
MultiSSE: Static Syscall Elision and Specialization
for Event-Triggered Multi-Core RTOS

Gerion Entrup, Björn Fiedler, Daniel Lohmann

Leibniz Universität Hannover
{entrup, fiedler, lohmann}@sra.uni-hannover.de

Abstract—The implementation of static real-time control sys-
tems often allows for extensive compile-time optimizations based
on RTOS-aware whole-program analyses. Previous work has
shown the high optimization potential of control-flow aware static
system-call tailoring, but is restricted to single-core systems due
to the inherent problem of an exponentially growing analysis
state in multicore settings.

We present MultiSSE, a multi-core capable and RTOS-aware
static whole-system analysis that makes such analyses also feasible
on multi-core systems. MultiSSE exploits structural and optional
timing information to analyze the core-level control flows as
independently as possible from each other, synchronizing their
states only when necessary. Thereby, MultiSSE provides means to
realize compile-time deadlock detection, lock elision, and system-
call optimization also on multi-core systems. We evaluate our
approach with synthetic benchmarks and a real-world quadrotor
application. In all cases, we were able to optimize or even
completely elide costly cross-core system calls and system objects.

I. INTRODUCTION

Much real-time control systems (RTCSs) are implemented
as special-purpose systems [26], [6]. This facilitates a closed-
world assumption regarding their code artifacts and, thus,
extensive static optimization of the underlying software utilizing
whole-program analyses (WPAs) in the respective compilers
and linkers. The real-time operating system (RTOS) itself is
also tailored toward the specific application: All HW/SW events
are mapped to a finite set of threads, interrupt service routines
(ISRs), semaphores, or other system objects, which makes it
possible to allocate them at compile time. This is realized, for
instance, in OSEK/AUTOSAR [30], [2], which require ahead-
of-time system-object definitions to keep the RAM overhead
low, but also the much newer Zephyr RTOS [40] provides
static initialization for the same purpose.

A. RTOS-Aware Static Analysis

WPA and the resulting optimization usually stop at system-
call boundaries, as the semantics and threading model of
the RTOS are typically unknown to the compiler. However,
Dietrich and colleagues have shown [8], [9] that it is possible
to realize RTOS-aware WPA that works across the RTOS
boundaries and the RTOS-managed control flows (i.e. threads,
alarms, ISRs). If, for instance, a higher-priority thread A
triggers the activation of a lower-priority thread B, the RTOS-
aware compiler could specialize the respective system call (i.e.,
ActivateTask(B) in AUTOSAR) to only mark B as ready but

omit the costly scheduler invocation, as we statically know that
no rescheduling is necessary at this point. Such system-call
specialization can greatly improve memory footprint, latency
and robustness of the resulting system [8], [9]. Technically, the
possible specializations are inferred from a graph enumerating
all RTOS states (running thread, ready threads, ISR status, ...)
possible at the run time of this particular application. This
graph is constructed by an algorithm named the system-state
enumeration (SSE). However, the SSE addresses only single-
core systems. While the authors state that their approach “would
also work for multicore systems” [8] this holds only for the
unrealistic setting of a completely partitioned system without
any cross-core (cross-partition) interaction and dependency.

B. About this Paper

In this paper, we present the MultiSSE for partitioned fixed-
priority multi-core systems with cross-core interactions, such as
described by AUTOSAR 4.0 [2] (e.g., cross-core task activation
or spinlocks). However, a complete state enumeration, as in
the SSE, is generally unfeasible with multiple cores, as the
number of possible system states rises exponentially with the
number of cores. The MultiSSE addresses this challenge by
exploiting the fact that cross-core interactions, even though
possible, occur comparatively rare in partitioned systems. Thus,
we can analyze each core independently until we get to a cross-
core interaction. Only at this point, we need to synchronize the
states by deriving explicit synchronization points that manifest
the possible relative execution states of the involved cores. In
particular, we claim the following contributions:

• We describe MultiSSE, an approach for the analysis and op-
timization of multi-core real-time systems at the application–
RTOS interface.

• As part of MultiSSE, we provide a feasible algorithm for
enumerating all possible RTOS states on a multi-core system
together with an ordering of these states.

• To demonstrate the use of the algorithm, we sketch possible
system call specializations that have the potential to reduce
jitter and priority inversion in event-triggered multi-core
real-time systems.

II. THE MULTISSE APPROACH

The MultiSSE aims to provide detailed information about
the application-RTOS interactions from its implementation

T11 Priority: 1
Autostart: �

10 GetSpinlock(S1);
11 do_critical();
12 ReleaseSpinlock(S1);
14 ActivateTask(T02);
16 ActivateTask(T01);
18 ActivateTask(T21);
20 TerminateTask();

T01 Priority: 1
Autostart: �

02 GetSpinlock(S1);
03 do_critical();
04 ReleaseSpinlock(S1);
06 TerminateTask();

T02 Priority: 2
Autostart: �

07 do_high_priority();
08 TerminateTask();

T21 Priority: 1
Autostart: �

22 GetSpinlock(S1);
23 do_critical();
24 ReleaseSpinlock(S1);
26 TerminateTask();

Core 0

Core 1

Core 2

Spinlock S1

50-80

10-20

Fig. 1: Example application. Four tasks are distributed on three cores. Additionally, one spinlock exists. T11 starts automatically,
the other tasks need an explicit activation which happens with the ActivateTask system call in T11. The yellow parts are
critical sections they are guarded by protecting calls to the spinlock. The instruction numbers match the ABBs (Figure 2).

(i.e., source code). Its core assumption is that it is possible
to statically detect all cross-core interactions at the system-
call interface. For this, the underlying multicore RTOS and the
application code have to provide the following basic properties:

(1) Deterministic scheduling policy, such as fixed-priority
preemptive scheduling.
(2) Partitioned scheduling, that is, each task (software- or
hardware-triggered) is pinned to exactly one core and all
potentially blocking/scheduling-relevant cross-core interaction
takes place via system calls.
(3) All system objects are known at compile-time.
(4) All system calls are explicit, that is, they are detectable at
compile-time including their actual parameter values.
(5) [Optional] For each system call and each computation block
(code between two system calls), the worst-case and best-case
execution times (WCET, BCET) are known.

In practice, requirements 1–4 are already fulfilled or easy to
achieve for event-triggered hard real-time control systems as
they are basically a technical consequence of predictability
and, thus, already mandated by the dominant coding and
RTOS standards of the domain: Examples include ARINC 653
(avionics), which prescribes global fixed-priority scheduling
within its multicore partitions [1] or multicore AUTOSAR
(automotive) [2]. Without loss of generality, we therefore
describe our approach in the following on the example of
the system model mandated by the AUTOSAR-OS standard.

A. A Brief Example

In Figure 1, we exemplify some possible MultiSSE-based
optimizations on an application using AUTOSAR-OS. We will
use this example (with four tasks partitioned over three cores)
throughout the paper, hence briefly introduce it here: The appli-
cation employs some cross-core system calls (cross syscalls)
that may cause an action on another core: GetSpinlock and
ReleaseSpinlock protect a critical region across multiple cores.
ActivateTask sets a task ready, which might have been assigned
to another core.
The structure of this application facilitates a number of system-
call specializations, which all could be obtained by MultiSSE:

Initially, T11 on Core 1 is the only running task (autostart is
set), Cores 0, 2 are idling. Hence, T11 does not need to obtain

Spinlock S1 to get exclusive access to the critical section (lines
7–9), as it is guaranteed that neither T01 nor T21 (the possible
competitors) are running at this stage. The respective system
calls could be safely elided.

T11 continues by activating T02 and T01. Both are
cross syscalls, which in the case of ActivateTask requires
the calling core to issue an inter-processor interrupt (IPI) to
trigger a (potentially necessary) reschedule on the target core.
In the case of T02 (line 10) the reschedule is necessary to
wake up Core 0. In the case of T01 it depends: If T02 is still
running, we could omit the reschedule (and, thus, the expensive
IPI [16])1, as T02 has priority over T01 and its TerminateTask

in line 6 will issue a reschedule anyway. However, if T02 has
already finished, Core 0 might again be idling and the IPI is
required. By considering available best/worst-case execution
time intervals, the MultiSSE can infer that the IPI can indeed
be omitted. Additionally, in that case, the whole lock can be
elided since all critical regions cannot interfere anymore.

So, in this example, the MultiSSE could detect three rela-
tively expensive cross-core interactions (Get/ReleaseSpinlock,
IPI in ActivateTask) that are infeasible by structure or timing.

B. MultiSSE: A Brief Overview

To provide detailed information about all application-RTOS
interactions, the MultiSSE calculates the graph of all possible
multi-core abstract system states (MAbSSs). A MAbSS repre-
sents the state of all CPU cores and RTOS objects at a specific
point in time.

With existing techniques, it is possible to enumerate all core-
local states [8]. However, to use this in a multi-core setting,
we need to respect the relative timing of the cores to each
other. The naive approach to get all MAbSSs is to enumerate
all single-core states and then build the cross product between
them. To avoid this combinatorial explosion, the MultiSSE
calculates a reduced graph based on the fact that the cores do
not interact arbitrarily with each other, but only at system-call
sites that target other cores, which we call cross syscalls. Only
at these points, the relative timings of only the affected cores are

1Depending on the CPU architecture, an IPI may have a cost tag of up to
several hundred clock cycles on the sending core and up to a thousand clock
cycles on the receiving core. The (unnecessary) interruption on behalf of a
lower-priority task is a case of rate-monotonic priority inversion [7], [19].

T01

T02

T11 T21
Core 0 Core 1 Core 2

comp1 20-25

GS(S1)2

comp3 5-10

RS(S1)4

comp5 2-4

TT()6

comp7 60-80

TT()8

comp9 1-2

GS(S1)10

comp11 8-16

RS(S1)12

comp13 1-2

AT(T02)14

comp15 10-20

AT(T01)16

comp17 20-30

AT(T21)18

comp19 3-4

TT()20

comp21 2-3

GS(S1)22

comp23 4-12

RS(S1)24

comp25 1-2

TT()26

Legend

codeid bcet-wcet

AT ActivateTask
TT TerminateTask
GS GetSpinlock
RS ReleaseSpinlock
comp computation

Fig. 2: ABBs of the example application. We can see a
computation block (white) between each system call (in purple)
or cross syscall (in red). The yellow, green, and blue blocks
correspond to the equally colored blocks in Figure 4.

relevant. The MultiSSE analysis, therefore, construct a smaller
graph, the multi-core state transition graph (MSTG), that makes
these interaction points explicit. It consists of two node types
(both special forms of a MAbSS): Local-core abstract system
states (LAbSSs) describe the current state of a single core,
while synchronization points (SPs) describe the current state of
a set of cores together, which determines their relative position
to each other. The main idea for the algorithm is to construct
these two node types alternately. This happens by executing
the following four steps:

(1) Initialization: The system start represents the first SP.
Since all cores start, the state of them relative to each other is
known. (Example from Figure 1: Evaluation starts with all cores
in idle, except Core 1, which executes line 7 GetSpinlock.)
(2) Core-local analysis: Follow the control flow on each core
independently to calculate a set of LAbSS until a cross syscall
occurs. (Example: Core 0 and 2 are idling, Core 1 is at the
execution of GetSpinlock, a cross syscall.)
(3) Pairing-partner search: For each cross syscall, calculate
the list of all possible pairing partners, that is, all states in which
all other affected cores may be at the same time. (Example:
The lock is shared between all cores, so Core 1 needs to
synchronize with Core 0 and 2. Therefore, the analysis has
to find all states of Core 0 and 2 that may happen in parallel
with Core 1. Normally, multiple pairing partners exist, in this
case it is just the set of idle states of Core 0 and 2.)
(4) New SP construction: These states form a new entry SP,
which the analysis evaluates into one or more exit SPs by

calculating the effects of the cross syscall that leads to the
SP. Starting at the introduced exit SPs, continue with step (2).
(Example: The acquisition of the lock just goes through and
does not change the idle status of the other cores, hence results
in one exit SP, which is the next start for core-local analysis.)

III. DETAILED MSTG CONSTRUCTION

In the subsequent sections, we describe the MultiSSE
construction in further detail.

A. Control-Flow Graph Preparation

To ease the actual analysis, we preprocess the control-flow
graph by partitioning it into atomic basic blocks (ABBs) [34].
An ABB is a sequence of instructions that fulfills the following
properties:

(1) Every ABB has a single entry and a single exit instruction.
(2) Every ABB is of the type syscall, call, or computation.
(3) A computation ABB groups a sequence of instructions that
are neither a system call nor a call to function that eventually
issues a system call.
(4) A syscall ABB contains a single system call instruction.
(5) A call ABB contains a single call instruction.
(6) Two sys/call ABBs do not follow each other, but always
have a (potentially empty/NOP) computation ABB in between.

Hence, ABBs point out the system calls and summarize all
other instructions as far as possible. For the analysis, each ABB
represents a valid position in the code, that is the conceptual
program counter (PC) of the abstract machine.

The MultiSSE can optionally leverage timing information if
the program’s basic blocks come with a BCET and WCET. We
map these times onto the ABBs. To further ease the analysis,
sys/call ABBs are considered as happening atomically; we
account their times to the surrounding computation ABBs.
Figure 2 displays the ABB-Graph of our example (Figure 1).

B. Data Structures and Terms

The core data structure of the MSTG is the multi-core
abstract system state (MAbSS):

MAbSS = (C,O) C ⊆ C,O ⊆ Og

C = {c0, . . . , cmax} set of all core contexts
Og = {o0, . . . , omax} set of all global OS-object contexts

Figure 3 visualizes one example. The context of an OS-object
is object dependent (e.g., the spinning state of a spinlock). An
OS-object is global if it belongs to more than one core (i.e.,
involved cross syscalls). A core context is a six tuple:

c ∈ C = (ABB, τ , IRQ,S,E,O)

ABB = the currently executed ABB (PC)
τ = the currently executed thread

IRQ = interrupt enable bit (hardware state)
S = call stack (path of called functions)
E ∈ {idle,waiting, normal} (execution state)
O = set of core local OS-object contexts

T01
Status: suspended
Priority: 1
ABB: 1
Call Stack: []

T02
Status: suspended
Priority: 2
ABB: 7
Call Stack: []

T11
Status: active
Priority: 1
ABB: 9
Call Stack: []

T21
Status: suspended
Priority: 1
ABB: 21
Call Stack: []

Core 0
idle (-)
IRQ: �

Call Stack: []
Core 1

normal (ABB 9)
IRQ: �

Call Stack: []
Core 2

idle (-)
IRQ: �

Call Stack: []

Spinlock S1: not spinning active task

Fig. 3: The root SP of Figure 1 as an example of a MAbSS

So, a core context consists of its execution context (ABB,
τ , and S), which defines its position in the control flow, its
execution and IRQ state, which specifies the RTOS internal
status of the core, and the set of core-local OS-object contexts,
which describe OS objects bound to a specific core. The number
of core contexts is variable: A MAbSS with exactly one core
context forms a local-core abstract system state (LAbSS) that
ignores the current state of all other cores:

LAbSS = MAbSS|C|=1∧O=∅

= (C,O) with |C| = 1 and O = ∅
∪LAbSS = set of all LAbSSs

A MAbSS with multiple core contexts forms a synchronization
point (SP), which determines the relative position of multiple
cores to each other within the control flow:

SP = MAbSSC 6=∅ = (C,O) with |C| ≥ 2

∪SP = set of all SPs

SPs are caused by a cross-core system call (cross syscall), a
syscall ABB that interacts with another core. We call a LAbSS,
which ABB is a cross syscall, a cross-syscall LAbSS. Since a
cross syscall has a (potential) effect on each affected core, the
originating LAbSS needs to be synchronized with LAbSSs on
the affected cores, the pairing partners:

A pairing partner to a cross-syscall LAbSS is a
LAbSS of an affected core that can possibly coexist
in time with the originating LAbSS.

The analysis needs to determine the set of paring partners for
each affected core. The trivial upper bound for each of these
sets is the set of all LAbSSs of the affected core. However,
since the cross product of the paring partner sets determines
the number of inserted SPs, it is crucial to further constrain
coexistence and, thereby, the number of paring partners. We
will discuss this later, but now define the MSTG:

MSTG =(V ,E)

TE = {local, global, fork, join}
edge type

V = {MAbSS0, . . . ,MAbSSn}
E = {(x, y, f)|(x, y) ∈ V 2, f = V × V → TE}

f(x, y) =

local x ∈ ∪LAbSS, y ∈ ∪LAbSS

global x ∈ ∪SP, y ∈ ∪SP

fork x ∈ ∪SP, y ∈ ∪LAbSS

join x ∈ ∪LAbSS, y ∈ ∪SP

1 def system_semantic(mabss, cpu_id):

2 active_abb = mabss.cpus[cpu_id].abb

3 if type(active_abb) == computation:

4 next_mabsss = follow_abb_chain(mabss)

5 return next_mabsss

6 if type(active_abb) == call:

7 return follow_call_chain(mabss)

8 if type(active_abb) == syscall:

9 if is_cross_syscall(active_abb) and not

10 mabss.contains_all_affected_cores(active_abb):

11 return "cross_syscall"

12 return interpret(active_abb) # syscall specific

List. 1: Pseudo code of the system_semantic function.

The MSTG is a graph consisting of MAbSSs which are
connected by edges. Each edge has a specific type depending
on the connected node types. Local edges connect two LAbSSs
and capture a core-local state transition. Global edges connect
an entry SP with an exit SP and capture the transition caused
by a cross syscall. Join edges connect a set of LAbSSs with the
resulting entry SP, thus, capturing the pairing of a cross syscall
state with its pairing partners. Fork edges connect an exit SP
with the resulting set of LAbSSs when the analysis continues
to calculate the effects of all cores individually.

For a better understanding, Figure 4 illustrates an excerpt
of the MSTG that results from the example (Figure 1). The
figure does not contain the initial state. It starts at SP a, which
is based on the evaluation of ReleaseSpinlock(S1) (ABB 12).
Core 0 and 2 are idling at this point. We will come back in
detail to that example later.

C. The Algorithm

1) Initialization: The MultiSSE starts with the construction
of the first SP, the root SP. It symbolizes the starting point
of the scheduler on all cores and is therefore deterministic. In
this state, all cores are in idle state except the ones that should
autostart a task according to the system specification. Addi-
tionally, the algorithm initializes all RTOS objects according
to the system specification. Figure 3 shows the root SP of the
example.

2) Single-Core Analysis: From the previous SP, the algo-
rithm calculates the further processing of each core individually.
It, therefore, splits the SP into LAbSS by extracting the specific
local core context, adds fork edges from the SP to those
LAbSSs, and omits all global object contexts.

The MultiSSE merges MAbSSs where possible. Therefore,
if it has already evaluated the LAbSS in a previous iteration,
it skips the state and its successors. Otherwise, it follows the
ABB graph on each path by calculating a transition between
two states for every ABB. For that, it needs a transition function
which it also uses for an SP-SP transition:

(MAbSSg+1,0, . . . ,MAbSSg+1,n) = system_semantic(MAbSSg, c)

g = generation
c = the core to be evaluated

In the local-core case, c is always the only core context that
is present in the LAbSS.

0 1 2a

0 1b

0 1c

1 2 d

0 1 2e

0 1 2f

0 1 2g

0 1 2h

1 2 i

1 2 j

0 1 2 k

impossible part when
respecting time information

SP with affected cores

16
AT

cross syscall (AT: ActivateTask,
GS: GetSpinlock,
RS: ReleaseSpinlock)

18
AT

8
TT

2
GS

ABB
7

ABB
7

An SP may yield the same
ABB on the affected core
(here: AT activated a
lower priority task, so
the execution continues
in ABB7)

ABB
17

4
RS

ABB
19

ABB
19 4

RS

18
AT

18
AT

4
RS

10-20

timing interval
BCET – WCET

10-20

20-30

40-50

5-10

60-80

(a) MSTG (simplified)

SP exita

comp ABB 13idle —

CS AT ABB 14

SP entryb
SP exit

idle —

comp ABB 7

comp ABB 8

comp ABB 15

CS AT ABB 16

SP entryc
SP exit

comp ABB 7

syscall ABB 8

comp ABB 1

CS GS ABB 2

comp ABB 17

CS AT ABB 18

SP entryd
SP exit

comp ABB 19

SC TT ABB 20

idle —

comp ABB 21

CS GS ABB 22

SP entrye
SP exit

Legend fork

join

local

global

<type> <ABB NR> cross syscall

<type> <ABB NR> LAbSS

SP entry SP
SP exit

(b) MSTG (raw)

Fig. 4: An extract of the MSTG of the example (Figure 1). In (b) the MSTG as described is illustrated, while (a) shows a
simplified version. The simplified version summarizes the entry and exit SP and merges LAbSSs, fork, local, and join edges.
All red lines mark a state where a cross syscall happens. The yellow, blue, and green parts mark states where the core resides
in the same ABB. Sometimes (for the yellow and green states), they are interrupted by an SP. The grey numbers describe the
time interval between two SPs or the length of one ABB execution.

The system_semantic function works dependent on the type
of the ABB of the active core context c in the MAbSS
(Listing 1): In the case of a computation ABB, it follows
the control-flow and constructs – for each follow-up ABB –
a new LAbSS with the updated ABB for the active core. In
the case of a call ABB, the analysis follows it by updating the
core’s call stack and set the new ABB of the called function
(function return will pop the call stack again). For a syscall
ABB, the analysis divides further: In the case of a cross syscall,
the analysis stops the core-local analysis (here follows an SP).
Otherwise, it interprets the system-call-specific effects on the
state and emits one or multiple follow-up LAbSSs.

A single system call may produce multiple follow-up states.
An example is ReleaseSpinlock(): When synchronizing 3 cores
while 2 of them are spinning, the MultiSSE emits two follow-up
MAbSSs, one for each of the two cores receiving the lock.

After executing system_semantic, the analysis merges the
new LAbSSs with existing ones, if possible. For all remaining
states, it iterates and applies the system_semantic function
again. This step terminates if either all emitted new states are
merged with previous ones (for example, the idle state has a
transition to itself) or ends in a cross syscall. When terminated,
the analysis continues with the next step.

3) Pairing-Partner Search: Once the MultiSSE detects a
cross syscall, it searches for possible pairing partners. First,
it determines the affected cores, which are all cores the
cross syscall synchronizes. Second, the analysis searches for
LAbSSs on the affected cores that can exist at the same time.
To not have to consider all LAbSSs as paring partners, we

take the last SPs into account. Every to-be-synchronized core
set has preceding SPs that synchronize at least the respective
cores (that is, a superset).2 We call an SP that precedes the
cross-syscall LAbSS and synchronizes a superset of cores a
parent SP:

A parent SP of an SP is an SP that synchronizes a
superset of cores and for which exists at least one
path in the MSTG between parent SP and SP that
does not contain another parent SP.

Conceptually, the parent SP acts as a barrier in the control
flow: The cross syscall in this context must happen after it, so
the analysis can limit its search space to the graph part after
a parent SP. Given the graph structure (caused by the state
merging), multiple such parent SPs can exist that are reachable
via disjoint paths. Because of that, the analysis also stores the
chain of intermediate SPs that lead to each parent and performs
every following step for each path. For this search, the analysis
uses an adapted breadth-first search (BFS).

For a better understanding, we want to use Figure 4 as an
example for such a search. In detail, we want to focus on the
pairing process of GetSpinlock(S1) (ABB 2). This system call
affects all three cores. Therefore, the analysis needs to find
possible pairing partners for Core 1 and 2. The search for
parent SPs leads to SP a which synchronizes Core 0, 1 and 2
with one path over SP c and SP b.

Since the MultiSSE merges MAbSS whenever possible, there
may be loops to the parent SP or other paths that contradict

2Ultimately, the root SP synchronizes all cores.

the cross syscall (for example, an SP that synchronizes the
same core). Therefore, the search first filters the graph: It
removes all ingoing edges to the parent SP, thus, eliminates
circles. It also throws away every SP that either synchronizes
the originating core and is not part of the path to the parent
SP, or synchronizes only cores that are not affected by the
cross syscall.

All SPs on the path to the parent SP form a relation in
time between specific cores. Therefore, for each core, a later
executed SP that synchronizes a subset of affected cores in the
chain may mask the parent SP (it acts as a closer barrier for
this reduced core set). It is enough to start the partner search
from this point on. We name these SPs core-local parent SPs.

A core-local parent SPs of a pairing partner is the
last SP on the path from the parent SP to the pairing
partner that is also an element of the path from the
parent SP to the cross-syscall LAbSS.

For example, SP c lies on the path from the parent SP a
to ABB 2 and already synchronizes Core 0 with Core 1, so
the search for pairing partners of Core 1 can start at SP c. For
Core 2, the search must start directly at the parent SP, since
all other SPs on the path do not synchronize Core 2.

When the analysis has calculated all core-local parent SPs,
it continues to find pairing corridors: For every core, it iterates
over all belonging states starting at the core-local parent SP.
Each state can be restricted by following SPs, which may
synchronize with another affected core and act as a barrier in
its search area. As a consequence, the decision for a pairing
area on one core can restrict the search space on the other
cores, thus forming pairing corridors.

For example, by starting the search on Core 1, the algorithm
finds the blue area first. All states in this area are possible
pairing partners (here it is just ABB 17). The blue area is
restricted by SP d, which synchronizes with Core 2, another
core for which we want to find pairing partners, thus, restricting
the search for Core 2 to the blue corridor. The SP d is a valid
follow-up SP relative to SP a and SP c, so the green corridor
also needs to be searched.

After determining a corridor, the analysis builds the product
of each LAbSS in it. For that, it only uses states that execute
in a time interval, so computation or idling states.

The example contains just one state for each core on the
corridor, so the cross syscall triggers two SPs: SP e (for the
green corridor) and SP g (for the blue corridor).

4) SP Construction: With the cross syscall and the list of
all pairing partners, the MultiSSE can create a new entry
SP in the graph and connect it with all preceding LAbSSs
(the cross syscall and its partners) via join edges. It therefore
combines all core contexts of the preceding LAbSSs, which are
disjunct by design, and takes the global contexts from the parent
SP. Afterward, the analysis interprets the new entry SP with the
system_semantic function, which results in a set of new exit
SPs. For example, the interpretation of the ActivateTask(T02)

(ABB 14) in SP b (entry) leads to SP b (exit), in which the
state of T02 changes to “active” and the core executes ABB 7,
the first ABB of this task.

The algorithm puts each exit SP in the work queue and
starts the whole process again. Additionally, it determines the
need for reevaluations, that is, existing SPs that need another
evaluation:

• If the new SP has a predecessor in time that synchronizes
another set or a superset of cores, the newly created state
may add additional pairing partners for cross syscalls of this
predecessor.

• If the to-be-created SP is already present and the algorithm
just needs to add an edge between the old and the new SP,
this adds a new system call order to the graph, so the SP
needs to be reevaluated concerning this new edge.

IV. USING TIMING INFORMATION

The SPs in the MSTG describe an ordering of cross syscalls,
since the graph connects them with edges that model an
order in time. Each SP connects a cross syscall with a set
of pairing partners, that is, other core states that can potentially
run simultaneously. Naively, this would be all LAbSS of
the respective core, which we already have reduced by the
described pairing partner search to those states that can actually
coexist by structure (because they happen in the control flow
after a previous SP).

In the following, we go further and also take execution times
into account: At run time, many structurally possible combina-
tions of pairing partners are actually impossible because of the
times the cores spent in their different computation ABBs. To
make use of this, the MultiSSE can leverage timing information
already during construction: While searching for pairing
partners, the algorithm immediately excludes combinations
that are impossible because of timing constraints, that is, it
neither creates the respective SPs nor evaluates them. This
can drastically reduce the resulting number of SPs and, thus,
analysis time.

In general, the algorithm works by comparing intervals on
the different cores. For that, it assumes that each computation
ABB has a BCET and WCET assigned. The idea of the MSTG
is to synchronize a core only when needed (in an SP) and let it
“run” independently until the next cross syscall. So, in an SP
we know the exact point in time of different cores relative to
each other. We can use that by just comparing the time interval
of the cross syscall relative to its preceding SP with the times
of the potential pairing partners on the other cores (relative
to the same SP). To compare the intervals, we build a linear
inequality system, which is an equation system with additional
interval constraints for each variable. Such a system forms a
linear programming problem and can be solved efficiently with
an LP-solver [22]. For its functioning, the algorithm uses four
types of time intervals:

ABB : The execution time interval of an ABB. This is a
property of the ABB (Section III-A).

L–L : A core-local execution time interval, given by a starting
and ending LAbSS. The analysis calculates this interval type
based on the underlying ABB intervals.

x
a)

y SP a

α β

cross
syscall

α = [αmin, αmax]
β = [0, βmax]
α = β

x
b)

. . .

y

z

z

SP a

SP b

already evaluated

α

β

γ

α = [αmin, αmax]
β = [0, βmax]
γ = [γmin, γmax]
α = β + γ

x
c)

. . .

x y

z

z

SP a

SP b

already evaluated

α

β

γ

δ

θ

α = [αmin, αmax]
β = [0, βmax]
γ = [γmin, γmax]
δ = [0, αmax]
θ = [θmin, θmax]
α = γ + δ

β = δ + θ

x
d)

. . .

x y

z

z

SP a

SP b

already evaluated

α

β

γ

ε

δ

η

θ

Interval
initially un-

known but is
determined
recursively

α = [αmin, αmax]
β = [0, βmax]
γ = [γmin, γmax]
δ = [0, αmax]
θ = [θmin, θmax]
ε = [0, αmax]
η = [ηmin, ηmax]
α = ε+ δ

γ = η + ε

β = δ + θ

Interval Name

α

α0

αmin

αmax

Interval Type
ABB

LAbSS – LAbSS

SP – LAbSS

SP – SP

Interval
start time

BCET
WCET

SP
Interval is continued

Interval
starts
here

Fig. 5: All different building blocks for building the inequality system, sorted by their rising complexity. The to-be-compared
intervals as well as the resulting inequality systems are shown. Some intervals have multiple types (indicated by their two
colors). The requested interval is always that of the cross syscall to the last SP (the interval of β given all side constraints).

S–S : A time interval between two SPs. It describes all
possible points in time in which the successor SP can exist
relative to its predecessor.

S–L : A time interval starting at an SP and ending at a LAbSS
that indicates an execution chain of one core relative to an
SP. The pairing-partner search compares exactly these types
of intervals, which the algorithm has to calculate.

For each interval, we will denote its starting time with t0,
its minimum execution time with tmin and its maximum
execution time with tmax. To build the inequality system,
we can differentiate four different building blocks of rising
complexity, which we illustrate in Figure 5.

A. The Inequality System

1) Simple intervals: Figure 5a shows the straightforward
case. We see two different intervals on Core x and y, which are
synchronized by SP a. Core x triggers a cross syscall, and we
are interested in the information on whether the pairing partner
on Core y can execute at the same time. We, therefore, want to
compare the time interval α of SP a to the cross syscall with
the time interval β of the LAbSS on core y starting at SP a
(both of type S–L), which we need to calculate. In this case,
Core x starts a LAbSS with a new ABB directly after SP a that
eventually leads to the cross syscall (with possible LAbSSs in
between). As a consequence, we need to calculate the interval
α that starts and ends at a LAbSS (type L–L with inclusive
start and exclusive end). Since all LAbSSs execute a single
ABB which has a given BCET and WCET (type ABB), the

problem reduces to a classical BCET or WCET analysis for
which we chose a path-based approach [20], [13].

We need to compare α with the S–L interval β of the
LAbSS of Core y that also starts at SP a. It denotes the time in
which the LAbSS can take place. Therefore, β starts directly
at SP a (time 0) and going to the WCET of the LAbSS.

With the correct limits, we are now able to formulate the
equation α = β and solve the inequality system. Thus, we
obtain a new time interval that specifies the limits wherein the
cross syscall with exactly this combination of pairing partners
(and hence the resulting SP) can take place relative to SP a. To
avoid later recalculations, we store the resulting S–S interval
as an attribute of a new edge between the SPs. If the inequality
system has no solution, the SP is impossible.

2) Intervals with different SPs as a starting point: Figure 5b
is mostly equivalent to Figure 5a except that the pairing partner
does not start at the same SP. So, to compare the intervals, we
also need the S–S interval γ that describes the time between
SP a and SP b. The algorithm has calculated this time interval
already in a previous step: During the construction of SP b
it has built an inequality system whose solution specifies the
interval γ. Therefore, it knows all needed interval limits and
can compare them with α = β + γ.

3) SPs that interrupt ABBs: In Figure 5a and Figure 5b all
LAbSSs with their respective executing ABBs start directly
at the SPs. However, often an SP interrupts the execution of
an ABB and, thus, its ABB execution interval. For example,
assume a cross syscall GetSpinlock that pairs with another
core that does not hold the lock. In this case, the cross syscall

does not change the LAbSS of the other core. Or assume
an ActivateTask that activates a task on another core with a
lower priority than the currently executing one. In that case,
the LAbSS changes (the state context is different) but not the
executing ABB. In these cases, some time of the ABB interval
may have passed before the SP which the algorithm has to
respect.

Figure 5c models exactly that. The ABB interval α is the
time interval of an ABB whose execution is interrupted by SP b.
We are interested in the S–L interval between SP b and the
cross syscall which is a combination of the L–L interval θ
and δ, the remaining part of α. In this case, the ABB execution
starts directly at SP a, so we can calculate δ as α− γ which
is the S–S interval between SP a and SP b and already
calculated.

4) Interrupted ABBs that do not start at an SP: Figure 5d
illustrate the most complex case. Here, the execution of the
interrupted ABB does not start directly at an SP but is preceded
by other LAbSSs. So, to be able to calculate δ, we need to
know the length of the first part of α (ε) which, in turn, is the
result of γ−η. γ is already calculated η is unknown. However,
this maps to the same problem again but with another (prior)
SP set and can be calculated recursively. The algorithm stops
eventually (when it reaches the root SP). But, we can optionally
terminate earlier by falling back to the previous execution time
of an interrupted ABB as zero or its WCET (the ABB was
executed in complete or not at all).

B. Challenges

For the ABB timings, we assume atomic system calls
by accounting the actual execution time to the surrounding
computation ABBs. However, this assumption does not hold for
ABBs of the affected cores. Since the cross syscall triggers an
IPI, the affected core is interrupted in an unknown computation
ABB, which the SP makes explicit. However, the IPI handling
time on the affected core needs to be accounted as well. For this,
our current implementation simply uses an additional constant
term (i.e., the WCET of all IPI handlers) in the inequality
system for every affected core. In future work, we want to
support syscall-specific timing overheads.

Another challenge are loops. Given a cross syscall that
executes within a loop, the affected cores could be interrupted
multiple times, maybe even in the same ABB. This forms a loop
in the MSTG, which the pairing partner search has to respect.
When using the simple paring-partner search (without timing
information), we can just ignore the loop: We are only interested
in the fact, whether a synchronization is possible, not when. But
for the paring-partner search with timing information, we need
to determine the number of traversals. To remain sound, we
therefore disable timing calculations for this particular search
space whenever we detect an unbounded loop, that is, we
set the time frame to [0,∞]. However, commonly, loops are
bounded in hard real-time system. A bounded loop can be
virtually unrolled, thus, omitting the problem altogether.

0 1 2

0 1

0 1

2: GetSpinlock(S1)

SP a

SP b

SP c

ABB 7

γ
(60-80) ι

(20-30)

ζ
(10-20)

α
(10-20)

β

δ
(20-25)

ε
(0-∞)

Fig. 6: Relevant parts of Figure 4 for interval calculation of
the blue corridor.

C. A Concrete Example

To illustrate the technique, we want to build a full inequality
system of one part of the example (Figure 6). We are using
GetSpinlock(S1) (ABB 2) with the pairing partner of the blue
corridor (ABB 17). The MultiSSE first calculates the time
interval to the last SPs. This results in the interval δ = [20, 25]
for the time between the end of the state that executes ABB 7
and the state that executes ABB 2, the interval ι = [0, 30] for
the execution of the state that executes ABB 17 relative to
SP c, and the interval ε = [0,∞] for the time of the idling state
of Core 2 starting from SP a. The time intervals between SP a,
SP b, and SP c are already evaluated in previous iterations (the
times are displayed in grey in Figure 4). We further need the
remaining time of the state that executes ABB 7 relative to
SP c (case c). ABB 7 (interval γ) starts its execution directly
after SP b, so we can build the equation by comparing it with
the interval between SP b and SP c (α). This results in the
following inequality system:

α+ β = γ

β + δ = θ (time between SP b and ABB 2)
θ = ι (compare Core 0 with Core 1)

θ + ζ + α = ε (compare Core 0 with Core 2)
α = [10, 20] (time between SP b and SP c)
β = [0, 80] (remaining execution interval)
γ = [60, 80] (BCET and WCET of ABB 7)
δ = [20, 25] (ABB 7 to ABB 2)
ι = [0, 30] (execution of ABB 17)
ε = [0,∞] (idling state on Core 2)
ζ = [10, 20] (interval from SP a to SP b)

This equation system has no solution: β evaluates to [40, 70],
leading to [60, 95] for θ, which renders θ = ι impossible. As a
consequence, it eliminates the whole right part of the MSTG
(the marked grey area), which leads to all cases where the lock
spins which – as a result – is useless and can be elided. For the
whole MSTG resulting from the presented example, the analysis
generates 45 SPs without considering timing information and
12 SPs including timing information.

V. EXTERNAL INTERRUPTS

Even though not mentioned explicitly, the algorithm is
already prepared for dealing with external interrupt sources:
From the perspective of the affected core, a cross syscall is an
external interrupt (technically received as an IPI).

This allows us to model other external interrupts sources
in exactly the same way: Each external interrupt source gets
a virtual core assigned that runs a virtual interrupt program,
a set of virtual ABBs that trigger the interrupt in form of a
cross syscall according to its specification. If the interrupt has
inter-arrival times specified (e.g., as in AUTOSAR [2]), we map
this to an ABB with respective BCET and WCET interleaving
the interrupt cross syscalls. The virtual interrupt cores start
their execution at system start or after an activating system call
(e.g., for alarms). The actual interrupt handling routine is done
as part of the system_semantic function, which schedules the
core context to the correct entry point. Periodic interrupts lead
to a loop in the virtual interrupt program, which is unbounded
without further information, resulting in a similar problem when
respecting timing information as with other loops (discussed
above). However, giving the interrupt’s inter-arrival times, we
can constrain the maximum number of triggers within a hyper
period, thus bounding the loop again.

Interrupts are a significant SP source, since, in theory, every
interrupt could arrive at “any time”. Modeling them all can
result in a state explosion. In practice, however, plenty of
them are likely to be impossible because of logical or timing
constraints. The complexity of our algorithm scales with the
number of SPs, so omitting impossible ones is desirable. We
therefore optionally support specifying a task set belonging
to an interrupt and omitting the interrupt while any of such
tasks is executed to support the interrupt’s “logic of action”:
An interrupt should not interrupt its own handling routine.

Even though not yet completely supported in our imple-
mentation, our approach (to model interrupt sources as normal
programs and interrupt triggering as cross syscalls) makes it
possible to integrate additional (arbitrary complex) trigger
conditions into the analysis to further reduce the number
of SPs: For instance, it would be relatively easy to specify
by such program that the send-buffer-empty interrupt of a
communication device may only occur 10-20 msec after a
SendBuffer invocation or that a button-released IRQ may not
happen before a button-pressed. The same holds for platform-
specific hardware behavior: If the interrupt controller supports
advanced features, such as IRQ multicasts or round-robin or
priority-based routing of IRQs, this could be incorporated into
the implementation of the virtual cross syscall and its set of
affected cores.

VI. POSSIBLE APPLICATIONS

The MSTG represents all possible system states, which gives
us the knowledge to perform partial system-call specialization.
We have not yet implemented this or explored this in depth
– this is a topic of future work –, but want to provide
some first applications to demonstrate the potential of the
MSTG. For the single-core case, the MSTG matches the graph

produced by related work, namely the SSE, so all system-
call specializations are possible that are already detected by
it [8], [9]. In concrete, that are pre-calculating core local
scheduler decisions up to a static lookup table [10], applying
fault detection mechanisms to prevent transient hardware faults
and lay the base for more advanced techniques like tightening
the worst-case energy consumption or improving the memory
footprint through efficient stack sharing [11], [39]. While
not implementing them directly, we see no difficulties in
applying the optimizations based on the knowledge of the
MSTG instead of the single core equivalent. Pre-calculating
core local scheduler decisions and efficient stack sharing is
not meaningfully adaptable to work across cores but remains
functional in a multi-core environment. Applying additional
information for fault detection and tightening the worst-case
energy consumption should be extendable to work across cores
and may give additional benefits. Additionally, we can employ
the MultiSSE to detect further multi-core specific cases for
specialization.

1) Unnecessary IPIs: If an ActivateTask activates a task
on another core, the standard RTOS implementation will set
the target task state to “ready” and trigger an IPI to cause a
reschedule on the affected core. However, the costly IPI is
not necessary if we know for sure that the affected core will
be executing a task with a higher priority. The Trampoline
OS [4], an open source AUTOSAR implementation, mitigates
that that problem by sending the IPI only when necessary by
having a global scheduler with the high cost of a global kernel
lock, which also complicates a real-time analysis. The MSTG
gives us exactly this knowledge: If no SP originating from an
ActivateTask leads to the execution of this task in the resulting
MAbSS, we can safely omit the IPI.

For example, the ActivateTask(S01) (ABB 15) builds a
single SP. This SP only interrupts the execution of ABB 7,
thus rendering the IPI here useless.

The usage of SetEvent may also trigger an unnecessary IPI:
If a task waits for an event that has a higher priority than the
currently running one and that event is set from another core,
an IPI is necessary to trigger a reschedule. In all other cases,
the event just sets a flag in the task context. In the MSTG we
are able to detect these cases as well: If an SP that originates
from a SetEvent constructs a MAbSS with a waiting state in
a task and this specific task is running and not waiting in the
following MAbSSs anymore, we cannot avoid the IPI.

2) Lock Elision and Deadlock Detection: For locks, we
are able to detect several patterns: A deadlock happens, if a
GetSpinlock is executed on a core while already holding the
lock (recursive locking). The analysis catches this already at
construction time, since the system_semantic function has to
handle this case. Another source of deadlocks are nested locks
that are taken in different orders. This is forbidden by the
AUTOSAR specification, but not easy to check at compile
time, thus can happen in real implementations. However, with
the MSTG, all system-call orders are statically detected, so we
are able to check for incorrect lock nesting.

Taking a lock with GetSpinlock is unnecessary if we

2 3 4

5

10

15

20

Core count

Ru
nt

im
e

in
s×

10
4 without times

with times

Fig. 7: The algorithm’s runtime in dependence of the amount
of cores. All other parameters are hold constant. For every
core 150 systems are generated.

can prove that GetSpinlock does not spin at this point. If
all invocations of GetSpinlock on this lock never spin, the
complete lock could be elided. The MSTG contains the
necessary information to detect such a situation: If no MAbSS
after one call of GetSpinlock contains the lock in the spinning
state, the call is unnecessary. If no MAbSS contains the lock in
the spinning state, the complete lock is unnecessary.3 Dropping
the entire lock additionally frees the lock’s data and related
control structures.

In the example, the GetSpinlock(S1) (ABB 10) cannot
result in a spinning state. If we additionally consider timing
information, all locking operations cannot result in a spinning
state, which renders the whole lock useless.

VII. EVALUATION

To evaluate the findings of our approach and the resulting
freedom for system-call specialization, we implemented the
MultiSSE in ARA4, a whole system optimizer with a focus
on RTOS specialization based on LLVM [14], [25]. We imple-
mented the algorithm in more then 5000 LoC of Python/C++
(including 349 for the SSE core, 1681 specific for the MultiSSE,
1236 for the AUTOSAR model).

We applied the MultiSSE onto several different systems.
Thereby, we analyze the reduction of possible spinning states
for the spinlocks, avoidable IPIs and surely set events. We
compare the outcome of the MultiSSE with and without timing
information against the plain information from the system
specification. First, we analyze the conformance test cases from
the Trampoline [4] project. Second, we investigate the example
application and several handcrafted applications to demonstrate
its principle workings. Third, we analyze the I4Copter [37], a
safety-critical embedded real-time control system (quadrotor
helicopter) adapted to a dual-core platform. Fourth, we validate
the wider applicability by generating synthetic benchmarks
with varying characteristics.

A. Trampoline conformance tests

Trampoline is an open-source OSEK/VDX and AUTOSAR
compliant RTOS implementation [4]. To test the conformance
of the MultiSSE, we analyzed the provided multi-core related

3One may think that such unnecessary and, hence, guaranteed contention-
free lock taking is basically for free, but depending on the RTOS-internal
implementation and the target architecture, it may trigger costly cache-
coherence messages between cores [15]. On Linux, taking a lock on a single
core system results in a measurable performance impact [33].

4https://github.com/luhsra/ara

Sampling
3 ms

Digital
Sensor
Analog
Sensor

Signal
Processing

Positional
Data

Flight
Control

Actuator
Data Actuate

9 ms Update
Actuators

IP Stack
RC

Remote RX Copter
Control

WD
Counter Watchdog

10 ms

PanicSteering

1 1 2 2

2 2 2 1reset
+1 WD Counter > 25

Synchronized via Spinlock (Shared SPI Bus)

Fig. 8: I4Copter flight-controller application (adapted from
[37]). Eight tasks (grey) are mapped on two cores (green).

test cases and their applications (without additional timing
information). These applications use a broad set of the
AUTOSAR functionalities including task activations across
cores, spinlocks, alarms, interrupts, timers, and events. Thereby,
we are able to produce an MSTG for each of those 12
applications, which may be used for further optimizations.
As a first result, the analysis shows, that there are neither
superfluous locks nor situations resulting in an unexpected
deadlock.

B. The Example Application

Our example application of Figure 1 uses the spinlock S1

for mutual exclusion during a critical section. The system
specification permits three tasks to use the spinlock. Therefore,
all those tasks may possibly spin on this lock. Applying
MultiSSE without timing information results in an MSTG
consisting of 137 vertices connected via 816 edges. Using this
graph, we are able to detect that Task T11 never gets in conflict
with the other tasks acquiring the lock. Hence, those calls may
be elided from T11. As it is unclear how long the computation
phases of T02 and the delta between the activations of T02

and T01 are, no prediction about the need of an IPI for T01’s
activation is possible.

Taking timing information into account (Figure 2), further
reduction of the MSTG is possible. The resulting graph consists
of 70 fewer states and 603 fewer transitions. The analysis shows
that the activation of T01 always occurs during the computation
phase of the higher priority T02. Hence, the task activation
could be reduced to setting the ready bit. Sending an IPI
to trigger the scheduler could be omitted. This results in
less priority- inverting activity on Core 0 and less interrupt-
introduced jitter for the execution time of the high priority
task T02. Furthermore, no other task acquiring S1 results in no
spinning state, and hence, the spin-lock calls are useless and
can be removed.

C. The I4Copter

The I4Copter is an embedded real-time flight controller
software formerly designed for a single-core platform, that was
kindly provided to us by Ulbrich et al. [37]. For this evaluation,
we adapted the task set to distribute the two major components
sensor gathering and actuation onto two cores. Those two parts
work mostly without interference. The only shared resource is
the SPI bus. Therefore, we introduced a spinlock to mutually
exclude the access from the two cores. Figure 8 depicts the
components and their interworking.

Execution of the MultiSSE on an Intel i5-6400 quad-core
system with 32 GiB of main memory takes 12.79 seconds.
Applying MultiSSE generates an MSTG with 294 vertices
and 2143 edges. Applying timing information reduces it by
140 vertices (48%) and 1496 edges (70%). Since we assume
that BCET and WCET times are given by an additional
external analysis we generated times that represent the logical
application structure5. Additionally, the graph shows that the
spinlock, introduced to guard the SPI bus shared between the
two cores, will never result in a spinning state.

D. Synthetic Benchmarks

To validate the wider applicability and usefulness of our
approach and implementation, we systematically generated
synthetic applications. As a benchmark generator, we use the
(publicly available) generator presented in [11] and extended it
for multi-core systems. There are six parameters characterizing
the generated systems: #cores (2,4,6), #threads (up to 15 per
core), #spinlocks (1, 3), #lock-users (2, 6), #cross-core-task-
activations (10%), #events (0, 5). We use a pseudo-random
number generator with varying seed to get different but
reproducible results. The system generation consists of the
following steps: First, we create a directed acyclic thread-
dependency graph with #threads nodes. Those threads are
mapped onto the specified number of cores. We assign each
thread a unique random priority for priority-based scheduling.
Then, thread activation is distributed between core-local and
cross-core activation following the given percentage. Those
threads neither activated by a parent thread nor via a cross-core
activation are set to be automatically started at system startup.
For each spinlock, #lock-users using threads are chosen such
that all threads using a lock originate from different cores.
A single thread may use multiple locks and there may be
multiple threads on a single core accessing different locks.
Furthermore, we add additional #events dependencies resulting
in tasks waiting for events to be set from other tasks.

We generated 872 applications with varying parameters.
Executing the MultiSSE results in graphs with 464 nodes
and 2837 edges on average. Thereby, in total 1890 IPIs were
detected as avoidable. From the total of 7143 attempts to
acquire a spinlock, 4695 are detected to never result in a
spinning lock. The run-time of the MultiSSE for these examples
range from 23 s to 7825 s with a mean of 1893 s.

Applying randomly generated timing information regarding
best-case and worst-case execution times for each ABB, results
in an average reduction of the MSTG by 30 nodes (6%) and
476 edges (17%). The MultiSSE with timing information has a
run-time of 23 s to 7825 s with a mean of 1908 s. Additionally,
in Figure 7 we show the runtime dependent on the amount of
cores. For this test, we only varied the amount of cores while
holding every other variable constant.

5We selected the times based on an educated guess. Especially signal
processing and flight control calculation have a high payload and thus get
higher times assigned.

VIII. DISCUSSION

The biggest caveat of the MultiSSE is an exponential growing
of calculating every possible system state. We do mitigate this
by aggressively merging or omitting states whenever possible:

• We use ABBs as underlying control-flow representation. They
effectively reduce the control-flow states in contrast to basic
blocks or plain instruction by subsuming everything in one
block that is not relevant for the analysis.

• We merge single-core states, whenever possible. If the
analysis determines that an SP does not modify the local-
core state, it merges it with the prior state (and skips
further evaluations). For example, a GetSpinlock system call
modifies a global context and, thus, never a LAbSS.

• We build an SP only when it is of interest. An essential part of
the analysis consists of the calculation of the minimal set of
SPs required to still capture the effects of all cross syscalls.

Since the analysis belongs to the building process and thus is
executed only a few times, we see from the evaluation part that
the analysis overhead seems reasonable. Further reduction will
be possible by incorporating more knowledge about the RTCSs
into our analysis. The MultiSSE already utilizes worst/best-
case execution times to determine impossible SPs. In future
work, additional sources should be exploited to further reduce
the SPs amount: One example is to further explicit ordering
of semantically dependent system calls on different cores by
incorporating their temporal logic of actions [24]. Another
possibility is that application developers provide annotations
or explicit barriers as SP to bring all cores in sync at suitable
points within the application’s logic.

For timing calculations, the MultiSSE requires a stricter set of
real-time properties like bounded loops or falls back to disabling
them. Note, however, that having timing information is optional
– it just improves analysis results and time. Furthermore, the
availability of precise timing information is not an all-or-
nothing requirement. If the timing analysis fails for some
states, it can still be employed for the states after the next SP.

While we have not formally proven MultiSSE’s soundness,
we are convinced that it holds true. The analysis result is
an over-approximation in all cases, making too optimistic
optimizations impossible. Assuming the SSE’s soundness, we
only have to demonstrate soundness for cross-core interactions
added by MultiSSE. The OS specification and our system model
clearly restrict cross-core interactions to a finite set of system
calls and interrupts. Under the assumption of known system-
call arguments (already needed for the SSE), the MultiSSE
is sound by calculating the superset of all possible effects of
all system calls and interrupts. The MultiSSE aims not to be
correct, in doubt it always chooses the pessimistic approach,
which – in the worst case – may result in missing optimizations.

IX. RELATED WORK

System-call specialization based on static analysis is not
new. For dynamic embedded systems, Bertran et al. introduce
a global view of the interactions between application and

operating system by constructing a global control-flow graph
(CFG) [5] that connects the system-call entry point to their
corresponding application call sites. With that, they can
eliminate dead code of uncalled system call functions, which
reduces code size. Rajagopalan et al. [32] try to detect and
remove unused kernel parts by statically analyzing and rewriting
the kernel binary. In contrast to this work, both analyses respect
neither OS semantics nor multiple cores.

The first respecting OSEK semantics are Barthelmann
et al. [3]. They use it to reduce the costs of task context
switching. A static analyzer constructs an inference graph
describing the mutual preemptions of basic blocks, which
allows to facilitate an optimized inter-task register allocation
and static context switch code generation. In contrast to this
work, the analysis is flow insensitive. Hence, the influence
graph includes superfluous combinations which considering
task activations could avoid. Also, since the work uses OSEK
semantics, it targets only single-core systems.

Also, specializations exist for general-purpose operating
systems. Pu et al. developed the Synthesis kernel, which
includes a code synthesizer that produces application-dependent
optimized code paths at run time for frequently called system
calls [31]. They provide manually optimized templates which
are filled out during run-time which leads to an overall speed-up.
In contrast to the dynamic Synthesis system, our approach takes
place ahead of time, which also allows system call removals.

With SWAN [35], Schuster et al. developed a whole-system
WCET analyzer that builds a state transition graph to achieve
tighter bounds for the WCET. However, SWAN is not able to
model multi-core systems and does not aim for specialization.

Dietrich et al. introduced the SSE [8] which we used as a base
for the MultiSSE. While we share the algorithms for the single-
core analysis, we adapted the data structures and functions to
work for multiple cores. We additionally introduced the SPs
mechanism and completely changed the interrupt handling. As a
follow-up analysis for the SSE, Dietrich et al. further introduced
another method – the System-State Flow – to construct (much
faster) a more course-grained state graph that can be used
for similar specializations [9]. While this greatly reduces the
algorithm’s execution time, it does this at the cost of state
precision. For the MultiSSE, we need the full set of possible
states, from only which the full set of SPs can be constructed,
which is why we chose to build upon the SSE.

Regarding the use of spinlocks in embedded real-time
systems, Wieder et al demonstrate the problematic semantics
of spinlocks for schedulability analyses of multi-core real-time
applications [38]. With our approach, we are able to elide
the locks from the application or derive the order of lock
acquirements to further improve those analyses.

With special regard to multi-core analysis, Mittermayr
et al. modeled multi-core synchronization patterns with the help
of Kronecker-algebra, a method to model parallel executing
automata in form of a matrix [28], [29]. It represents all possible
intersections, which, with knowledge of barriers (semaphores),
is reducible to actual possible paths and computable in a lazy
way. While the resulting graph models cross-core interactions

in a flow-sensitive manner, it does concentrate on barriers only
and is not modeling other RTOS primitives. Furthermore, the
approach is not used for system-call specialization, but for
deadlock detection and WCET analysis. Haur et al. use high-
level colored time Petri nets to model a multi-core application
for AUTOSAR including the RTOS code [17], [18]. With their
approach, they were able to find incorrect locking patterns
within the RTOS code by formal analysis. However, in contrast
to our approach, they do not focus on unnecessary locks and
need to map manually from the application code to the model.
Miné et al. extended Astreé, an abstract interpreter to support
multi-core programs to which Kästner et al. later added support
for AUTOSAR applications [27], [21]. While they are doing
a flow-sensitive analysis and taking locks into account, they
collect all cross-core interactions in a flow-insensitive fact pool
and iterate the analysis until it becomes stable. While their
approach scales better and does not concentrate on operating
system facts only, they are neither flow sensitive between cores
nor take their possible orders into account. Schwarz et al.
transform multi-core programs into a set of constraints with
side effect to reason over all local and global flow paths [36]. In
contrast to the MultiSSE their approach detects run-time errors
regarding global data usage and works for POSIX threads.

Regarding deadlock detection, Engler et al. searched for
them via an interprocedural flow-sensitive but unsound static
analysis [12], which – in contrast to our approach – provides
false positives and aims application development. Kroening
et al. present a method for sound deadlock detection for the
C language using pthreads [23]. For that, they build a similar
control flow graph but construct a special lock graph, which
does not model arbitrary thread interactions.

X. CONCLUSIONS

With MultiSSE, we presented an algorithm that creates a
multi-core state transition graph of all possible cross-core
interactions in a partitioned real-time system. It works by
traversing the application’s CFG and iteratively building a
graph of all core-local RTOS states which it connects with
explicit synchronization points for a cross-core interaction.

To reduce the number of synchronization points, the algo-
rithm can additionally make use of externally provided timing
information. With that, we could reduce the MSTG vertices
up to 48% and edges up to 70%.

With help of the MSTG, we were able to extract the
necessary information for cross-core system-call specializations:
We showed the possibility of removing superfluous (not
spinning) locks and locking system calls and the possibility to
avoid IPIs that trigger an unnecessary reschedule. In addition to
this, the MSTG provides all necessary information for single-
core system-call specializations as described in prior works.

We have validated our approach with unit tests as well as 872
synthetically generated applications, showing 66% of attempts
to take a spinlock as useless and a total of 1890 of IPIs as
avoidable. Additionally, we applied our approach to an adapted
version of the I4Copter, an embedded real-time flight controller,
and were able to classify the existing lock as useless.

XI. ACKNOWLEDGMENTS

We like to thank the anonymous reviewers and our shepherd
for their feedback and fruitful comments. This work has been
supported by the German Research Foundation (DFG) under
the grant no. LO 1719/4-1.

The source code and evaluation artifacts are available at:
https://www.sra.uni-hannover.de//p/multisse-rtas23

REFERENCES

[1] AEEC. Avionics application software standard interface (ARINC
specification 653p1-4), 2015.

[2] AUTOSAR. Specification of operating system (version 5.1.0). Technical
report, Automotive Open System Architecture GbR, February 2013.

[3] Volker Barthelmann. Inter-task register-allocation for static operating
systems. In Proceedings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES/SCOPES ’02), pages 149–154,
New York, NY, USA, 2002. ACM Press. doi:10.1145/513829.513855.

[4] Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou, and Yvon
Trinquet. Trampoline: An OpenSource implementation of the OS-
EK/VDX RTOS specification. In IEEE Conference on Emerging
Technologies and Factory Automation, 2006. ETFA ’06., pages 62–69,
Washington, DC, USA, September 2006. IEEE Computer Society Press.
doi:10.1109/ETFA.2006.355432.

[5] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis
Vilanova, Enric Morancho, and Nacho Navarro. Building a global system
view for optimization purposes. In Proceedings of the 2nd Workshop on
the Interaction between Operating Systems and Computer Architecture
(WIOSCA ’06), Washington, DC, USA, June 2006. IEEE Computer
Society Press.

[6] Jim Cooling. Software Engineering for Real-Time Systems. Addison-
Wesley, 2003.

[7] Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, and Dionisio de Niz.
Predictable interrupt management for real time kernels over conventional
PC hardware. In Proceedings of the 12th IEEE International Symposium
on Real-Time and Embedded Technology and Applications (RTAS ’06),
pages 14–23, Los Alamitos, CA, USA, 2006. IEEE Computer Society
Press. doi:10.1109/RTAS.2006.34.

[8] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Cross-
kernel control-flow-graph analysis for event-driven real-time systems.
In Proceedings of the 2015 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systems (LCTES ’15),
New York, NY, USA, June 2015. ACM Press. doi:10.1145/2670529.

2754963.
[9] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Global

optimization of fixed-priority real-time systems by RTOS-aware control-
flow analysis. ACM Transactions on Embedded Computing Systems,
16(2):35:1–35:25, 2017. doi:10.1145/2950053.

[10] Christian Dietrich and Daniel Lohmann. OSEK-V: Application-specific
RTOS instantiation in hardware. In Proceedings of the 2017 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES ’17), New York, NY, USA, June 2017. ACM
Press. doi:10.1145/3078633.3078637.

[11] Christian Dietrich and Daniel Lohmann. Semi-extended tasks: Efficient
stack sharing among blocking threads. In Sebastian Altmeyer, editor,
Proceedings of the 39th IEEE Real-Time Systems Symposium 2018,
Nashville, Tennessee, USA, 2018. IEEE Computer Society Press. doi:

10.1109/RTSS.2018.00049.
[12] Dawson Engler and Ken Ashcraft. Racerx: effective, static detection

of race conditions and deadlocks. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 237–252,
New York, NY, USA, 2003. ACM Press. doi:10.1145/945445.945468.

[13] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Deriving wcet
bounds by abstract execution. In ECRTS 2011, 2011.

[14] Björn Fiedler, Gerion Entrup, Christian Dietrich, and Daniel Lohmann.
ARA: Static initialization of dynamically-created system objects. In
Proceedings of the 27th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’21), pages 400–412, May 2021.
doi:10.1109/RTAS52030.2021.00039.

[15] Andy Glew and Wen-Mei Hwu. Snoopy cache test-and-test-and-set
without execessive bus contention. SIGARCH Comput. Archit. News,
18(2):25–32, may 1990. doi:10.1145/88237.88240.

[16] Per Hammarlund, James B. Crossland, Shivnandan D. Kaushik, and Anil
Aggarwal. Inter-processor interrupts, 2003. US Patent 8,984,199 B2.
URL: https://patents.google.com/patent/US8984199B2/en.

[17] Imane Haur, Jean-Luc Béchennec, and Olivier Henri Roux. Formal
schedulability analysis based on multi-core RTOS model. In 29th Inter-
national Conference on Real-Time Networks and Systems, RTNS’2021,
page 216–225, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3453417.3453437.

[18] Imane Haur, Jean-Luc Béchennec, and Olivier H. Roux. Formal
verification of the inter-core synchronization of a multi-core rtos kernel.
In Adrian Riesco and Min Zhang, editors, Formal Methods and Software
Engineering, page 140–155. Springer International Publishing, 2022.

[19] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In Proceedings of the 30th
IEEE International Symposium on Real-Time Systems (RTSS ’09), pages
204–213. IEEE Computer Society Press, December 2009. doi:10.1109/

RTSS.2009.18.
[20] Niklas Holsti. Computing time as a program variable: a way around

infeasible paths. In Raimund Kirner, editor, 8th International Workshop
on Worst-Case Execution Time Analysis (WCET’08), volume 8 of
OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany, 2008.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. also published
in print by Austrian Computer Society (OCG) with ISBN 978-3-
85403-237-3. URL: http://drops.dagstuhl.de/opus/volltexte/2008/1660,
doi:10.4230/OASIcs.WCET.2008.1660.

[21] Daniel Kaestner, Antoine Miné, Andrew Schmidt, Heinz Hille, Laurent
Mauborgne, Stephan Wilhelm, Xavier Rival, Jérôme Feret, Patrick Cousot,
and Christian Ferdinand. Finding all potential run-time errors and data
races in automotive software. volume 2017-March. SAE International,
2017. doi:10.4271/2017-01-0054.

[22] L. G. Khachiyan. A polynomial algorithm in linear programming, volume
244. 1979.

[23] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and Björn Wachter.
Sound static deadlock analysis for c/pthreads. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, page 379–390, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2970276.2970309.

[24] Leslie Lamport. The temporal logic of actions. ACM Trans. Program.
Lang. Syst., 16(3):872–923, may 1994. doi:10.1145/177492.177726.

[25] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Washington, DC, USA, March 2004. IEEE Computer Society
Press.

[26] Peter Marwedel. Embedded System Design. Springer-Verlag, Heidelberg,
Germany, 2006.

[27] Antoine Miné. Static analysis of run-time errors in embedded real-time
parallel c programs. Logical Methods in Computer Science, 8(1), mar
2012. URL: https://doi.org/10.2168%2Flmcs-8%281%3A26%292012,
doi:10.2168/lmcs-8(1:26)2012.

[28] Robert Mittermayr and Johann Blieberger. A generic graph model for
wcet analysis of multi-core concurrent applications. Journal of Software
Engineering and Applications, 9:182–198, 01 2016. doi:10.4236/jsea.

2016.95015.
[29] Robert Mittermayr and Johann Blieberger. Deadlock and wcet analysis

of barrier-synchronized concurrent programs. Computing, 103:749–770,
2021. doi:10.1007/s00607-017-0555-8.

[30] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, February 2005. http://portal.osek-vdx.org/
files/pdf/specs/os223.pdf, visited 2014-09-29.

[31] Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis kernel.
Computing Systems, 1(1):11–32, 1988.

[32] Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen, and
Richard D. Schlichting. Automatic operating system specialization via
binary rewriting. 2005.

[33] Florian Rommel, Christian Dietrich, Michael Rodin, and Daniel Lohmann.
Multiverse: Compiler-assisted management of dynamic variability in low-
level system software. In Fourteenth EuroSys Conference 2019 (EuroSys

’19), New York, NY, USA, 2019. ACM Press. doi:10.1145/3302424.

3303959.

[34] Fabian Scheler and Wolfgang Schröder-Preikschat. The RTSC: Lever-
aging the migration from event-triggered to time-triggered systems. In
Proceedings of the 13th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’10), pages 34–
41, Washington, DC, USA, May 2010. IEEE Computer Society Press.
doi:10.1109/ISORC.2010.11.

[35] Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Proving real-time capability of generic operating systems by
system-aware timing analysis. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 318–330, 2019.
doi:10.1109/RTAS.2019.00034.

[36] Michael Schwarz, Simmo Saan, Helmut Seidl, Kalmer Apinis, Julian
Erhard, and Vesal Vojdani. Improving thread-modular abstract interpreta-
tion. In Cezara Drăgoi, Suvam Mukherjee, and Kedar Namjoshi, editors,
Static Analysis, pages 359–383. Springer International Publishing, 2021.

[37] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and
Wolfgang Schröder-Preikschat. I4Copter: An adaptable and modular
quadrotor platform. In Proceedings of the 26th ACM Symposium on
Applied Computing (SAC ’11), pages 380–396, New York, NY, USA,
2011. ACM Press.

[38] Alexander Wieder and Björn B. Brandenburg. On spin locks in
AUTOSAR: Blocking analysis of FIFO, unordered, and priority-ordered
spin locks. In Proceedings of the 34th IEEE International Symposium
on Real-Time Systems (RTSS ’13), pages 45–56. IEEE Computer Society
Press, December 2013. doi:10.1109/RTSS.2013.13.

[39] Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich,
and Wolfgang Schröder-Preikschat. Whole-system worst-case energy-
consumption analysis for energy-constrained real-time systems. In
Sebastian Altmeyer, editor, Proceedings of the 30th Euromicro Conference
on Real-Time Systems 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.ECRTS.2018.24.

[40] Zephyr Project homepage. https://www.zephyrproject.org/.

