz
grofder rdumlicher Distanz zum SRA habe ich mich doch auch dort immer als Teil des Teams gesehen
- vielen Dank dafiir insbesondere an Bjorn, Florian, Gerion, Jiirgen, Monika, Stefan und Tobias.

Ein grof3er Dank gebiihrt auch den Studierenden, die mich {iber die Jahre in Lehrveranstaltungen
und Abschlussarbeiten in meinem Forschungsgebiet begleitet und frische Impulse fiir die Weiterent-
wicklung meiner Ideen geliefert haben. Dominic, Fabian, Felix, Jona, Jonas, Julian, Kay, Ludwig,
Mazx, Michael, Stefan, Thomas, Tobias und Vanessa — ihr habt tolle Arbeit geleistet!

Meinen Eltern, Wolfgang und Brigitte, mochte ich dafiir danken, dass sie es mir immer erméglicht
haben, meinen eigenen Interessen nachzugehen, meine Neugier stets gefordert und mir Resilienz,
Ausgeglichenheit und eine gesunde Portion Optimismus mit auf den Weg gegeben haben.

Der grolSte Dank jedoch gilt meiner Frau Harriet und meinen beiden Kindern Jonathan und Marlene.
Thr habt mir Riickhalt und Zuversicht gegeben, wenn ich sie gebraucht habe, und mir den Riicken
frei gehalten, damit ich dieses Werk vollenden konnte. Gemeinsam haben wir die turbulenten Jahre
der Pandemie durchgestanden, und eure Begeisterungsfihigkeit, Kreativitat und bedingungslose
Liebe zeigen mir jeden Tag aufs Neue, was im Leben eigentlich wichtig ist.

Erlangen, November 2023

vii

Table of Contents

1 Introduction
1.1 Motivation
1.2 Goalof this Thesis.
1.3 Structure,
1.4 Contributions.

1.5 Typographical Conventions

2 Configuration Tailoring — Building Custom-Fitted Linux Kernels

2.1 Introduction
2.2 StateoftheArt

2.3 KcoONFIG: Explicit Features in the Linux Kernel

2.3.1 KcoNFIG: The Configuration Language of Linux

2.3.2 KsuUILD: The Linux Build System .
2.3.3 The C Preprocessor
2.4 Extracting Variability Information
2.4.1 Extraction from KCONFIG
2.4.2 Extraction from KBUILD
2.4.3 Extraction from the Source Code .
2.4.4 Slicing of Variability Models
2.5 Observing Required Features at Runtime .
2.6 Automated Configuration Generation . . .
2.7 Evaluation
2.7.1 DEBIANLinux
2.7.2 OPENWRTLinux
2.8 Summary and Outlook

3 Tailoring the ELFs - Configuration-less Shrinking of Shared Libraries

3.1 Introduction
3.2 StateoftheArt
3.3 Linking and Loading ELF Shared Libraries

11
12
15
16
17
18
20
20
21
22
23
25
27
29
29
31
34

37
39
42
47

ix

Table of Contents

3.4 Tailoring the ELFS oo e e e e e e
3.4.1 Cross-library Dependency Graphs.
3.4.2 DynamicTracing e
3.4.3 ELFReWriting ittt e e e e e e
3.4.4 Shrinking ELF Files as an Optimization Problem

3.5 Evaluation e e
3.5.1 Tailoring Libraries to Single-Application Targets

3.5.1.1 The VSFTPD FTP SEIVEr ¢ttt i ii e e e

3.5.1.2 The MARIADB database managementsystem

3.5.2 Tailoring Libraries for a Whole Linux System: OPENWRT
3.5.3 Virtual Appliances: The MEMCACHED Docker Container

3.6 Combining Kernel and User Space Tailoring

3.7 Summaryand Outlook

4 Maintainability Aspects of Tailoring — Identifying Required Software Patches

4.1 IntrodUCtiOn i it e e
4.2 Stateof the Art e
4.3 Change Detection During Compilation
4.4 Patch Selection for Tailored Libraries,
4.5 Evaluation e

4.5.1 MusLCStandard Library

4.5.2 OPENSSL Cryptography Libraries
4.6 Summaryand Outlook

5 Conclusion
5.1 Summary e e e e e e e e
5.2 0Outlook e

Lists
GloSSATY . . v o e e e e e e e e e e
Bibliography e
List Of Figures oo oot e e
Listof Tables o oo e
List Of LiStINGS . . o . v v e e i e e e e e e e e e e e e e e
Lebenslauf. e

85
87
89
91
94
96
97
98
100

103
105
107

1

Introduction

1.1 Motivation

1.1 Motivation

In today’s digital world, we are surrounded by microelectronic components. Almost every device
we interact with on a daily basis contains one or multiple computing systems — from the phones
in our pockets, the servers that power the internet, cars with dozens of connected control units,
dishwashers and washing machines down to small devices like light bulbs or even COVID-19 test
kits. In 2021 alone, over 1.15 trillion semiconductor units were shipped by the semiconductor
industry [Sem22]. As manufacturers strive to reduce costs and the time-to-market, especially when
shipping large quantities of identical devices, more and more systems are built from commodity
hardware components instead of custom-designed special-purpose hardware. An additional useful
effect of using standard hardware is the possibility to use already existing software components for
such devices, allowing system designers to employ long-developed and well-tested general-purpose
operating systems and software stacks to build appliances with a narrowly defined target use case.
An example for such a system could be the use of Linux as the base operating system which is
developed and continuously tested by a large open-source community and supports a myriad of
different devices and processor architectures, with one or more applications running on top.

One issue with using software projects with a long development history like Linux is that components
and features are mostly added but only very rarely removed [Aba+09; Kik+17]. At the same time,
a developer working on a specific device with a predefined application environment will only use
very specific features they need for the use case at hand. To that end, developers often draw on
already existing implementations of standard tasks from external libraries or the “base library” of a
programming language (e.g., the C standard library). In the current state of application development,
however, using one feature of an external library means getting all of the library — even if just
a single function is called from the application, all other unused parts will still take up space on
the file system and need to be loaded into working memory during the launch of an application.
Existing research shows that applications in Linux-based systems only utilize around 10 percent of all
functions from shared libraries in typical workloads [Qua+17]. Even from the C standard library, the
core implementation of features built into the C programming language, applications mostly require
less than 20 percent of the available functions to execute their workload [QPY18] even though this
library is a dependency for 90 percent of all applications in an entire Linux distribution [Aba+09],
Similar observations also hold for other programming languages like Rust where 60 percent of all
functions in dependencies are never called [Hej+22] or the Java application environment with large
bloated dependency trees [Sot+21] and only 2 percent of existing methods actually being called in
the majority of libraries [Wan+20].

Before we can design strategies to counter the overhead introduced by the large amounts of unneeded
code, we first have to develop an understanding of the structure of general-purpose software stacks
and the possible representation of removable features in the different layers of the stack. Figure 1.1
shows the typical structure of a Linux-based software stack.

As the lowest layer above the hardware components, we usually have an operating system which
provides interfaces for operations like communicating with internal and external devices, manage-
ment of system resources and other low-level tasks. While custom-built hardware might require
hand-crafted implementations of the operating system, the shift towards commodity hardware
components allows system architects to deploy general-purpose operating systems like the Linux
kernel without having to implement all required abstractions over and over for every new device
they build. For ease of use, the Linux kernel is often provided as part of a distribution which targets
a large audience — it should be as easy as possible to install a Linux kernel from a distribution on a

1.1 Motivation

target device, no matter which specific device with which specific components and external devices
we as a user might have. Hence, a distributor will naturally try to cover as many different scenarios
and hardware configurations as possible when building the Linux kernel they provide. In the case of
Linux, this directly translates to the configuration of the kernel itself: Linux defines all of its features
as configuration options which enable or disable specific parts of the functionality implemented in the
code base. In order to allow a built Linux kernel to run on as many devices as possible, a distributor
will most likely choose to enable as many drivers and optional features as possible to allow their
product to run out-of-the-box no matter which hardware it will be deployed on. However, when we
build a specific device for a specific use case, we will know the exact hardware our scenario will
entail — we do not need drivers for hundreds of different input or output devices or dozens of file
systems when we only have one network card and one file system on our device, for example. While
the Linux kernel comes with a rich built-in configuration system which allows end users to select or
de-select individual configuration options before the binary kernel is built, it can be a monumental
task to manually derive a target configuration: In current releases, we have to choose from over
16 000 configuration options which often have additional dependency requirements across different
subsystems. This overwhelming number combined with the fact that a distribution kernel often
“just works” then leads to a situation where system architects simply put up with the presence of
unneeded features in the final product as the manual process of going through all the configuration
options to create a custom-tailored configuration file would just be too tedious and error-prone.

On top of the operating system, we find the application layer or user space where the user-facing
functionality of the software stack is implemented. While the actual application at the very top of
the stack — for example, a database system — implements a lot of the overarching “business logic”
of the system as part of the main binary file, an application developer will typically rely heavily on
already existing implementations of standard tasks or language features to build their product. In

| mariadb | | bash | | systemd |

User Space
| libcrypto.so l&i libpthread.so |
libc.so <—| libstdc++4-.so

vmlinux

Operating System
|Cxt4,k0| |el()()()o.k0| |i915,k0|

| Hardware |

Figure 1.1 - Illustration of a layered system software stack. At the bottom layer above the
hardware, we see the operating system, consisting of a core kernel (vmlinux in the case
of Linux) and driver components shipped as loadable kernel modules (LKMs). On top of the
operating system, we have the user space, consisting of application binaries (mariadb, bash,
systemd) at the top and various shared libraries used by the applications and other shared
libraries.

1.1 Motivation

current standard practice, these features are bundled into shared libraries which are distributed
as part of a Linux installation and loaded by applications as required. Large examples for such
libraries are the base libraries for programming languages like the C and C++ standard libraries
(libc and libstdc++) which provide all features required by the respective language standard
definitions or libraries which offer standard implementations of common cryptographic operations
(e.g., libcrypto from the OPENSSL project). This practice fundamentally suffers from the same
problem as the kernel — in order to support as many applications as possible, standard libraries
come with a lot of generic functionality (e.g., all language features of the C/C++ programming
languages or all cryptographic operations any user might need). From the perspective of a system
architect for a specific software stack, we might only need a fraction of the many features we could
possibly use but in contrast to the Linux kernel we might not even have a configuration system or
another notion of features to further specialize or tailor the shared libraries for our specific use case:
if we need one function implemented in a library, we will always get them all.

In order to get a sense of scale for the amount of functionality present in such a software stack, we
can take a look at a concrete example. A common deployment scenario for Linux-based software
stacks are database servers, with one of the most popular database application being the MARIADB
database management system which drives many high-volume internet services including Wikipedia,
WordPress and Google [Mar22]. As the code comprising the main MARIADB executable is written in
C and C++, it requires both large base language 1ibc and libstdc++ libraries — but that’s not all:
In order to provide all its features including encrypted communication, compression and parsing of
regular expressions, MARIADB depends on a total of 19 shared libraries which need to be loaded for
runtime. Overall, these shared libraries contain over 21 000 functions — but only 3699 of those
functions are actually reachable during the execution of the MARIADB server binary (as we will see
in Section 3.5.1). MARIADB is often deployed on top of a standard Linux distribution like DEBIAN
which in its default configuration unconditionally enables over 2 000 configuration options and
ships with nearly 3 400 drivers provided as loadable kernel modules (LKMs).

However, knowing the actual deployment scenario and underlying hardware requirements, we do
not need all these different drivers for all sorts of exotic hardware components when there is exactly
one network card and only one certain file system in use on the target system. In fact, using a
custom-tailored configuration we can reduce the number of LKMs by 98 percent as we will show in
Chapter 2, with the target system still running the same MARIADB service as the target application.

This observation, of course, is not restricted to MARIADB. In general, every system software stack
has a set of applications at the top which implement the user-facing functionality and the underlying
supporting software infrastructure of the whole system (e.g., initialization, command line access,
user space daemons). These applications are built upon existing code and runtime support provided
by shared libraries which define a possibly large set of generic API functions as interfaces for their own
capabilities, allowing them to be employed in a wide variety of applications. As shared libraries often
offer high-level abstractions for complex problems, they will use other lower-level shared libraries as
building blocks for their own implementations as well, creating a complex dependency tree starting
from the applications. To communicate with the underlying hardware (e.g., for writing a file to
storage), low-level shared libraries like the C standard library will make system calls to the operating
system kernel. The system call interfaces are usually implemented in a generic way which liberates
the upper layers of the software stack from requiring any knowledge the actual specific hardware
the system is running on. In turn, however, this generality at the user space boundary means that
the kernel itself has to provide implementations for all possible target hardware combinations if as
many users as possible should be able to easily get their diverse systems up and running.

1.1 Motivation

With this layered structure in mind, we can see that a lot of the existing functionality across the
different parts of the system will always remain unused, particularly in devices with a narrowly
defined use case and a fixed set of applications installed. The applications will only really use those
functions from the shared library dependency tree which are required to implement their specific
functionality — all other functions will still be part of the libraries but are effectively “dead code”
from the perspective of an application. Still, these unused functions make up the majority of all
code in the application’s memory image [QPY18; Hej+22]. Furthermore, applications and their
libraries typically only need to call a small subset of all system calls offered by the operating system,
leaving more than 60 percent of system calls unused when running a full Linux user space [Cha+05].
Handling the requests from applications, the operating system kernel will again only call those parts
of code which are required by the specific hardware configuration employed in the target machine,
for example by using a specific driver for the particular model of the installed network card or the
driver for the file system type of the integrated storage hardware. With 21 000 functions in shared
libraries for the single MARIADB application alone and over 16 000 possible configuration options
for features in the Linux kernel, a manual identification and selection of the actually required parts
in the different layers of the software stack is either infeasible or not even possible at all.

1.2 Goal of this Thesis

Clearly, we need automated approaches to trim down the amount of unnecessary code and create a
more custom-fitted software stack for given deployment scenarios. While many researchers have
worked on debloating approaches for software in recent years, these approaches are often limited
to single applications (e.g., [Alt+20; Ahm+21]), a single layer of the stack only (e.g., [QPY18;
Aga+20]) or require the use of modified compilers and application loaders to function properly
(e.g., [QPY18]).

In this thesis, I will show how we can implement automated tailoring approaches in the different
layers of the system software stack, harnessing the available characteristics of the respective software
projects and maintaining compatibility with existing infrastructure in deployed systems.

In the case of the Linux kernel, the availability of a configuration system already provides us with an
integrated structure of components, defined and maintained by individual developers, from which
we can specifically choose the required features for the target system. In the first part, [will therefore
demonstrate how we can use the internal representation and implementation of configurability
to build a formal model of the configurable components and automatically derive a selection of
required configuration options for an observed scenario.

While this process works well for a monolithic project like the Linux kernel, many applications and
the independently developed library components of system software stacks are not designed to
be configurable on a coarse feature-level granularity at all. Instead, the identification of required
functionality is lowered to the level of individual symbols or functions which are referenced and
called from the application binaries. However, the mechanism used in modern Linux systems to
import external functions from libraries is not designed to load single functions but instead can only
load entire files with all their entailed functionality, even if just a single function is actually needed.
In the second part of this thesis, I will therefore show our automated approach to determine the set
of required functions in shared libraries in a given application environment and remove unneeded
functionality on a symbol-level granularity without any modification to the original applications or
the loader infrastructure while keeping the original target use case intact.

1.2 Goal of this Thesis

As software is constantly evolving over time, with the introduction of new features and the need to
release fixes to bugs in existing code, keeping deployed applications and libraries up to date poses a
major source of effort for the developers and maintainers of software stacks. With the low overall
usage numbers of functions in shared libraries reported in literature (e.g., [QPY18]), however, we
can expect that not all updates are actually required in a specific deployment setting, as they might
only target functions which cannot be reached from the applications at all. In order to automatically
select changes that potentially affect a given software stack, the third part of this thesis will cover
how we can use a semantic fingerprinting technique to determine the set of changed functions
from a commit in the development history, and combine the results of this impact analysis with the
symbol-level usage data to decide if a change needs to be integrated into the target system.

Showing the wide range of possible applications for these methods, I will evaluate my solutions on
a range of different software stacks and deployment scenarios, quantify how the custom-tailoring
approaches lead to large reductions in terms of code and required storage space, and present a
long-term evaluation of the number of required software updates over the course of more than two
years in two large open-source projects.

1.3 Structure

As this thesis aims to employ different mechanisms best suited for the individual properties of the
respective layers in the software stack — that is, using the configuration system in the Linux kernel
which is designed from the ground up to be configurable, and providing an alternative solution for
the less configurable world of shared libraries — I will cover these layers separately in the following.

Starting from the bottom of the software stack, in Chapter 2 I will present how configurable features
are represented in the KCONFIG configuration language in the Linux kernel, and how we can leverage
this structure to build a formal model of the dependencies between all configuration options.
Combining this model with tracing data collected during the execution of a target use case, we show
that we can automatically derive a reduced configuration of the Linux kernel which matches the
deployment scenario of the system more closely.

Moving up from the operating system into the user space, I will focus on the more diverse landscape
of shared libraries and how they are employed by user space applications in Chapter 3. As shared
libraries often do not have any possibility for configuration at all, I will describe how we can instead
use the symbol-level dependency information present in the binary files to build a cross-library
dependency graph of all required functions from target applications, and present our method to
rewrite the libraries, removing all unneeded functions and shrinking the files to a minimal size.

In Chapter 4, I will then demonstrate that the benefits of our tailoring approach do not only manifest
at a single point in time, but also extend into the lifetime of the software stack. I will describe how
the symbol-level knowledge about needed and unneeded code can be combined with an analysis of
individual changes in the development history. Using a compiler-based Abstract Syntax Tree (AST)
fingerprinting method, we can determine if a particular change to the source code of the shared
library affects only functions which are not required by the target scenario, in which case the change
is irrelevant for our specific application and does not need to be shipped to the target device, lowering
the long-term maintenance effort.

Chapter 5 will conclude the thesis and provide an outlook on what future directions of automatically
building custom-fitted appliances could be worth exploring.

1.4 Contributions

1.4 Contributions

Some of the results presented in this thesis have already been published as peer-reviewed papers at
workshops, conferences and in a journal.

The first implementation of the kernel tailoring process described in Chapter 2 was published at
HotDep 2012 [>Tar+12] and extended with a security model for NDSS 2013 [>Kur+13]. In a follow-
up work published at GPCE 2014, my colleagues and I improved the data collection technique which
is required to gain insight into the executed functionality while running the Linux kernel [>RHL14].

The initial version of our process to remove functions from shared library and shrink them to a smaller
file size in Chapter 3 was published in ACM Transactions on Computing Systems and presented at
EMSOFT 2019 [>Zie+19].

Lastly, the cHASH mechanism which allows us to generate a semantic fingerprint for functions during
the compilation process was published at USENIX ATC 2017 [>Die+17].

1.5 Typographical Conventions

Citations where I was the main author or one of the co-authors are marked with an open triangle
(e.g., [>Zie+19]). Newly introduced terms are highlighted in italic. Tools with proper names are set
in small capitals (e.g., MARIADB). File names, functions and program variables are set in a mono-
space font (function(), variable). Algorithms, figures and results from previously published
articles are denoted at the respective places with a reference to the original publication.

Configuration Tailoring

Building Custom-Fitted Linux Kernels

2 Configuration Tailoring — Building Custom-Fitted Linux Kernels

Related Publications

[>Kur+13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Roth-

berg, Andreas Ruprecht, Wolfgang Schroder-Preikschat, Daniel Lohmann, and Riidiger
Kapitza. “Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring.” In:
Proceedings of the 20th Network and Distributed Systems Security Symposium (NDSS ’13)
(San Diego, CA, USA). The Internet Society, 2013. URL: https://www.ndss- symposium.
org/ndss2013/attack-surface-metrics-and-automated- compile-time-os-kernel-
tailoring.

[>RHL14] Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. “Automatic Feature Selec-

tion in Large-Scale System-Software Product Lines.” In: Proceedings of the 13th International
Conference on Generative Programming and Component Engineering (GPCE ’14) (Vasteras,
Sweden). Ed. by Matthew Flatt. New York, NY, USA: ACM Press, Sept. 2014, pp. 39-48. ISBN:
978-1-4503-3161-6. DOI: 10.1145/2658761.2658767.

[>Tar+12] Reinhard Tartler, Anil Kurmus, Bernard Heinloth, Valentin Rothberg, Andreas Ruprecht,

10

Daniela Doreanu, Riidiger Kapitza, Wolfgang Schroder-Preikschat, and Daniel Lohmann.
“Automatic OS Kernel TCB Reduction by Leveraging Compile-Time Configurability.” In:
Proceedings of the 8th International Workshop on Hot Topics in System Dependability (HotDep
’12) (Los Angeles, CA, USA). Berkeley, CA, USA: USENIX Association, 2012, pp. 1-6. URL:
https://www.usenix.org/system/files/conference/hotdepl2/hotdepl2- finalll.
pdf.

https://www.ndss-symposium.org/ndss2013/attack-surface-metrics-and-automated-compile-time-os-kernel-tailoring
https://www.ndss-symposium.org/ndss2013/attack-surface-metrics-and-automated-compile-time-os-kernel-tailoring
https://www.ndss-symposium.org/ndss2013/attack-surface-metrics-and-automated-compile-time-os-kernel-tailoring
https://doi.org/10.1145/2658761.2658767
https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final11.pdf
https://www.usenix.org/system/files/conference/hotdep12/hotdep12-final11.pdf

2.1 Introduction

2.1 Introduction

In this chapter, I will present how we can use the presence of an explicit configuration system
integrated into a software project to automatically derive a minimized configuration for an observed
use case. Without loss of generality, I will focus on the Linux kernel for the description and evaluation
of our method, as it laid out the original implementation of the KCONFIG configuration language
which has since been integrated in other system software projects such as BUSYBOX or COREBOOT as
well. Additionally, as Linux is designed and specifically developed to support as many devices and
processor architectures as possible, we can demonstrate that this flexibility also gives us a lot of
room for automated optimization for a known target platform.

The inclusion of hundreds of device drivers and 24 different processor architectures (as of version
v4.19) into a single source code repository inherently requires mechanisms to handle the selection
of components which are required for users who wish to deploy Linux on their concrete system.
As more and more devices are released every year — and support for older devices should be kept
as long as the devices in question are used —, the number of configuration options grows steadily.
Figure 2.1 shows the number of options defined in KCONFIG over the last 89 revisions, spanning over
17 years of development history. With over 16 000 configuration options to choose from as of version
v4.19, selecting the right options for a use case manually has become a hard and time-consuming
task, requiring detailed knowledge about the implications of selecting or de-selecting options from
their textual description.

Furthermore, as the use and deployment of Linux should be as easy as possible for hardware in the
field, and building an entire software stack from scratch takes even more resources to accomplish,
most system builders rely on existing distributions which handle the various intricacies of setting
up the Linux kernel and a corresponding user space environment for applications on top. However,
from the perspective of a distributor, selecting the right configuration options becomes a task of
ensuring that as many customers as possible can readily use their product. Hence, most distributions

(7]

§ 20000

)

Q.

o

S 15000

et

©

>

210000

C

o

(@]

‘S 5000

5]

£ “

é 0

O T T T S VAR SN S S <SR VRN S S SRR
o o ¥V P g oD 4,,}.” R \\b} AQ Ry @_«,
RO R (R (4

Linux version

Figure 2.1 — The number of configuration options in the Linux kernel over the course of 89
revisions, ranging from v2.6.12 in 2005 to the release of version v5.18 in 2022.

11

2.1 Introduction

tend to favor a one-size-fits-all approach, enabling as many configuration options as possible and
providing drivers for most devices which could ever be used with their distribution.

While the distributions mostly make it easy to rebuild a Linux kernel with the configuration they
used, minimizing or adapting these large configurations manually in the face of over 16 000 options
to choose from is a non-trivial task. Consequently, we need an automated way to detect which
functionality is actually required in a running Linux kernel, and to map these observations back to
configuration options. As the configuration system does not only provide many configuration options
but also allows them to interact through dependencies between them, through the integration into
the build system and their pervasiveness in the source code through the use of C preprocessor
macros, dealing with the configuration system in an automated fashion has lead to many discoveries
of inconsistencies or bugs in the past [Lie+10; Tar13; Sin13; Tar+14; ABW14]. Their solutions
and developed tools to automatically analyze configurability in large software systems build the
foundations of our work. We incorporate their findings about the efficient construction of a model
which combines all aspects of configurability across their different layers of expression and allow
the integration of domain expertise and more fine-grained analyses [Kuo+20a] into our approach.

After discussing related work in Section 2.2, I will present the implementation of the configuration
system and the use of configuration options in all layers of the Linux kernel in Section 2.3. Going
from the concrete implementation of KCONFIG to reasoning about configurability in an automated
way, Section 2.4 will cover the various mechanisms of extracting knowledge about the configurability
in KCONFIG, the build system, and the C source code, combining them into an integrated variability
model which my approach builds upon. In Section 2.5, I will show how the integrated tracing
infrastructure of the Linux kernel can be leveraged to efficiently observe which functionality is
exercised on the target system. Section 2.6 then describes the full approach of generating a small,
target-specific Linux kernel configuration by using the variability model and combining it with the
execution traces. We evaluate the tailoring method in Section 2.7, and show that we can automatically
reduce the number of enabled configuration options by up to 87 percent, which has a positive impact
on both the final kernel image size and the boot time.

2.2 State of the Art

Working with large operating systems as the base layer of a software stack has always attracted
researchers looking for improvements or new ideas to reduce the various types of overhead imposed
on the hardware below. Before I go into more detail how the Linux kernel uses its configuration
system and how our approach embraces this structure for an automated generation of a target
configuration, I want to highlight how different earlier works have approached the customization of
operating systems to their deployment scenario.

In an effort to reduce code size overhead when deploying Linux on embedded platforms, Chanet et al.
[Cha+05] construct an augmented whole-program control-flow graph to model data and control-flow
dependencies in the kernel code. Using this reconstructed knowledge about the whole kernel, they
demonstrate that they can use binary rewriting techniques applied at link time to reduce the code
size of Linux when it is used in embedded systems with a known run-time environment. Examples
include the removal of individual unused system calls by eliminating their handlers from the graph,
the specialization of the remaining system calls for known, constant parameters, or the propagation
of fixed boot-time parameters. On their evaluated systems, they achieve a total reduction of 13 to
16 percent in terms of image size while maintaining nearly the original performance.

12

2.2 State of the Art

In their follow-up work [Cha+07], they combine their link-time rewriting approach with compression
of frozen parts of the remaining code which are rarely or never executed as established by prior
code coverage analysis. The original code is then replaced by a decompression routine which can
restore the original code from the compressed representation if it is actually executed in the target
scenario. In their target scenario — running their test systems as embedded web servers — more
than 50 percent of the remaining code was identified as frozen and could be compressed. With
this addition, their image size results improve to a reduction of 24 to 30 percent with only small
detrimental effects on performance when all optimizations are enabled.

As the decompression of code during run-time increases the amount of main memory required in
the worst case (when all frozen code is actually executed, the space for the original implementation
is needed plus the newly added decompression code), Chanet et al. [Cha+09] propose an approach
to swap cold code into main memory only on demand. Based on profiling information, cold code is
separated into parts which can be stored in flash memory and only mapped into memory through a
modified page-fault handler when the kernel tries to execute it. Their results show that the static
kernel memory footprint can be reduced by more than 54 percent on a 32-bit x86 platform when
running a multimedia benchmarking suite.

He et al. [He+07] use an approach called “approximate decompilation” to decompile the Linux
kernel binary image into corresponding C code. This technique allows them to employ advanced,
source-code pointer analysis methods to accurately determine the targets of indirect function calls
in the kernel, as well as to integrate hand-written assembly code into the analysis. Starting from
a manually configured minimal kernel, they then conduct a reachability analysis tailored to the
peculiarities of operating system code. Through the use of a binary rewriting system for unreachable
and duplicate code elimination, they achieve a code-size reduction of up to 24 percent for an
embedded benchmarking suite.

Lee et al. [Lee+04] build a call graph which includes the application, libraries and the Linux kernel
from their source code. Starting from the main () function of the application and taking exception
and interrupt handlers into account, they identify unused code as the set of nodes which cannot be
reached in the integrated call graph. This leads to a code size reduction of 17 percent for a CD player
application built on top of a Linux v1.2.3 kernel. Unfortunately, their description of the process does
not discuss the many challenges of accurately identifying connections between required code parts
and does not go into the details of the removal process.

Bertran et al. [Ber+06] provide a more detailed description of a similar approach. In their work, they
propose the construction of a global control-flow graph (GCFG) to enable a system-wide elimination
of dead code. They extract the individual control-flow graphs from the applications, their shared
libraries and the operating system and connect them based on the semantics how control can move
from one component to the other (i.e., function calls from applications to libraries or system calls
into the kernel). Using a binary rewriting tool, they remove over 69 percent of system calls from the
Linux kernel when running on a wireless access point, cutting the size of the overall system in half.

Hu and Dolan-Gavitt [HD22] explore the interrupt handling code of embedded firmware to disable
unused or undesired hardware features through binary rewriting. Through the use of static analysis,
instrumentation and fuzzing, they automatically identify connections between hardware features
and their interrupts and overwrite the handlers of unneeded handlers with minimal stubs which
immediately return. Their evaluation targets a broad range of architectures and base operating
systems — in the case of Linux, they demonstrate that their approach can accurately identify and

13

2.2 State of the Art

disable all but two interrupt handlers, and that the removal of the Bluetooth interrupt handler could
prevent 13 different exploitation methods for a Steam Link device.

The KASR system by Zhang et al. [Zha+18] separates used and unused parts of the kernel code as
determined in a training phase and uses a hypervisor to selectively enable or disable the corresponding
pages during runtime. For a range of different use cases, they achieve a reduction of up to 66 percent
in the number of enabled code pages in the Linux kernel while introducing only negligible overhead
of under 1 percent for an HTTP server and network file system operations.

Kurmus, Dechand, and Kapitza [KDK14] enforce application-specific profiles to restrict the control
flow inside the kernel for given applications. After learning the required code paths from a training
phase, they insert instrumentation into those functions which were determined unneeded to detect
violations of the control flow policy for the running application. Their results show that the number
of kernel functions visible to an application can be reduced by up to 76 percent with very low run
time overhead during the enforcement phase.

While the aforementioned methods specialize the Linux kernel or operating systems in general, they
do not make use of the configuration system but rather focus on binary or link-time rewriting to
implement their strategies. In the following, I will highlight some works which take the potentials of
using the integrated configuration system into account.

Manco et al. [Man+17] describe their method for the automated reduction of the image size and
memory footprint of Linux-based virtual machines. Starting from a minimal tinyconfig configura-
tion, their system tries to automatically disable as many provided configuration options as possible
while keeping a user-specified test case functioning. With these heuristics, they report that the
generated Linux images are half the size of a typical DEBIAN Linux kernel which also leads to a much
lower memory usage when many virtual machines are deployed on the same host system.

In their work to bridge the gap between the generic Linux kernel and application-specific unikernels
like HERMITUX [Oli+19], Kuo et al. [Kuo+20b] describe Lupine Linux which allows to use the
standard Linux kernel to achieve the performance benefits of unikernels. In order to specialize
the Linux kernel as much as possible, they start with a small, provided configuration targeting the
Firecracker microVM [AWS22] and manually disable options related to multiprocessing or power
saving capabilities. Furthermore, they identify and categorize configuration options which are only
required for certain applications but not for others. As a result, the minimal base configuration only
contains 283 options with a union of 19 additional options required to run the 20 most popular
applications on Docker Hub [Doc22a], leading to a reduction in image size of up to 73 percent
compared to the base configuration and carrying significant boot-time and memory savings.

Kuo et al. [Kuo+20a] discuss the limitations of previous kernel debloating techniques with regard
to completeness and iteration speed for new applications. As a solution, they use instruction-level
tracing features integrated into the QEMU emulator to capture all instructions executed in the
target virtual machine. Through a separation of sets of observed required configuration options into
baselets (required for the deployment scenario, i.e. hardware) and applets (required for specific
applications), their COZART system enables the composition of debloated configurations for multiple
applications and the base system. Overall, their approach reduces the size of the tailored kernel by
over 83 percent for a set of six popular open-source server applications.

Acher et al. [Ach+22] conduct a large-scale study to predict the effect of configuration options on
the binary size of the resulting Linux kernel image. By building over 95 000 random configurations
and applying different machine-learning algorithms to the combination of the underlying configu-
ration files and the resulting binary size, they show that they can automatically determine those

14

2.2 State of the Art

configuration options with the highest impact and predict the resulting size of the vmlinux file with
high accuracy. An interesting insight of their study is the observation that the documentation of
most highly influential configuration options is incomplete with regard to their effect on binary size.

In a similar study, Térnava et al. [Tér+22] analyze the impact of compile-time configuration options
on the binary size of four large user space applications with up to 127 configurable options. Through
statistical learning, they establish that a change from the default configuration decreases the size
of the application binary in 61 percent of the cases. Furthermore, developers can use the learned
model as guidance during the compile-time configuration process.

Alharthi et al. [Alh+18] present a study of existing real-world configurations from embedded, mobile
and desktop systems. By matching vulnerability fixes to related configuration options, they establish
that 89 percent of known vulnerabilities (CVEs) in the Linux kernel can in theory be disabled by
configuration options. Through manual debloating of a web server running on an Ubuntu system,
they were able to disable 86.3 percent of the configuration options from the default configuration —
corresponding to up to 74 percent of vulnerabilities — while maintaining the target functionality.

Besides using a smaller code or image size as the goal for optimization, some works also focus on
providing specialized code for higher performance in common-case execution.

As an example, Pu et al. [Pu+95] demonstrate that the incremental specialization of system calls
depending on their parameter values can lead to speed-ups by a factor of 3 while still providing
fallback mechanisms for the uncommon case. In their work, the specialization has to be carried out
manually and requires deep internal knowledge about the possible optimizations of the target system
call. In a similar work, McNamee et al. [McN+01] measure comparable speed-ups for statically and
dynamically specialized versions of packet filters and remote procedure calls.

Perianayagam et al. [Per+06] analyze the applications and trace the execution of system calls and
their parameters to identify their frequencies. They automatically generate specialized versions
for frequently invoked system calls with constant parameters and perform inlining and constant
propagation to streamline the code. Lastly, the applications are rewritten to use the new versions of
the system calls, resulting in a performance improvement of up to 5 percent for some system calls.

Heinloth et al. [Hei+19] present COCOON, a system which enables target-specific optimizations in
the Linux kernel by shipping the kernel as intermediate code, and compiling and optimizing the
kernel on the first boot when precise information about the actual underlying hardware is present.
The potential for more targeted optimizations in the compiler results in a slight increase in overall
performance in a range of microbenchmarks.

2.3 KconNFIG: Explicit Features in the Linux Kernel

In this section, I will describe how the KCONFIG configuration system implements features in the
Linux kernel and how they are employed throughout the layers of building a Linux kernel image.

This will cover the configuration system itself where the features are initially defined and where
dependencies between them are modelled. Additionally, the build system is heavily involved as
configuration options drive the selection of entire files to be included as part of the final build
product. Lastly, the most fine-grained possibility for conditional selection of code is found inside the
respective source files, where the configuration options are used in C preprocessor #ifdef macros
to either include or exclude ranges, lines or even just parts of statements in the source code files.

15

2.3 KCONFIG: Explicit Features in the Linux Kernel

2.3.1 KconNFiG: The Configuration Language of Linux

The structure of the Linux kernel source code is highly modular. While every supported architecture
comes with some integral parts which need to be present for every working Linux kernel (e.g., the
boot and initialization code for the processor), most other aspects of the kernel, such as drivers for
specific devices or the support for various runtime features, are built as individual components. In a
sense, these explicitly defined parts are the compositional elements from which a complete Linux
kernel image can be formed. As the Linux kernel is developed by hundreds of individual contributors,
each working in their own area of expertise, an overarching structure is required to manage how
any particular component fits into the Linux kernel as a whole.

At a first glance, this is achieved by the arrangement of the components in the directory structure
of the source code: Drivers for certain classes of devices and features, such as graphics cards,
network protocols or file system types reside in common subdirectories of the main kernel directory,
such as drivers/, net/ or fs/, with additional subdirectories for closely related drivers of feature
classes (e.g., drivers/gpu for graphics cards). However, while this structure gives us a separation
of components, it does not enable us to include or exclude features or entire feature classes from
the final Linux kernel on its own. In order to enable the selection of a specific driver or component
for a build of the Linux kernel, their developer additionally defines a configuration option which
is presented to the user running the configuration process who can then decide if their use case
requires a given option.

Listing 2.1 Definition of the EXT4_FS_POSIX_ACL configuration option in KCONFIG, excerpt from
fs/ext4/Kconfig in Linux v4.19.

77 config EXT4_FS POSIX ACL

78 bool "Ext4 POSIX Access Control Lists"
79 depends on EXT4_FS

80 select FS_POSIX ACL

81 help
82 POSIX ACCESS Control Lists (ACLs) support permissions for users and
83 groups beyond the owner/group/world scheme.

All configuration options for the Linux kernel are defined inside KCONFIG files, written in the KCONFIG
language [Ker22b]. The KCONFIG files are located inside the directory tree which also contains the
source code, and follow the same hierarchical structure.

Listing 2.1 shows the definition of the EXT4_FS_POSIX_ACL option.

The definition of regular configuration options always starts with the keyword config, followed by
the identifier for the option which is used to refer to the setting of this option across the configuration
system, the build system and the source code. Every configuration option has a type, in our case
bool, meaning that the configuration option can either be turned on or off. Other possible types are
tristate, in which case the configuration option can also be enabled as a LKM, numeric values as
int or hex and constant string values using string.

Following the type is a short description of the configuration option, the prompt which is the text
displayed to the user during the configuration process. Note that omitting the prompt is also allowed,
making the symbol invisible to the active configuration process but allowing an internal connection
between options through the use of regular and reverse dependencies (see below).

Configuration options can also have a default value which defaults to 'n’ (i.e., off) if omitted.

16

2.3 KCONFIG: Explicit Features in the Linux Kernel

In many cases, features in the kernel can only be used if some other features are also enabled, for
example for providing a common subsystem such as support for interface bus systems or certain
hardware features. These dependencies to the values of other configuration options can be mod-
elled in KCONFIG by using the depends on keyword. If the listed dependencies are not met, the
configuration system does not show an option to the user. In our example, the EXT4_FS_POSIX_ACL
option can only be selected if the EXT4_FS option has been selected earlier as it is an optional part
of the implementation of the ext4 file system. Dependencies can also get more complex and involve
logical conjunction through the use of '&&’ (e.g., CONFIG_A && CONFIG_B), logical disjunctions by
using ' | | ', nesting through parentheses as well as negation and numerical comparisons for options
of int or hex type.

The select keyword marks a “reverse dependency”. This is used to force the setting of another
configuration option if the current option is selected. Here, enabling EXT4_FS_POSIX_ACL will
unconditionally enable the FS_POSIX_ACL option which is defined at another place in the kernel.
The kernel developers themselves note that “select should be used with care” [Ker22b] as setting an
option through select ignores possible dependencies of the target symbol, in turn leading to invalid
configurations. Forcing the option FS_POSIX_ACL to be enabled in our example is fine, as the target
option does not have any dependencies and no prompt.

Last, the help keyword marks the beginning of a more detailed description of the configuration
option which the user can read if they are unsure about the functionality provided by the symbol
from the short prompt alone.

2.3.2 KsuiLD: The Linux Build System

As described in the previous section, developers of Linux kernel features need to add their specific
component by defining a configuration option, allowing the selection or de-selection of their feature
in the configuration system, next to the implementation of the feature in the source code. Additionally,
the configuration options are also used to guide the process of compiling the final Linux kernel
image through the build system. The build system integrated into the Linux kernel source tree is
called KBUILD. As the underlying driver of the building process, it employs the GNU MAKE engine
but creates its own syntax on top of it [Ker22c] which I will briefly describe in this section.

Listing 2.2 Use of the CONFIG_EXT4_FS_POSIX_ACL configuration option in the build system, excerpt
from fs/ext4/Makefile in Linux v4.19.

6 0bj-$(CONFIG_EXT4_FS) += ext4.o
7

s extd-y := balloc.o bitmap.o block validity.o dir.o ext4_jbd2.o extents.o \
9 extents_status.o file.o fsmap.o fsync.o hash.o ialloc.o \

10 indirect.o inline.o inode.o ioctl.o mballoc.o migrate.o \

11 mmp.o move_extent.o namei.o page-io.o readpage.o resize.o \

12 super.o symlink.o sysfs.o xattr.o xattr_trusted.o xattr_user.o

13
14 ext4-$(CONFIG_EXT4_FS_POSIX_ACL) += acl.o
15 ext4-$(CONFIG_EXT4_FS_SECURITY) += xattr_security.o

Similar to KCONFIG, KBUILD is organized in a hierarchical structure, following the separation of code
into multiple subdirectories inside the Linux repository. A KBUILD file always handles those files

17

2.3 KCONFIG: Explicit Features in the Linux Kernel

which are in the same directory as the file itself, and delegates the processing of subdirectories to
KBUILD files in these directories.

Generally, KBUILD collects the files which should be built in lists of object files. All code which should
compiled as part of the kernel image is added to the obj -y list while all LKMs are collected in the
obj-m list as they require different handling later during the build process and the generation of the
final build products. If a directory is added to the obj -y list, KBUILD adds this directory to the list of
directories which need to be processed and searches for a KBUILD file inside it.

While the obj - part of the list name is fixed, selecting the list into which an object file should be
placed can be steered by using the selected values of configuration options. The central configuration
file, .config, is generated in Makefile syntax and defines variables with their respective names to vy,
n, and m for LKMs. In the top-level Makefile, KBUILD reads the .config file and makes these values
available to the rest of the building process.

In Listing 2.2, we see that the ext4.o object file is conditionally included into the build process
depending on the selection of the CONFIG_EXT4_FS configuration option. During a regular GNU
make build, the ext4.o file would be compiled from an equally named ext4.c file in the same
directory. In order to support more complex loadable kernel modules built from multiple source
files, however, KBUILD provides the possibility to build so-called composite objects through developer-
defined lists, following the pattern <name of composite object>-y. In our example, all object
files in the assignment to ext4-y in line 8 have a corresponding source file and will be included
into obj -y or obj-m depending on the value of CONFIG_EXT4_FS.

If some features of the target module depend on additional configuration options, we can use
the selected values for configuration options for composite objects as well. Lines 14 and 15 show
examples for this syntax, including the acl.o and xattr_security.o object files into the ext4.o
composite object only if the corresponding configuration options have been set.

Using this syntax, we see that the configuration system strongly influences the entire build process of
the Linux kernel as it makes the decision which files or entire subdirectories should be compiled. In
fact, in a Linux kernel in version v4.19, 12948 configuration options are used in the KBUILD system
which represents 79 percent of the total number of 16484 available KCONFIG options. However,
not all features can be encapsulated entirely inside separate files which opens up the necessity of
providing a more fine-grained mechanism inside the source code itself.

2.3.3 The C Preprocessor

The C preprocessor — as the name suggests — is a text-based processor for the C, C++ and Objective-
C languages which is run before the actual compilation of the source code. After reading the input
file and breaking it up into individual lines, the preprocessor tokenizes the lines and looks for
preprocessing directives and macros in the input.

The probably most known directive is the inclusion of header files through the #include directive.
This essentially looks for the referenced file, takes all its content and pastes it into the file at the
location of the #include.

Additionally, programmers can #define macros which are textual names for fragments of code.
Whenever the C preprocessor encounters a reference to a previously defined macro, it will replace
the name of the macro with its contents.

18

2.3 KCONFIG: Explicit Features in the Linux Kernel

Most important for implementing configurability is the use of conditionals. Through checks for the
existence of macro definitions and the evaluation of arithmetic expressions, fragments of the code
can be excluded from further processing and compilation.

In the example of the Linux kernel, configurability of parts of the C code is achieved by two steps:
First, the configuration system generates a header file from the selection of configuration options
which entails a #define macro for every enabled option, effectively setting their value to 1. Disabled
configuration options default to the value 0. This header file is unconditionally passed into the
compilation process for every file in the Linux kernel, making all enabled configuration options
available to the C preprocessor.

In order to conditionally include parts of the code, developers can then use the #ifdef directive
to check if a configuration option was enabled in the current configuration. An example for this
can be seen in Listing 2.3. Here, Line 3 718 is only compiled if the CONFIG_EXT4_FS_POSIX_ACL
configuration option has been selected.

Other conditional directives include #if (which can additionally calculate simple arithmetic expres-
sions), #ifndef to check if a macro is not defined, as well as #else or #elif to provide (conditional)
alternatives to conditionals evaluating to false. In total, 5174 configuration options are used in
source code or header files as of Linux v4.19.

Listing 2.3 Use of the CONFIG_EXT4_FS_POSIX_ACL configuration option in the C preprocessor in
the source code, excerpt from fs/ext4/super.c in Linux v4.19.

3713 if (def_mount_opts & EXT4_DEFM_UID16)

3714 set_opt(sb, NO_UID32);

3715 /* xattr user namespace & acls are now defaulted on */

3716 set_opt(sb, XATTR_USER);

3717 #ifdef CONFIG_EXT4_FS_POSIX_ACL

3718 set_opt(sb, POSIX_ACL);

3719 #endif

3720 /* don’t forget to enable journal_csum when metadata_csum is enabled. */
3721 if (extd4_has_metadata_csum(sb))

3722 set_opt(sb, JOURNAL_CHECKSUM);

Summarizing the different aspects of configuring and building a Linux kernel, we see that configu-
ration options permeate all layers of the Linux source code. By defining configuration options for
their parts of the code, developers enable users to toggle the inclusion of a certain feature or device
driver, depending on the needs of the targeted use case. As many parts of the kernel interact with
each other, complex dependencies between configuration options can be expressed in the KCONFIG
language to ensure correct functionality of the components in the system as a whole. In order to
only compile those parts of the code into the final Linux kernel image which are required by the
selected configuration, KCONFIG options are also used in KBUILD, the build system of the kernel,
to conditionally select entire source code files for the build process. Finally, as parts of the code
inside the selected files might only be required for certain configurations, KCONFIG options can be
referenced in #ifdef expressions in the C source code, instructing the C preprocessor to include or
exclude blocks of varying granularity as part of the compilation process.

19

2.4 Extracting Variability Information

2.4 Extracting Variability Information

With the knowledge how features are implemented and used for building the Linux kernel, we will
now dive into how this information can be extracted from the Linux source tree and combined into
variability models describing the variability structure of the whole project. These variability models
can then be used to find defects caused by the configurability of the system (e.g., [Tar+14]) or to
efficiently map locations in the source code to their constraints from the configuration and build
system. This work builds on existing extractors which were presented by other researchers ([Tar13;
Sin13]). In this section, I will demonstrate their main ideas and how the extracted information is
represented in propositional logic which can then be used for automatic defect detection and the
extraction of configurability constraints for source code locations.

2.4.1 Extraction from KCONFIG

As described in Section 2.3, the KCONFIG files are the central place in the Linux kernel where
configurable options are declared. Their dependencies can be modelled in propositional logic by
translating dependencies between configuration options into propositional implications.

The extractor developed by [Tar13] is based on the original implementation of the KCONFIG tool
from the Linux kernel. First, the tool reads the KCONFIG files as the regular configuration process
also does and writes the internal structure (such as names, types and dependencies) into a serialized
form. Working on this representation, rules are applied to convert the relationships between options
into propositional implications. The entire set of rules was described as part of Reinhard Tartler’s
PhD thesis [Tar13] — I will only show the most important conversions to demonstrate how the key
aspects of the KCONFIG configuration language can be represented in propositional logic.

Given a tristate configuration option A, the extractor generates two configuration variables
CONFIG_A and CONFIG_A_MODULE which represent the enabled and LKM state of the selection. Addi-
tionally, as these variables cannot be enabled at the same time, the extractor makes them mutually
exclusive by adding the implications CONFIG_A — —CONFIG_A_MODULE and CONFIG_A_MODULE —
—CONFIG_A A CONFIG_MODULES. CONFIG_MODULES is a KCONFIG-internal variable representing the
possibility to enable or disable LKM support. Configuration options of type bool do not need any
special treatment.

In order to model the dependency structure of KCONFIG configuration options, conditions from
the select and depends on definitions are also integrated into the implications. The target of a
select statement and dependencies through depends on are added to the right-hand side of the
implication, as the presence of the configuration option in question directly implies the presence of
the dependent configuration option in both cases.

CONFIG_EXT4_FS_POSIX_ACL —

(CONFIG_BLOCK A (CONFIG_EXT4_FS_MODULE V CONFIG_EXT4_FS))A

((CONFIG_BLOCK A (CONFIG_EXT4_FS_MODULE V CONFIG_EXT4_FS)) — CONFIG_FS_POSIX_ACL)
2.1)

Equation 2.1 shows the implication extracted for the EXT4_FS_POSIX_ACL configuration option listed
in Listing 2.1. Here, we see that the presence of this configuration option implies that CONFIG_BLOCK
and CONFIG_EXT4_FS also have to be enabled — these are the dependencies of the configura-

20

2.4 Extracting Variability Information

tion option itself (Listing 2.1, Line 79) as well as the CONFIG_BLOCK condition for including the
fs/ext4/Kconfig file from the higher-level fs/Kconfig file. Additionally, the second half of the
implication states that if the conditions for CONFIG_EXT4_FS_POSIX_ACL are met, the CONFIG_FS_-
POSIX_ACL option also has to be enabled. This corresponds to the select statement in line 80 of
Listing 2.1.

All extracted features and their respective implications combined form the variability model of the
entire configuration space, denoted as M in the following sections.

2.4.2 Extraction from KBUILD

For the Makefiles of the Linux kernel, we use a text-based extractor which I first developed as part of
my Master’s thesis [>Rup15] and improved to support more constructs during the evolution of the
Linux kernel. As the general structure of the KBUILD files is hierarchical and follows the directory
structure of the source code (cf. Section 2.3.2), the extractor starts processing the KBUILD files from
the top of the Linux kernel directory.

Through the use of regular expressions, we then look for known patterns in the KBUILD files by
parsing them line by line. At the same time, we maintain a stack of conditions which have to hold
at the given line, updating it when configuration options are encountered. The parsing process
extracts the use of configuration options from all constructs which the KBUILD Makefile language
allows [Ker22c]. Among others, this includes

* configuration options used to include a file into the obj -y and obj-m lists
* configuration options used for parts of a composite object (e.g., ext4-y for ext4.o)
* configuration options guiding the descent into subdirectories

* inclusion or exclusion of parts of the KBUILD files depending on a configuration option using
ifeq/ifneq statements

* the use of configuration options in variable definitions inside KBUILD itself

While the latter three rules update the current state of the parser (i.e., add another configuration
option to the stack for the following lines), the first two rules are the ones which encounter the
files which need to be built. As the addition of files to the obj -y/m lists always contains the name
of the object file, we then look for the corresponding source file in the Linux kernel tree — in the
regular case, the name of the source file ends with either .S or . c instead of the .o suffix of the
object file. At this point, we can associate the file in question with the current state of the stack
of configuration options. These conditions now form the presence condition for the source file f,
denoted as PCyp,i;q(f). Similar to the model format of KCONFIG, we formulate the conditions for
every file as a logical implication from the file to its respective conditions. In order to differentiate
between configuration options and presence conditions for files, the names of the implications start
with FILE_ and contain the full, normalized path to the file from the root of the Linux source code
directory.

FILE_fs_ext4_acl.c —

2.2
(CONFIG_EXT4_FS_MODULE V CONFIG_EXT4_FS) A CONFIG_EXT4_FS_POSIX_ACL (2:2)

21

2.4 Extracting Variability Information

Equation 2.2 shows an example for the presence conditions for the fs/ext4/acl.c file, based
on the Makefile excerpt shown in Listing 2.2. Here, we see that the file is only compiled if the
CONFIG_EXT4_FS configuration option is set to either m or y — this corresponds to the condition for
the composite object (see Listing 2.1, Line 6) — and additionally, the CONFIG_EXT4_FS_POSIX_ACL
option has to be enabled (Listing 2.1, Line 14) for the file itself.

2.4.3 Extraction from the Source Code

The mechanism to extract variability information from source code, and in particular from the use
of C preprocessor macros, has been described in the PhD theses of Reinhard Tartler [Tar13] and
Julio Sincero [Sin13]. This section summarizes their findings and shows the most important rules to
construct propositional formulas from the structure of #ifdef macros inside the source files.

In order to determine the influence of configuration options in parts of the code, we first identify
the locations where the configuration options are used in C preprocessor macros. The conditionally
compiled code then forms an #ifdef block which is only enabled under some condition defined by
the configuration options. As the condition for an #ifdef block is given as an expression in textual
form, we can use it as the presence condition PC(b) for a given block b. For example, the condition
of the block in Listing 2.3 is translated into the following bi-implication:

PC (b;) < expression (CONFIG_EXT4_FS_POSIX_ ACL)

For more complex conditions, the expression helper applies normalizations to the extracted textual
condition in order to transform it into its propositional equivalent form. Additionally, the C pre-
processor allows constructs like alternatives (using #else) or cascades (using #elif with different
conditions) as well as nesting of #ifdef blocks. These constructs can also be integrated into the
presence conditions for the #ifdef blocks.

In order to enable an #else block, the condition of the corresponding #ifdef block must evaluate
to false. In t