
100 COMMUNICATIONS OF THE ACM | MAY 2022 | VOL. 65 | NO. 5

Technical Perspective
‘What Is the Ideal Operating System?’
By Daniel Lohmann

kernel for your specific use case. The
results are compelling: Code size and
attack surface are reduced by 50%–80%,
known vulnerabilities by 34%–74%. Nev-
ertheless, even 10 years after becoming
available1 and even though trends like
function-as-a-service have led to a mas-
sive increase of dedicated VMs running
in the cloud, automatic kernel tailoring
is still not employed in practice. Why is
that the case?

In the following paper, the authors
put a fresh view on the practicability
of automatic kernel debloating. They
take the stand of a cloud-service inte-
grator to analyze the shortcomings and
obstacles of the existing techniques
and overcome them in an easy-to-
use tool named COZART. Their main
technical contribution, besides an im-
proved approach to detect the required
kernel features, is the introduction
of composability of platform-specific
and application-specific kernel feature
sets, which significantly reduces effort
when preparing a tailored VM for func-
tion-as-a-service scenarios.

However, their paper is of much
broader interest, as it also shows us
that the (felt) abundance of comput-
ing resources has led our discipline to
become careless and our software sys-
tems to include way too much cruft. We
all teach our students how to use and
design extensible software systems.
But the more challenging part really is
to design software that is shrinkable.	

Reference
1.	 Tartler, R. et al. Automatic OS kernel TCB reduction

by leveraging compile-time configurability. In
Proceedings of the 8th Intern. Workshop on Hot Topics
in System Dependability, 2012, USENIX Assoc.

Daniel Lohmann is a professor at Leibniz Universität
Hannover, Germany.

Copyright held by author.

MY OPE N IN G QUE STION for oral exams
is an icebreaker for nervous students
because no answer is wrong. It always
depends on the application.

Operating systems (OSs) provide no
business value on their own. Their sole
purpose is to ease the development,
integration, and operation of applica-
tions—that is, to provide the “right”
set of abstractions and policies (and
map them efficiently to the underlying
hardware) for a particular application
use case. The application use case may
be your general-purpose desktop com-
puter, an embedded real-time system,
or your business service running in the
cloud. The ideal OS provides exactly
what is needed for your application—
but nothing more.

Fulfilling the what-is-needed part,
that is, the functional requirements,
has become relatively easy. Linux, for
instance, supports about 30 differ-
ent hardware architectures and ap-
plication domains from embedded
real-time systems up to ultra-scale
servers. It is the nothing-more part (a
nonfunctional requirement) that is
challenging. The enormous versatili-
ty of modern OSs comes at the price of
a significant code and memory bloat:
Approximately 50%–80% of the OS
code remains unused. Even though
many users tend to not care about a
few MiB of RAM and a few GiB of disk
space taken by cruft (“RAM is cheap.
Disks are even cheaper.”), this never-
theless comes at a price:

	˲ Bloat scales. What may appear neg-
ligible for a single system leads to sig-
nificant hardware and energy costs for
cloud providers, who host thousands
of these systems. Code that is not there
does neither prolong boot time nor
consume memory or network band-
width.

	˲ Increased attack surface. While you
may have no use for feature X, an at-
tacker might be more than happy about
its presence on your system. Code that
isn’t there cannot be abused.

	˲ Higher maintenance efforts. Patch-
ing your systems early and, thus, way

too often? Code that is not there does
not need to be patched.

System software developers are
aware of these problems but are caught
between the conflicting demands of
broad versatility and case-specific ef-
ficiency. To overcome this dilemma
and make everybody happy, most OSs
support a broad range of features and
hardware platforms but can be tailored
at compile-time with respect to a spe-
cific use case, often by means of condi-
tional compilation as shown in accom-
panying listing.

In Linux, support for symmetric mul-
tiprocessing (SMP) is an optional fea-
ture and the feature flag CONFIG_SMP
is used throughout the kernel code (it is
said to be an “#ifdef hell”) to tailor
its implementation for single- or multi-
core operation. The Kconfig frontend
(just enter “make menuconfig”)
presents all available features and
their dependencies for configuration
in a tree-like structure. Hence, you can
tailor Linux to provide exactly what is
needed for your application—the ideal
OS is at your fingertips!

The only thing is Linux already pro-
vides more than 17,000 such CONFIG_
flags—and keeps on growing. So which
ones do you need? OS tailoring has not
only become a more than tedious task,
it also still requires profound expert
knowledge. It is understandable that
people prefer the include-all standard
configuration.

This is where approaches for auto-
matic kernel tailoring (and, thus, de-
bloating) come into play. In a nutshell,
they first “measure” the features needed
by your application while executing on
an (instrumented) include-all kernel. In
the second step, this information is then
aggregated to derive a tailored kernel
configuration and build a specialized

To view the accompanying paper,
visit doi.acm.org/10.1145/3524301 rh

research highlights

DOI:10.1145/3524299

inline void spin_irq_lock(raw spinlock t *lock) {
 irq_disable();
#ifdef CONFIG_SMP
 spin_acquire(&lock)
#endif
}

http://dx.doi.org/10.1145/3524299
http://doi.acm.org/10.1145/3524301

