
TASTING: Reuse Test-Case Execution by Global AST Hashing

Tobias Landsberg1 a, Christian Dietrich2 b and Daniel Lohmann1 c

1Leibniz Universität Hannover, Germany
2Technische Universität Hamburg, Germany

landsberg@sra.uni-hannover.de, christian.dietrich@tuhh.de, lohmann@sra.uni-hannover.de

Keywords: Regression Test Selection, Testing, Continuous Integration, Static Analysis.

Abstract: We describe TASTING, an approach for efficiently selecting and reusing regression-test executions across
program changes, branches, and variants in continuous integration settings. Instead of detecting changes
between two variants of the software-under-test, TASTING recursively composes hashes of the defining
elements with all their dependencies on AST-level at compile time into a semantic fingerprint of the test and
its execution environment. This fingerprint is easy to store and remains stable across changes if the test’s
run-time behavior is not affected. Thereby, we can reuse test results across the history, multiple branches, and
static compile-time variants. We applied TASTING to three open-source projects (Zephyr, OpenSSL, FFmpeg).
Over their development history, we can omit between 10 percent (FFmpeg) and 95 percent (Zephyr) of all test
executions at a moderate increase in build time. Furthermore, TASTING enables even higher savings across
multiple checkouts (e.g., forks, branches, clones) and static software variants. Over the first changes to 131
OpenSSL forks, TASTING avoids 56 percent redundant test executions; for the Zephyr test matrix (64 variants),
we reduce the number of test executions by 94 percent.

1 INTRODUCTION

Automated regression testing, that is, the repeated test-
ing of an already tested program after a fine-grained
software modification, has become standard prac-
tice (Yoo and Harman, 2012). However, testing takes
considerable time and resources, so executing all tests
after each change (the retest-all approach) is neither
viable nor scalable (Rothermel et al., 1999). Hence,
regression-test selection (RTS) (Rothermel and Har-
rold, 1996), which is the task of selecting a relevant
test subset T ′ ⊆ T for a given change S→ S′ to the
software-under-test (SUT) S, remains a challenging
problem. Such techniques are sound (sometimes called
safe (Elbaum et al., 2014)) if they at least select those
tests that reveal faults that were introduced by S→ S′.

In continuous integration (CI) settings, RTS be-
comes a lot more severe (Elbaum et al., 2014) as
developers frequently merge their changes with the
mainline (Duvall et al., 2007) and run test suites after
each commit. Further, multiple branches and statically
configured variants are often maintained in parallel.
With the shift to decentralized version control systems,
branching development models did not only become
ubiquitous, but the average size of commits also de-
creased by about 30 percent (Brindescu et al., 2014).
With history rewriting, mailing-list patches, and patch-

set evolution, the same (partial) change may even occur
in different branches and commits (Ramsauer et al.,
2019). As this can lead to thousands of to-be-retested
versions per day (Elbaum et al., 2014; Memon et al.,
2017), it becomes crucial to reuse test executions not
only between two versions S and S′ in a linear history
but to track test results across checkouts (i.e., forks,
branches, variants, and versions) of the SUT.

With conventional RTS, this would result in an
N×N-comparison matrix (N checkouts) as they work
change-based, exactly comparing the two versions
(S, S′) to select the to-be-executed tests T ′. While
the granularity of this comparison differs (e.g., text-
based (Vokolos and Frankl, 1997), statement (Rother-
mel and Harrold, 1996), function (Chen et al., 1994;
Ren et al., 2004), file level (Gligoric et al., 2015)),
the current version would have to be compared with a
(potentially) large number of predecessors in a multi-
checkout setting – which becomes too expensive with
respect to computation time and disk space. Hence,
change-based RTS approaches do not reuse test re-
sults across multiple checkouts but assume each as an
independent linear history that needs separate testing.
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Figure 1: Application of TASTING to a history with four versions. For each test (T1, T2), we calculate the fingerprint from the
AST hashes and consult the test history for fingerprint-result entries to avoid the test re-executions (X).

1.1 About this Paper

We propose TASTING, a new content-based and sound
RTS strategy to efficiently reduce test re-execution
across branches, histories, developers, and other
sources of variation. Instead of comparing SUT vari-
ants for test selection, TASTING composes hashes
of the software’s defining syntactical elements (i.e.,
nodes in the abstract syntax tree (AST)) and their de-
pendencies in a bottom-up manner. We integrate these
hashes, in linear time, into a semantic fingerprint of
the execution environment provided by the entry func-
tion of the concrete test. Fingerprints are guaranteed to
alter for any change that might impact the test behavior
– if they remain stable, we can avoid the re-execution.
Thereby, test results can be efficiently stored and then
reused over variants and an arbitrary complex branch
or version history.

1.2 Our Contribution

For this paper, we claim the following contributions.

1. We present the concept of composable, hash-based
semantic fingerprints that capture program behav-
ior and enable arbitrarily-grained change impact
analyses in linear time.

2. We present TASTING, an application of our ap-
proach to the RTS problem.

3. We evaluate TASTING with three open-source
projects, where it omits up to 95 percent of all test
executions at a moderate increase in build time.

In the following Sec. 2, we describe the TASTING
approach in detail, followed by its implementation for
RTS in Sec. 3. In Sec. 4, we evaluate and validate the
approach and implementation. We discuss benefits,
limitations, and threats to validity in Sec. 5, related
work in Sec. 6, and finally conclude in Sec. 7.

2 SEMANTIC FINGERPRINTS

The TASTING approach is a method to characterize
the potential run-time behavior of a test-case execu-
tion with a semantic fingerprint that is guaranteed to
change if the behavior could change. By associating
this over-approximating fingerprint with previously-
run test executions, we can track results across multi-
ple versions and checkouts. With a fingerprint–result
database, we can reuse previous test results for new
incoming changes. TASTING performs a static anal-
ysis within the compiler and in the linking stage to
calculate and combine hashes over the AST.

Fig. 1 sketches our approach: In the build stage,
we calculate a global AST hash for each function. In
a reachability analysis from the test’s entry function,
we combine the hashes of all referenceable functions
into the semantic fingerprint, which we use to search
in the associative test history. For the initial commit,
we execute all tests as the test history is still empty.
The following C1 and C2 each modify a single function
impacting T1’s or T2’s fingerprint, for which we re-
execute the test case and store its result, while the
other fingerprint is found in the test history and we
omit re-execution. Although C3 impacts T1, it reverts
C1, whereby the T1’s fingerprint changes back to its
initial fingerprint.

2.1 System- and Test Model

The SUT consists of components (e.g., functions) that
activate each other (i.e., call) to achieve the desired pro-
gram behavior. Further, we allow for component refer-
ences (i.e., function pointers) that are passed around
and activated later on (i.e., indirect call) whereby we
cover virtual functions and late dispatch. We demand
that references are created explicitly and statically (i.e.,
obtained by taking a function’s address but not by dy-
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Figure 2: Overview of the TASTING Approach for Global AST Hash Calculation.

namic introspection), that the source code is available,
and that all activation sites and component accesses (to
global variables) are statically known and extractable.
Since we want to cover test-execution scenarios of
statically-compiled languages, like C/C++, we con-
sider these requirements as broadly applicable.

For each test, we require a list of the components-
under-test, which can either be an explicit listing or
a test program that adheres to the same rules as the
SUT and that activates the to-be-tested components.
We demand that tests are stable: For the same program
version, a test either fails deterministically or it passes
deterministically, but it never changes its result for
different re-executions. If a test uses external files or
network as inputs, they must be modeled as passive
and stable components that the test accesses.

Without loss of generality, we will use a more con-
crete exemplary model for the rest of this paper: The
SUT is a C program (or library) that is decomposed
into different translation units, which are linked into
a final binary. Each test is a separate program that we
link with some (or all) of the SUT’s translation units
and that performs the functional testing by calling a
subset of the SUT’s functions. If a test depends on
an external file, its contents get included as a global
variable. In total, the test suite consists of separate and
independent test binaries that validate different aspects
of the SUT. This structure suits the timestamp-based
change tracking of make and, hence, is common for
many existing projects.

2.2 Local AST Hashes

We calculate a test’s semantic fingerprint in two steps:
First, we calculate the local hash for each function
and each global variable, which captures the directly-
enclosed syntactic AST nodes (e.g., initializers, state-
ments) and the static cross-tree references (e.g., types,
function declarations). In a second step (Sec. 2.3), we
combine these local hashes into a global hash for each

function. In combination, the global hashes of the
tested components make up the semantic fingerprint
that identifies the version-specific test-case behavior.

For the first step, we employ cHash (Dietrich et al.,
2017), which uses AST hashes to avoid unnecessary
recompilations: cHash recursively visits (see Fig. 2)
all AST nodes of a translation unit (TU) that influence
the resulting binary and propagates hashes from the
leaf nodes upwards in style of a Merkle tree (Merkle,
1982). For static cross-tree references (e.g., a variable
definition references a type declaration), cHash cal-
culates and includes the hash for the referenced node
into the referrer-node hash. If the cross-tree reference
points to a definition (e.g., has a function body), only
the declaration (e.g., signature) is used. At the end,
cHash compares the top-level hashes of the current and
previous compilation run and aborts the compilation
early on a match, avoiding costly optimization steps.
While AST hashing is a technique to accelerate incre-
mental rebuilds, it is also well-suited for fine-grained
change-impact analyses.

In general, the AST hash of an object captures all
elements (including type and global-variable declara-
tions) that potentially influence the binary represen-
tation of that object; if the hash remains stable, the
binary is guaranteed to remain stable. This property
does not only hold true for the TU level but also for
more fine-grained levels (i.e., function level) if we stop
the upwards-propagation early. Furthermore, as cHash
uses AST information, it is able to ignore purely tex-
tual changes, like coding-style updates or comment
modifications. Therefore, we can use AST hashes of
functions and global variables, which we will call local
hashes, to identify equal variants across the history and
different checkouts. Another benefit of cHash (which
works as a Clang plugin) is its low overhead due to it
operating on the AST, which is required for compila-
tion anyhow, and its use of a fast non-cryptographic
hash function.

While we will present TASTING as an extension



of cHash, we are not limited to cHash but other fine-
grained change impact analyses can be used as well.
For this, we demand that a component-local hash
method h() and a link function l() which enumerates
all directly referenced, accessed, or activated compo-
nents, are available. For example, we could also calcu-
late the function-local hashes over the compiler’s inter-
mediate representation or over the resulting assembler
opcodes. Please note that we also treat passive ele-
ments, like global variables or virtual-function tables,
as components. In Sec. 5, we will discuss the benefits
of performing the static change-impact analysis on the
AST level instead of IR or binary level.

2.3 Global Hash and Fingerprints

Local hashes have a static prediction quality: If two
functions have the same local hash, they contain the
same operations in the same order and structure. How-
ever, even if invoked with the same arguments, both
can behave differently due to a call to a function with
differing behavior. In order to lift the prediction from
the static code level to the dynamic behavioral level,
we calculate the global AST hashes, which we combine
for each test case into the semantic fingerprint.

For this, we recursively define the global hash H()
with the local-hash function h() and the link func-
tion l(), which spans a directed (potentially cycling)
component-reference graph. In this graph, edges indi-
cate a function call, an access to a global variable, or
the calculation of a function- or global variable pointer.
Thereby, global variables and their initialization values
are modeled as leaf functions with no outgoing edges.
On this graph, we also use a helper function SC( f )
that calculates the strongly connected subgraph for a
function f .

H( f0) = h( f0)⊕

 ⊕
f∈l( f0)\SC( f0)

H( f )


︸ ︷︷ ︸

child functions

⊕

 ⊕
f∈SC( f0)\{ f0}

h( f )


︸ ︷︷ ︸

recursive group

The global hash of a function is the hashed concate-
nation (⊕) of its own local hash and the global hashes
of all its child functions. However, since many real-
world programs contain recursion, we treat recursive
graph-structures specifically: With SC( f0), we find all
functions that are within the same recursive group as
f0 and could call f0 recursively. For these, we include
the local hashes to avoid cyclic dependencies for the
hash calculation. In order to make the global-hash
calculation as deterministic as possible, SC() and l()
return function-name–sorted lists.

Fig. 2 shows a simplified example of global hash
calculation: Since f() is a leaf function, its local hash

( 74 ) is directly used as the global hash ( 74 ). For g(),
which calls f(), we combine its local hash ( 62 ) with
f()’s global hash. As function k() accesses the global
variable GV, we include f()’s global hash as well as
the hash of GV to account for its potential influence
on k()’s behavior. To handle the strongly connected
recursive group {o(), m()}, we only include their
respective local hashes ( 01 / 21 ) into the global hash.

After the global-hash calculation, we derive the
semantic fingerprint for a test case by collecting and
hashing the global hashes of all relevant functions,
which are provided by our test model (Sec. 2.1), for the
respective test. Thereby, we cover all SUT functions
that the test can call and all preparation code from the
test case itself. In our exemplary model, it suffices to
use the global hash of the test case’s main() function
as tests are self-contained executables.

Semantic fingerprints cover all potentially influenc-
ing functions, global variables, and initializers from
the test and the SUT, and, therefore, they are an identi-
fier for the test case’s execution behavior. Rooted in the
change-prediction quality of the local hash, test cases
with an identical fingerprint will have the same test
outcome. Thus, whenever a fingerprint appears for the
second time on the same branch, a different branch, or
even within a different source code repository, we can
avoid re-execution and reuse the previous test result.
Hence, it enables the creation of a fingerprint–result
database in a large CI setup.

2.4 Soundness Considerations

In the following, we discuss that semantic fingerprints
are a sound over-approximation to capture the influ-
ence of source code changes on the run-time behavior.
Thereby, we assume that hash collisions are unprob-
lematic. Otherwise, we could use a hash function (even
cryptographic) with a smaller collision probability.

From our test model, we know that the same func-
tion, called with the same inputs in the same execution
context (i.e., input parameters, global state), will yield
the same result. Therefore, its behavior can change
when (A) the function itself changes or (B) if its exe-
cution context changes.

For scenario A, we argue that a code change mod-
ifying the function’s binary body will influence the
function’s local AST hash, which propagates to its
global hash and the fingerprint. Consequently, as long
as the local hash is sound, the global AST hash will
also change on a scenario-A behavioral change.

In scenario B, we look at data that flows into the
function: Every datum flowing into our function must
be produced at some other point in the program. In
our test model (see Sec. 2.1), where all inputs are ex-
pressed in the form of source code, data flows can only



t y p e d e f ( boo l ) ( f u n _ t * ) ( ) ;

f u n _ t s e l e c t F n ( ) { // global hash: d2↔ 5a
- return &alwaysTrue;
+ return &alwaysFalse;
}
void exec ( f u n _ t c a l l b a c k ) { // global hash: 73↔ 73

i f ( c a l l b a c k ( ) )
t e s t _ s u c c e e d ( ) ;

e l s e
t e s t _ f a i l ( ) ;

}
void main ( ) { // global hash: 6b↔ 9c

f u n _ t fn = s e l e c t F n ( ) ;
exec ( fn ) ;

}

Figure 3: Two programs (v1, v2) with an altered data flow.

change if a source code change happened in another
part of the SUT. As long as the fingerprint covers
those functions, we correctly capture the behavior of
the test. It is important to note that a function’s global
hash can remain stable even if its input changes; only
the combination of all relevant global hashes into the
semantic fingerprint is predictive of the test’s behavior.

To illustrate this, Fig. 3 shows a test that passes
around a function pointer (with type fun_t), whose
return value determines the result of the test-case ex-
ecution. With the change v1→v2, selectFn() re-
turns a different function pointer to main(), which
feeds it into exec(). While this change changes the
global hash of selectFn() and main(), the global
hash of exec() remains stable, as selectFn() is not
in its link set. Thus, in the context of the whole test,
exec()’s hash remains stable although its behavior
changes. Nevertheless, since TASTING will use the
global hash of main(), which includes the hashes of
the other two functions, as the test’s fingerprint, it still
correctly identifies the test-execution behavior.

3 IMPLEMENTATION

We base our TASTING prototype on the cHash (Diet-
rich et al., 2017) Clang plugin, which calculates local
AST hashes (see Sec. 2.2) for C translation units. As
cHash has only rudimentary support for C++, we are
currently limited to C projects.

We modified cHash to export local hashes for each
top-level function and each global variable of a TU.
We inspect those AST nodes (i.e., calls and addressof)
that create cross-component references, whereby we
gather the necessary information for h() and l(). We
embed this information as a separate ELF (Executable
and Linkable Format) section, which is discarded in
the linking process, into the object files. As hash func-
tion, we use the non-cryptographic hash MurMur31.

Large projects use complex build systems, and
often also custom linker scripts, to drive the static-
linking process. As it is crucial for us to know which

components get included in a specific (test) binary, we
instruct the linker to output its cross-reference table
(CRT), which describes which symbol got selected
from which object file. In combination with the cHash-
supplied data, we can build the complete reference
graph l() for the project. To also cover files without
fine-grained data (e.g., compiled assembler), we hash
the whole object file as a fallback. Since metadata
generation is enabled via command-line switches and
the cHash data is integrated as separate sections into
the object files, TASTING is easy to integrate with
complex build systems even if object files are collected
and moved around (i.e., static libraries). From the
developer’s perspective, TASTING is as non-invasive
as adding a few compiler- and linker flags.

For the global-hash calculation, we construct a
single reference graph of all executables, test cases,
and libraries, requiring the calculation of each global
hash only once even if a function ends up in multiple
executables. For each executable and test case (see
Sec. 2.1), we use the global hash of the respective
main() as the semantic fingerprint.

For the fingerprint–result database, we currently
only store information for one previous build and
compare the fingerprint of the to-be-executed test
cases against that data set. However, a centralized
fingerprint–result database that even works for a larger
build–test farm could be built on the base of a simple
key–value store, like memcached.

4 EVALUATION

For our evaluation, we use three open-source projects
from different domains as case studies to validate
our prototypical implementation and quantify its over-
heads and end-to-end time savings. For this, we apply
TASTING to parts of the project’s development his-
tory and compare build times, testing times, and the
number of test-case executions. We also show that
storability is the major benefit of semantic fingerprints
by demonstrating the shortcomings of change-based
RTS when it comes to a non-linear change history and
static compile-time variants.

4.1 Case Studies

We apply TASTING to Zephyr2, OpenSSL3, and FFm-
peg4. We chose these projects as they are open-source,

1. https://github.com/aappleby/smhasher
2. https://zephyrproject.org
3. https://www.openssl.org
4. https://ffmpeg.org

https://github.com/aappleby/smhasher
https://zephyrproject.org
https://www.openssl.org
https://ffmpeg.org


written in C, and are representative of different soft-
ware classes (i.e., operating system, library, applica-
tion). Also, they use different test-case execution
schemes, requiring TASTING to be adaptable: Zephyr
orchestrates its test suite with Python, OpenSSL uti-
lizes Perl, and FFmpeg’s test suite fully relies on make.
From each source code repository, we selected 100-
150 recent, successive commits and identified a set of
relevant test cases.

Although we executed all relevant test cases, we
differentiate between unit tests and integration tests.
Because classifying a test based on its intention is
difficult (Trautsch et al., 2020), we apply a technical
definition: While integration tests execute binaries that
are deployed to the user, unit-test binaries are purely
built for testing external and internal APIs of the SUT.
For example, in OpenSSL we label all tests that invoke
the openssl binary as integration tests.

Zephyr is an embedded, scalable, real-time op-
erating system that supports nine processor architec-
tures and over 200 hardware boards. At the first
evaluated commit, Zephyr had 18,263 KLOC5, includ-
ing 5.9 KLOC assembler, divided into 36 modules.
Over all architectures and boards, the complete test
suite comprises over 10,000 test cases. For our eval-
uation, we focus on the native_posix architecture
and its regression-test suite of 398 tests, whereby
we mimic the situation of a single CI job that runs
the architecture-specific test suite for all incoming
changes. Since Zephyr is built as a software product
line, each regression test comes with its own operating
system (OS) configuration and results in an application-
specific OS library. Therefore, we do not differentiate
between unit and integration tests, and we have to
calculate one reference graph for each test case in-
stead of sharing it between all tests for a given commit.
Zephyr’s repository has over 50,000 commits from
which we selected the 150 latest ones (73b29d68 to
5ee6793e) for our evaluation.

OpenSSL is first and foremost a library that pro-
vides cryptographic primitives and TLS/SSL-secured
connections, but it also ships the openssl tool that pro-
vides a UNIX-like interface for its cryptographic prim-
itives. OpenSSL has 693 KLOC5, including 76 KLOC
assembler, divided into two libraries and 124 regres-
sion tests (including 96 unit tests). From the nearly
29,000 commits in the repository, we selected the
118 commits between the releases 1.1.1g and 1.1.1h,
thereby covering a whole release cycle while staying
in our target range of investigated commits. In con-
trast to Zephyr and FFmpeg, OpenSSL’s test suite runs
regression tests sequentially.

FFmpeg is a command-line application for audio
and video processing. It had 1234 KLOC5, including
101 KLOC assembler, divided into eight libraries and
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3794 regression tests (including 344 unit tests). FFm-
peg’s repository has over 100,000 commits from which
we used the 150 latest ones (5e880774 to f719f869)
for our evaluation.

4.2 Evaluation Setting

For each SUT, we used the unmodified source code
and the default build configuration with a few mi-
nor adaptations for integrating TASTING into the
build system. For example, we disabled configura-
tion options (Zephyr: BOOT_BANNER) and excluded
local hashes (OpenSSL: OpenSSL_version()) that
carry uninterpreted commit and version information
from our analysis. Further, we had to identify custom
entry functions (Zephyr: z_cstart()) for the finger-
print calculation and modify FFmpeg’s build system to
separate build and test phases for our measurements.

Since TASTING targets a CI setting, we use a large
server machine with two 24-core Intel® Xeon® Gold
6252 @ 2.10 GHz and 384 GB of memory for our
evaluation. Because of SMT, 96 threads can actually
run in parallel. As the software stack, we used Ubuntu
20.04 as the OS and Clang 10 as the compiler.

For each SUT, we iterate through the selected com-
mit range and run a clean build, as it would be done by
a CI setup, before running all tests. In this process, we
measure the duration of the build phase, global-hash
calculation, and test-suite execution separately. We
can compare the end-to-end savings and the effective-
ness of our approach by comparing it to the regular
build process. Please note that the local-hash over-
heads are included in the build time, as local hashes
are calculated by the modified cHash compiler plugin.

5. Determined with cloc on the SUT’s repository
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Figure 5: Unit-Test Execution Matrix. For the selected test
subset and over the investigated change history, we show
unit-tests that have to be executed (red) and executions for
which we could reuse a previous test result (gray). Previously
missing as well as skipped tests are white.

4.3 Validation of TASTING

To validate TASTING, we compare our RTS set for a
given commit with a behavior-change detection: Dur-
ing the test-case execution, we dynamically trace all
function calls with the Valgrind tool6 and extract the
respective function bodies from the binary. Thereby,
we are able to compare different test-case behav-
iors by comparing their respective binaries filtered
by the called functions. If the set of called functions
changes or if the selective binary comparison indicates
a change, we assume that the behavior of the test case
actually changed. For a successful validation, TAST-
ING must schedule a test for re-execution whenever
the behavior of the executed test changed.

We chose this validation method to demonstrate
TASTING’s ability to handle function pointers, which
can introduce dynamic behavior – a problem area for
static RTS methods. The dynamic-tracing approach
is based on the assumption that a test case’s run-time
behavior is uniquely identifiable by the instructions
of the executed function. Thereby, this approach is
stricter than TASTING since it only considers func-
tions that are actually called instead of all potentially
called or referenced functions.

For the validation, we chose OpenSSL since it has a
high proportion of unit tests (unlike FFmpeg), shows a
high rate of changed test-case behavior (unlike Zephyr)
and utilizes function pointers. Since TASTING is
most effective for unit tests, we solely focused on the
117 OpenSSL unit-test cases. For each investigated
commit, we compare the set of tests with a changed
dynamic behavior with the set of re-executions that
was scheduled by TASTING. Whenever a behavioral
change was detected, we demand that the semantic
fingerprint must also differ from the previous commit.
In all cases, TASTING predicted all actually observed
behavioral changes correctly.

We also compared the number of transitively in-
cluded local hashes with the number of actually called
functions. While the average unit test calls 923 func-
tions, TASTING includes3904 local hashes into a fin-
gerprint on average, which resembles 40 percent of all
functions.

4.4 End-to-End Costs and Savings

As we aim for CI settings, we simulated this workload
by applying each evaluated change for the respective
SUT and performing a parallelized, clean build, and
running the test suite with and without TASTING.

6. https://valgrind.org

https://valgrind.org


Overheads During the build step, the calculation of
local hashes and the generation of the CRT introduces
overheads (see Fig. 4). The build time increased by
8.9 percent (11.8 s) for Zephyr and 14 percent (0.65 s)
for OpenSSL. For FFmpeg the mean build time in-
creased by only 1.1 percent (0.36 s) because the num-
ber of assembler files, for which we did not introduce
any overhead, is considerably larger compared to the
other projects. While TASTING introduces a mea-
surable overhead into the build process, we could use
the full cHash approach and abort redundant compila-
tions early, potentially hiding TASTING’s overheads
by cHash’s savings.

In addition to longer build times, TASTING needs
to create the reference graph and calculate the semantic
fingerprints before the tests can be executed. On aver-
age, this took 2.6 seconds for OpenSSL, 1.6 seconds
for FFmpeg, and 6.3 seconds for Zephyr. The longer
times for Zephyr stem from the necessity to construct
one reference graph for each test case instead of using
the same graph for all tests of the same commit.

Savings Using the semantic fingerprints, TASTING
prevents redundant regression-test executions with the
goal to improve test times. In summary, over all test-
case executions, we could avoid 95 percent for Zephyr,
66 percent for OpenSSL, and 10 percent for FFmpeg.
Overall, this resulted (see Fig. 4) in an average end-to-
end reduction of the build-and-test time by 24 percent
for Zephyr and 50 percent for OpenSSL. However, for
FFmpeg, TASTING increased the mean time spent on
a single commit by 2 percent. In Fig. 5, we show the
prevented and the necessary unit-test executions, leav-
ing aside the integration tests, for the investigated com-
mit ranges. Integration tests do not fit our test model
(Sec. 2.1) well, which we will discuss in Sec. 5.3.

The increased end-to-end time for FFmpeg has two
reasons: First, FFmpeg makes heavy use of manually-
implemented dynamic dispatch, which results in a gap
between the static reference graph and the actual ac-
tivation patterns: In C programs, dynamic dispatch is
usually implemented using a struct containing a set of
function pointers. If any function in such a set changes
its local hash, all functions (or unit-tests) referencing
that struct end up with a different global hash. We will
discuss this topic further in Sec. 5.4.

Second, while we prevent 94 of FFmpeg’s unit-test
executions (see Fig. 5c), only 9 percent of FFmpeg’s
test cases are unit tests. While, on average, 94 percent
of the unit-test executions were avoided, we could
only avoid 2 percent of the integration tests. While
this reduced the overall test time by 0.89 seconds (5.1
percent), the time for calculating fingerprints (+1.93 s)
outweighed the achieved savings in the test execution.

For Zephyr (Fig. 5a), we see that after the first
commit, where all test cases had to be executed, TAST-
ING only had to execute a few test cases for each
change. Only between changes 80 and 90, where the
basic kernel primitives, which are used in all test cases,
were refactored, we see an increased need for test
executions. These good results stem from the fact
that changes in Zephyr are usually very small and
only touch a single subsystem. For example, out of
the 150 evaluated commits, most changes occurred
in the submodules drivers (24), documentation (18),
network (16), and Bluetooth (14)7, meaning most of
the other subsystems (and regression tests) are usually
unaffected. Furthermore, changes to other architec-
tures (e.g., ARM) do not affect the test suite of our
focus architecture (native_posix), which TASTING
successfully exploited. It is likely that the other archi-
tectures supported by Zephyr show a similar reduction
pattern, which would result in additional end-to-end
savings if compared to the retest-all approach applied
to all architectures.

For OpenSSL, the unit-test matrix in Fig. 5b shows
a different test-execution pattern: It is noticeable that
a few unit tests were run for every change. These
tests run scripts instead of a binary, which is outside
TASTING’s scope, and we re-execute them if in doubt.
It is also noticeable that either these few tests were
executed, or around 25 percent, or the complete unit-
test suite. This could indicate that OpenSSL uses a
coarse-grained unit test suite or it might be due to
OpenSSL using manually-implemented dynamic dis-
patch. Please note, that the horizontal white line is a
later introduced test case and the vertical white line is
a commit that did not compile.

4.5 Cross-Checkout Savings

Up to this point, we only looked at the change his-
tory of a single source code repository and how we
can reuse test executions over this history. While
TASTING’s fingerprint calculation is more efficient by
design, change-based approaches could, in principle,
avoid the same number of tests if given a linear history.
However, with the modern decentralized-development
paradigm, multiple checkouts with diverging histories
exist in branches, forks, or as local clones on a CI
bot or a (poorly connected) developer machine. In
such a setting, change-based RTS approaches typically
need to assume an independent linear history for each
checkout and, hence, also have to re-execute all tests
per checkout. To avoid this, it would be necessary to

7. We automatically extracted subsystem tags for each
change from developer annotations in the respective commit
messages.



(a) store all the intermediate data required to detect a
change together with each and every commit, as every
commit could be the base (previous) of a branch, fork,
or local clone, and (b) compare each checkout against
a potentially large number of predecessors. This would
require a lot of disk space and computation time.

With our content-based fingerprints, we can cut
down on these problems, considering fingerprints re-
quire only minimal storage space and are very fast to
compare. For example, when storing 128 bit hashes
and a 1-bit test outcome (i.e., passed, failed), we need
less than 2 kiB for all hashes per one OpenSSL ver-
sion (e.g., a commit) with its 124 test cases. Even
better, if we use a central fingerprint–test-result store
(for instance, a memcached server), only newly found
fingerprints have to be saved. In case of OpenSSL,
where 66 percent of tests executions were avoided, we
would have to store results for 5304 test-case execu-
tions (83.52 kiB) for the analyzed 118 commits.

To give a more comprehensive view on the cross-
checkout savings, we systematically analyzed all 2463
forks of OpenSSL created in 2019 and 2020 on GitHub.
From these, 183 had actual changes (at least one com-
mit ahead of mainline) and 131 of them compiled with-
out error. We compared the required test executions
after the first change, which mimics the workflow of a
developer that checks out a repository, makes a change,
and runs the test suite. While a change-based RTS
would re-execute all tests, TASTING with a global fin-
gerprint store avoids 56 percent of all test executions
because their fingerprints were already known from the
original OpenSSL repository. As stored fingerprints
are independent of the current checkout, developers
and CI bots can avoid test-case executions whenever
they clone a repository or switch between branches.

4.6 Cross-Variant Savings

Another strength of the content-based RTS strategy
of TASTING is that it also trivially covers test execu-
tion across static compile-time variants: Configurable
software, like Linux or Zephyr, provides thousands
of variants determined at compile time by means of
conditional compilation (i.e., #ifdef blocks). A change
could potentially affect a large number of variants. In
this setting, ensuring just successful builds is already
an enormous task (Tartler et al., 2014; Kerrisk, 2012).
Running regression tests on each variant build after-
ward is even more resource-intensive.

Again, to solve this, a change-based RTS would
require a known previous state to compare against.
This could be either (a) the state of this variant before
the change in a linear history or (b) another variant
from the same version. (a) would require to store test
selection data for all variants with each commit, which

would take considerable disk space. For (b), it would
be necessary to select a specific variant to compare
against; finding the best variant sequence (i.e., with
the highest number of omitted tests) is a combinatorial
problem.

A central fingerprint store circumvents all of these
problems because it inherently covers checkouts and
variants. To demonstrate this, we ran the tests for
multiple variants in a checkout of Zephyr, which mim-
ics the typical developer tasks of testing all customer-
specific variants before shipping a new version. In
the Zephyr configuration system, we simply picked
the first six features that actually impact the test suite
(many drivers are not covered by Zephyr’s POSIX
tests) for permutation,8 resulting in 64 variants.

A change-based RTS system could have avoided
between 24 and 62 percent of test executions over all
variants, depending on variant comparison sequence.9

TASTING with a central fingerprint store, how-
ever, is inherently sequence-agnostic (and, thus, also
trivially parallelizable) and could avoid 94 percent of
test executions. After 23 variants, 95 percent of the
actually required test executions were already com-
pleted, which further demonstrates the effectiveness
of a fingerprint store.

5 DISCUSSION

With TASTING, we propose a content-based strategy
to avoid unnecessary test-case executions by identi-
fying and reusing test-case executions from previous
test-suite runs. In contrast to change-based strategies
that identify the differences between two program ver-
sions, we see three major benefits of our content-based
approach: complexity reduction, storability of results,
and language interoperability.

5.1 Benefits of our Approach

First, TASTING’s static analysis has linear complex-
ity with regard to the program size as no fine-grained
matching between program versions is necessary: For
the local hashing, we visit each AST node exactly
once and propagate hashes from the bottom to the top.
Furthermore, if we leave aside recursive groups, we
incorporate every local hash exactly once into a global
hash, which is otherwise only dependent on its local en-
vironment in the reference graph. Thereby, TASTING
is able to keep its overheads moderate, which allows us

8. namely ASSERT, BT, CBPRINTF_COMPLETE, LOG,
DEBUG, THREAD_STACK_INFO

9. Calculated by random sampling (48 million samples)
as 64 variants lead to 1.3 ·1089 possible testing sequences.



to actually harvest test-case avoidances as end-to-end
savings in projects with a fine-grained unit-test suite.

On a higher level, the storability of test-case fin-
gerprints and global hashes allows for test-avoidance
strategies that are harder to achieve with change-
based strategies: As storing, finding, and compar-
ing fingerprints is fast, reusing test executions across
branches, repositories, and variants – and any combina-
tion thereof – does not require a quadratically-growing
comparison matrix between N program versions. This
reduced complexity harvests the insight that it is not
necessary to calculate the actual difference between
two programs to avoid the test execution but that it
is sufficient to know a fingerprint that identifies the
complete test behavior. Moreover, as the calculation
of semantic fingerprints is abstracted by the local-hash
function and the link function, the TASTING approach
promises interoperability between different program-
ming languages. Since the local-hash function en-
capsulates the language-specific change summary, the
reference graph, which has a broad understanding of
“references” (i.e., address calculation, access, activa-
tion), can remain language-agnostic. Even in cases
where no language-specific hash function is available,
we can fall back to hashes of the build artifacts. We
used this technique (see Sec. 3) to incorporate assem-
bler files into our RTS approach.

5.2 Level of Local-Hash Calculation

Another aspect to discuss is our decision to perform
our static analysis on the AST level instead of other ab-
straction levels within the compilation process (source
code→ AST→ immediate representation (IR)→ bi-
nary). While local hashing is possible on all mentioned
levels, the AST level has some benefits: As the pro-
gram structure only becomes visible after parsing and
the semantic analysis, a fine-grained dependency anal-
ysis between program elements is only possible from
the AST level downwards. At the other end, compo-
nent references, especially addressof-calculations and
data accesses, are hard to spot on the binary level as
they become indistinguishable from other immediate
operands. While AST and IR-level are semantically
quite close to each other, AST-level hashing has a
higher potential to shadow its own computational over-
heads by aborting the compilation earlier. On the other
hand, the IR level (e.g., LLVM IR) is often designed
to be language-agnostic, which makes supporting dif-
ferent programming languages easier. Another aspect
is the closeness of the AST level to the programmer’s
intention, while the IR level is closer to the final bi-
nary. For example, it might surprise the developer
who added a const keyword that some tests are not
executed because there was no impact on the IR code.

Hence, AST-level hashing, although more sensitive to
changes than an IR-level analysis, follows the principle
of the least surprise more closely. However, in the end,
the TASTING approach is applicable, even in a com-
bined fashion, for different programming languages
on the AST- and the IR level.

5.3 Static vs. Dynamic RTS

TASTING is a purely static approach to RTS that only
uses the program’s control structure (i.e., call hierar-
chy). We over-approximate interprocedural data flows
(i.e., function pointers) by incorporating the global
hashes of all functions that could act as a source in
order to calculate a safe test-case fingerprint. While
we thereby avoid costly interprocedural data-flow anal-
yses, this comes at the cost of re-running test cases
more often than necessary. We can quantify this over-
approximation if we compare the number of actually
called functions with the number of functions whose
local hash influences a semantic fingerprint. For the
average OpenSSL test case, 40 percent of all functions
influence the semantic fingerprint, while only 9 percent
are actually called during the test-case execution.

Therefore, it would be beneficial to combine our
approach with dynamic tracing to narrow down the
link function: For example, it should be possible to
reuse a dynamically-traced reference set (e.g., from a
previous execution) instead of the statically-deduced
one as long as all local hashes in the call hierarchy
from the program entry down to a given function are
equal. Thereby, we know that no additional outgoing
edge can appear and the fingerprint calculation remains
sound. We consider this a promising topic for further
research.

5.4 Threats to Validity

In the following, we discuss potential threats to the
validity of our results and the generalizability of our
approach to other languages and program structures.

With our case studies (Zephyr, OpenSSL, and FFm-
peg), we have selected projects that use C as their pro-
gramming language and that come with a reasonably
sized test suite. We chose these projects as being repre-
sentatives of different classes of programs (embedded
operating system, library, command-line tool) and test-
ing strategies (unit tests vs. integration tests) that show
the benefits with fine-grained unit tests (OpenSSL) as
well as the limitations regarding coarse-grained inte-
gration tests (FFmpeg).

With our validation, we could show that our ap-
proach never missed a changed function. However,
as we have not compared actual execution traces, but



the opcodes of all called functions, there is the chance
that our validation has missed a behavioral change that
was also missed by TASTING. Nevertheless, given
that Valgrind recorded all calls correctly, such a miss
could only stem from a change that only touched the
initial values of a global variable. Since TASTING
explicitly includes the local hashes of such variables
into those functions that access or reference them, we
are confident that TASTING would behave correctly
even if the validation missed the change.

For the applicability of our approach, we see the
necessity to enumerate all data sources for each test
case as a major challenge for the integration into exist-
ing test systems. Normally, these dependencies are not
as explicit as required by TASTING. However, with
file-grained tracing methods, like EKSTAZI (Gligoric
et al., 2015), such dependencies can be discovered and
integrated on a coarse-grained level. Similarly, we
can integrate components that are written in languages
without local-hashing support on the file-grained level,
as we have done for assembler source code.

The largest obstacle for the generalizability of our
approach for other programming languages is the link
function. For our static analysis, we assume that the
statically-derivable reference graph is largely equal to
the dynamically-observable references. However, if
this over-approximation is too imprecise for a given
language, it can cause every function to influence every
test-case fingerprint, resulting in no end-to-end savings.
For example, for a scripting-language interpreter (e.g.,
Python), the actual call-hierarchy is largely driven by
the interpreted program – not by the static structure of
the interpreter loop. In such cases, our approach would
work better on the level of the interpreted language.
An alternative would be a combination of TASTING
with fine-grained function tracing.

6 RELATED WORK

Regression testing, and, in our case, more specifically
RTS, is a topic that has attracted a lot of attention in the
last 30 years, as surveyed in several large literature re-
views (Biswas et al., 2011; Engström et al., 2010; Yoo
and Harman, 2012). Because of the large body of re-
search, we will only give a short roundup of important
RTS techniques before we discuss other content-based
caching techniques that inspired TASTING.

Regression-Test Selection Many RTS techniques
use a two-step approach: (1) For each test case, they
derive the set of covered program entities that is used
or validated by the given test. (2) They compare two
versions and derive a set of changed program entities

and intersect it with each test’s dependencies to select
or dismiss it for re-execution. From these methods,
TASTING differs fundamentally since we do not com-
pare two versions but derive a semantic fingerprint
from a single version and associate it with the test
result.

One dimension RTS techniques differ in is the
granularity of entities that is used for the test-
dependency detection. There are techniques that work
on the textual level (Vokolos and Frankl, 1997), on the
data-flow level (Harrold and Souffa, 1988; Taha et al.,
1989), on the statement level (Rothermel and Harrold,
1996), on the function level (Chen et al., 1994), on the
method level (Ren et al., 2004), on the class level (Orso
et al., 2004), on the module level (Leung and White,
1990), on the file level (Gligoric et al., 2015), or on
the level of whole software projects (Elbaum et al.,
2014; Gupta et al., 2011). With HyRTS (Zhang, 2018),
a method that uses a varying granularity depending
on the change is also available. In general, it was
noted (Gligoric et al., 2015) that a finer granularity
results in higher analysis overheads but also provides
less severe over-approximations. For TASTING, we
choose the function-level granularity, because calling
functions is the technical link between test case and
SUT. However, as local-hash calculation works on the
AST, which captures the hierarchical organization of
program entities, other granularities are also possible.

Another dimension is the method to detect depen-
dencies between program entities. This can either be
achieved completely statically (Kung et al., 1995; Ren
et al., 2004; Rothermel and Harrold, 1996) or by in-
specting recorded test-case–execution traces (Gligoric
et al., 2015; Orso et al., 2004; Chen et al., 1994).
While it is easier to argue the soundness of the static
methods, dynamic methods result in smaller depen-
dency sets, which reduces the frequency of unneces-
sary re-executions. In this dimension, TASTING uses
a purely static analysis method to calculate its link
function, but a combination with dynamic trace infor-
mation should be possible without compromising on
soundness.

Most similar to TASTING is EKSTAZI (Gligoric
et al., 2015), which works on the file level and dynam-
ically traces files that a given test accesses (e.g., Java
.class files). For these files, it calculates a content-
based hash and executes those test cases whose ac-
cessed files changed. While they provide a smart-
hashing method that hides unnecessary information
(e.g., build dates) from the hash function, they only
use those hashes to identify changes on the file level,
making it a change-based RTS method. TASTING not
only uses a more fine-grained method to include only
relevant information into the hash but also uses the
content-based hash to identify test-execution results.



In CI environments, the test load on the CI server
is reduced by enforcing some pre-submit testing on
the developer’s local machine, so that developers get
feedback quickly and fewer tests fail eventually on the
server (Elbaum et al., 2014). With TASTING it would
be possible to also reuse local test executions across
the whole organization, as local test execution results
could easily be submitted together with the changes.

Content-based Incremental Compilation Most in-
spiring for TASTING were recent advancements in
incremental compilation techniques that replace the
decades-old approach of timestamp-based make (Feld-
man, 1979) with a content-based paradigm. These
content-based methods for incremental compilation
summarize the input data with the use of a hash func-
tion and compare it to the previous build or manage
some kind of hash–build-artifact database. For exam-
ple, the ccache10 tool hashes the preprocessed C/C++
compiler input and manages a cache of object files.
Also, both Microsoft and Google (York, 2011; Esfa-
hani et al., 2016) use a similar textual hashing to access
a distributed object-file cache. As described in Sec. 2.2,
the cHash method achieves an even higher cache hit
rate by using the parsed program instead of its textual
notation. Similar to the RTS problem, not only static
methods but also dynamic dependency-detection mech-
anisms are available: For example, Memoize (Mc-
Closkey, 2007) and Fabricate (Technology, ), which
were inspiring for Gligoric et al.(Gligoric et al., 2015),
use the Linux tool strace to record all accessed files
and calculate an MD5 hash with the goal of avoiding
unnecessary build steps. With TASTING, we provide
a method that lifts the content-based recompilation
avoidance from the build step to the testing stage.

7 CONCLUSIONS

We presented TASTING, a content-based fingerprint-
ing technique for identifying the behavior of determin-
istic programs that builds upon AST hashing. TAST-
ING statically summarizes all defining elements of the
compiled program into a semantic fingerprint, using
a standard hash function. Whenever the behavior of
the program changes, the fingerprint will also differ.
Thereby, TASTING provides an efficient implemen-
tation of the regression-test selection (RTS) problem,
where the results of executed tests could easily be
stored and later be reused by their unique fingerprint
across versions, branches, repositories, and variants.

In our evaluation with Zephyr, OpenSSL, and FFm-
peg, we could avoid 95 percent of all test executions
for Zephyr, 66 percent for OpenSSL, and 10 percent

for FFmpeg in a CI setting with sequentially applied
commits to the master branch. Since in the modern
decentralized-development paradigm change histories
often diverge (e.g., branches, forks, local clones), we
also showed that we can avoid 56 percent of all test
executions by reusing results across histories on the ba-
sis of 131 publicly-available OpenSSL forks. Testing
configurable software also benefits from our approach,
shown for 64 variants of Zephyr, where we could avoid
94 percent of all test executions.
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