
RTOS-Independent Interaction Analysis in ARA
Gerion Entrup, Jan Neugebauer, Daniel Lohmann

Leibniz Universität Hannover
{entrup, lohmann}@sra.uni-hannover.de, jan.neugebauer@stud.uni-hannover.de

Abstract—ARA is an RTOS-aware whole-system compiler for
embedded applications that takes RTOS semantics into account
for interprocedural analysis and optimization. To be applicable
for a multitude of RTOS interfaces and semantics, ARAs analysis
steps shall operate on an abstract RTOS model as far as possible,
while still providing means to exploit OS-specific particularities.
In this paper, we describe the design of such a model and its
utilization with two static analysis algorithms for AUTOSAR,
FreeRTOS, Zephyr and a subset of POSIX.

I. INTRODUCTION

Embedded systems typically come as whole systems: All
code that will eventually run on the device is known in advance.
For the compilation process, this lays the foundation for inter-
procedural whole-system optimization, which is well-explored
on the language level [15], [23], [18]. Taking also the real-
time operating system (OS) into account [21], [2], [8] enables
further aggressive optimizations by tailoring the OS to the
actual application implementation.

One approach to achieve whole-system optimization is
model-based generation, that is, generating the system including
the application from an abstract language description [29],
[1]. However, in practice, embedded applications are written
against a classical system-call interface, employing OSs such
as FreeRTOS or Zephyr mainly as a helper library or markup-
language to describe event- and control-flow interactions at
run time.

With the Automatic Real-time System Analyzer (ARA)1, we
are building a whole-system compiler (based on LLVM) for
embedded systems written against such common OS interfaces.
ARA is then able to compile the application with additional
optimizations based on the actual interactions between the OS
and the application code. Examples include the transformation
of dynamic into static initialization [13], folding of pre-known
scheduling decisions [9], or elision of never taken locks in
multi-core settings (not yet published).

For genericity, ARA shall support multiple OSs without
having to change the underlying analysis algorithms. However,
these analyses need, by design, OS-specific knowledge in
some parts. We, therefore, split them into an OS-agnostic
core and summarize all OS-specific parts in an analysis
independent OS model that serves as a unified interface between
all algorithms and OSs. Figure 1 visualizes the separation
and an overview of the ARA toolchain (we present details in
Section III).

This work was partly supported by the German Research Foundation (DFG)
under grant no. LO 1719/4-1

1https://github.com/luhsra/ara

Application code

Preprocessing Analysis Synthesis

Application imageOS interface

OS model

FreeRTOS AUTOSAR Zephyr POSIXARA

uses

OS-specific
steps

Fig. 1: Overview over the ARA toolchain. ARA processes
the application code with various steps and finally emits an
image. The model encapsulate all OS specific knowledge. It
(optionally) triggers OS-specific preprocessing steps and is
used by the main analyses for syscall interpretation.

In this paper, we describe our findings from designing this
model and implementing it for four very different syscall
interfaces: AUTOSAR, Zephyr, FreeRTOS, and a subset of
POSIX. In particular, we claim the following contributions:

• An abstract OS model with implementations for
FreeRTOS, AUTOSAR, Zephyr, and POSIX.

• The possibility to analyze and (partly) optimize real-world
systems for all these OSs.

II. SYSTEM MODEL AND IMPLEMENTATION

For our OS model, we target embedded real-time systems.
The concrete OS semantics and types of system objects have
no further constraints. However, the model requires that all
communication between application and OS takes place via
explicit syscalls or interrupts.

The current implementation in ARA imposes some further
constraints: As a toolset for static analysis and optimization,
its algorithms rely on a closed-world assumption, that is, all
code is known in advance. Late binding via function pointers
is supported and sound, but excessive use may impact the
strictness of analysis results. We furthermore assume a defined
application starting point, which, however, can also be given
by the OS model according to the OS-defined scheduling
strategy. Technically, ARA operates on the LLVM intermediate
representation (IR) and expects a single file in this format. We
implemented the model for FreeRTOS, AUTOSAR, Zephyr,
and POSIX; Figure 2 shows a minimal application example
for each of them. While semantically equivalent, the system
mostly differs in the way system objects (threads, events, ...) are
instantiated: AUTOSAR is completely static, all instances of OS

TaskHandle_t t1, t2;

QueueHandle_t q1;

struct Message {...};

int main() {

t1 = xTaskCreate(task_1, 1);

t2 = xTaskCreate(task_2, 2);

q1 = xQueueCreate(5,

sizeof(Message));

vTaskStartScheduler(); }

task_1 {

while(true) {

Message m = produce();

xQueueSend(q1, m); } }

task_2 {

Message m;

while(true) {

xQueueReceive(q1, &m);

consume(m); } }

.cpp

(a) FreeRTOS

char* Message = "{...}";

int pipe_fds[2];

pthread_t t1;

pthread_t t2;

thread_1() {

write(pipe_fds[WRITE_FD], Message);

}

thread_2() {

read(pipe_fds[READ_FD], received_msg);

}

int main() {

pipe(pipe_fds);

pthread_create(t1, thread_1);

pthread_create(t2, thread_2);

pthread_join(t1);

pthread_join(t2);

}

.cpp

(b) POSIX
struct Message {...};

K_FIFO_DEFINE(q1);

t1_action() {

Message m = produce();

k_fifo_put(&q1, &m);

}

t2_action() {

Message* m =

k_fifo_get(&q1, K_FOREVER);

consume(m);

}

K_THREAD_DEFINE(t1, t1_action, 1);

k_thread t2;

int main() {

k_thread_create(t2, t2_action, 2);

}

.cpp

(c) Zephyr

TASK T1:

CPU = 1;

PRIORITY = 2;

SCHEDULE = FULL;

AUTOSTART = TRUE;

TASK T2:

CPU = 2;

PRIORITY = 1;

SCHEDULE = FULL;

EVENT e1:

TASK = T2;

.oil Message m;

TASK(T1) {

m = produce();

SetEvent(T2);

}

TASK(T2) {

WaitEvent();

consume(m);

}

.cpp

(d) AUTOSAR

Fig. 2: Examples for OS interfaces: Two threads implement a
producer–consumer scheme. In FreeRTOS, POSIX, and Zephyr
via a queue; in AUTOSAR, which misses a queue abstraction,
an event (condition variable) is employed. AUTOSAR specifies
its OS objects in an extra configuration file (.oil).

Listing 1: The SIA algorithm (sketched)
def SIA(entry) -> InstanceGraph:

instance_graph = InstanceGraph()

for call in CFG:

if model.is_syscall(call):

for call_context in all_call_contexts(entry, call)

instance_graph.update(model.interpret(call,

call_context))

return instance_graph

objects are specified in a configuration file and typically created
at compile time. In contrast, FreeRTOS and POSIX (except
static mutexes) require dynamic OS object creation by syscalls
at run time. Zephyr supports both, static (via preprocessor
macros) and dynamic (via syscalls) instantiation.

III. OS MODEL DESIGN

Our model is based on two fundamental ideas: (1) The least
common ground of all operating systems are syscalls, which
modify the state of OS objects (such as threads or mutexes).
(2) The model shall always serve the most detailed information
possible about a specific syscall and its resulting state changes.
Thereby, the model supports the most detailed analysis while
others can just throw away the unneeded details.

For the initial design of the OS model, we target mainly
two analyses, the static instance analysis (SIA) [13], which is

Listing 2: The SSE algorithm (sketched)
def system_semantic(state) -> List[State]:

if model.is_syscall(state.abb):

new_states = model.interpret(state)

return model.schedule(new_states)

else:

return follow_control_flow(state)

def SSE(entry) -> SSTG:

sstg = SSTG()

stack = model.get_initial_os_state()

while stack:

state = stack.pop()

new_states = system_semantic(state)

sstg.add_nodes(new_states)

sstg.connect(new_states, state)

stack.push(new_states)

a flow-insensitive analysis, and the system-state enumeration
(SSE) [7], as an example of a flow-sensitive analysis. To better
understand the underlying requirements for the model design,
we briefly introduce them here.

A. SIA

The SIA retrieves all system-object instances (and interac-
tions) that are created over the whole lifetime of the system
and captures them in the instance graph. Its nodes represent
the instances, its edges the interactions. Listing 1 sketches
the algorithm. First, it iterates all syscalls. After that, the
analysis calculates the call context of each syscall to enable
a call-context–aware analysis of the argument values. The
call together with its context is then given to the model which
calculates the OS-specific effect on the instance graph. From the
model point of view, the analysis mainly needs this information:

• Which call is a syscall and what is its category?
• What is the effect of the syscall on the instance graph?

B. SSE

The SSE at its core is designed as a symbolic execution
on the OS level. It defines an abstract system state (the OS
relevant state of the whole system), extracts the starting state of
the system, and traverses the control flow from this point while
capturing the effect of each instruction as a new state. Listing 2
sketches the SSE algorithm. The analysis starts by retrieving
an OS-specific initial state that it pushes onto a stack. Then,
for each state, it first retrieves the effects of the current control
flow onto the state (it interprets the semantics of the system),
which it captures in a set of new states. After that, it connects
the new states with the old one thus forming a graph, the static
state-transition graph (SSTG). The system semantic function
is divided into two parts: If the state represents a syscall, the
model needs to interpret and schedule it. Otherwise, the analysis
calculates the new states by following the normal control flow.
As part of this, it also triggers all currently active interrupts
whose handling is part of the model again (not sketched).

Listing 3: The model interface
class OSBase:

public:

get_special_steps() -> List[Step]

get_initial_state(cfg, instances: Graph) -> State

get_interrupts(instances: Graph) -> List[int]

handle_irq(state, cpu_id: int, irq: int) -> State

handle_exit(state, cpu_id: int) -> List[State]

interpret(state, cpu_id: int,

categories=All) -> List[State]

schedule(state, cpus=None) -> List[State]

private:

List[Syscall] syscalls

From the model point of view, the SSE needs the following
information:

• Which call is a syscall?
• What is the effect of the syscall on the abstract state?
• In which abstract state does the system start?
• The possibility to schedule an abstract state.
• Which interrupts can occur in which state and how they

are handled?

C. A generic OS model

Additionally, to be more generic, our model should fulfill
also the following requirements: (1) It should be able to support
multi-core applications. In particular, this means, that the
model must be able to calculate the effect of a syscall on
a specific CPU. (2) Furthermore, it should not restrict the OS
initialization and setup process. The presented OS all have
different configuration mechanisms, which shall be supported.
(3) Finally, the model should allow other future analyses of
different precision.

All this results in the definition of an OS interpreter that
acts on abstract system states (AbSSs), that is, the model
implements a function for each syscall that takes an AbSS,
interprets the effect of a syscall on this state, and outputs one
or multiple follow-up states:

AbSSa,n+1,AbSSb,n+1, · · · = interpret(AbSSn)

Conceptually, this is pretty close to the SSE algorithm. The
AbSS, however, is extended. Figure 3 presents such an AbSS.
First, it includes a reference to the instance graph, a data
structure whose elements are immutable and to which only
can be added. Furthermore, it holds all system-object instance
contexts, which represents all changeable parts of an OS object
instantiation, for example, the current thread status. The exact
content of the context is OS specific and therefore not part of
the generic interface. Finally, it holds the current execution
context for each CPU, that is, each execution unit in the system.
This consists of the current instruction pointer, a call path to
specify the calling context, the current interrupt state, and the
currently executed instance. To summarize, the state consists of
OS-specific parts, the objects and their contexts, and hardware-
specific parts, the execution contexts.

With that, each OS model implements a generic interface
that uses the AbSSs. Listing 3 shows the (simplified) interface.
The list of syscalls contains most of the information. Each
syscall is an object with four properties: the name, its signature,
a category and an interpret function. The name serves as
unique identifier to dispatch to the correct syscall interpretation
function. The category is used to fasten the analysis when used
as a filter. The signature is necessary for the extraction of the
syscall arguments, which in turn is necessary for the correct
interpretation of the syscall. Finally, the interpret function gets
an abstract state as input and outputs a list of new states which
represents the effects of this specific syscall.

To ease the development, we use a Python decorator that
turns a function into a syscall object and adds the necessary
value-analysis code to each interpret function. Each argument
in the signature can be annotated with extra information for
the value analysis. The interpret function gets the results of
the value analysis via the args argument. The syscall name is
extracted from the function name. With that, for example, the
implementation for SetEvent in AUTOSAR looks as follows:

@syscall(categories={SyscallCategory.comm},

signature=(Arg("task", ty=Task, hint=SigType.instance),

Arg("event_mask")))

def SetEvent(cfg, state, cpu_id, args, va):

task_ctx = state.context[args.task]

set the task ready if it already waits

if task_ctx.status == TaskStatus.blocked and \

event_mask & task_ctx.waited_events != 0:

task_ctx.status = TaskStatus.ready

task_ctx.waited_events = 0

set the event

if task_ctx.status != TaskStatus.suspended:

task_ctx.received_events |= event_mask

update the instance graph

cur_task = state.cpus[cpu_id].instance

for event in get_events(args.event_mask):

state.instances.add_edge(cur_task, event)

return state

All the effects of SetEvent are captured: First, it wakes up the
potentially waiting task. Then, it updates the task’s event mask
and finally marks the interaction within the instance graph.

The rest of the interface provides the necessary functions
for initialization, interrupt handling, and interpretation:

• get_special_steps gives the OS-specific preprocessing
steps and get_initial_state returns the first abstract
system state.

• get_interrupts returns a list of interrupts that are trig-
gered by the analysis if needed and can be handled via
handle_irq on which the irq argument describes the
interrupt to be handled. handle_exit outputs a new state
which represents all effects that result from an interrupt
exit.

• interpret and schedule are the actual transition functions
for abstract states to simulate a syscall interpretation and
a reschedule. Both functions return a list of follow-up
states.

t1

t2

q1

InstanceGraph

k_fifo_put

k_fifo_get

CPU 0
IRQ: on
Instance: t1
IP: ABB 5 (line 5)
Call Path: t1_action
Status: syscall

. . .

t1 context
Status: running
IP: ABB 5 (line 5)
Call Path: t1_action

t2 context
Status: suspended
IP: ABB 10 (line 10)
Call Path: t2_action

q1 context
Elements: 4

AbSS 15

Fig. 3: Representation of the AbSS. It contains a reference to
the instance graph, a list of OS-object-specific contexts, and a
list of CPUs. The values match the Zephyr example application
(Figure 2c).

To support multi-core systems, most functions also get an
additional cpu_id argument to specify the (abstract) CPU on
which the action should take place. The analysis has to take
care of invoking the in reality happening parallel actions in a
sequential manner.

Figure 1 gives an overview of embedding the model into
ARA. The application code that is written against a specific
OS interface is preprocessed by ARA to extract control flow
and data flow. At this stage, the model can request additional
steps, like the parsing of extra system configuration files. After
that, the main analyses run, which use the model interface for
all OS-specific parts.

Mapping the SSE onto the generic model is trivial. The
model interface basically provides all necessary functions for
direct SSE support.

For using the model with the SIA, we have to slightly
modify the algorithm. Since the model applies the instance-
graph specific effects only as part of an overall state change,
the SIA has to craft a fake state to fit the model functions. For
that, it combines the current instance graph, constructs a fake
CPU and empty OS-object contexts. The fake CPU contains the
current instruction pointer, call context and active OS-object.
The model interprets this state and returns an updated state.
From that, the SIA can extract the updated instance graph and
continue.

IV. EXPERIMENTAL VALIDATION

To validate the model, we apply the SIA and the SSE to
several applications (see Table I for details). The SSE, which
enumerates all system states, depends on a strictly bounded set
of system objects and interactions. Currently, only AUTOSAR
ensures this. On the other OSs, the application might, for
instance, create system objects in an unbounded loop.

A. FreeRTOS
For FreeRTOS, we verified the model with the GPSLogger2,

an embedded application for logging GPS positional data on an

2https://github.com/grafalex82/GPSLogger, Git commit: 8808b922

handheld device and the LibrePilot CopterControl3 firmware
as a safety-critical real-time application for the flight controller
of a quadcopter.

Doing so for the GPSLogger results in 6 tasks, 3 queues and
1 mutex which a manual verification proofs as complete. The
SIA fails to resolve 3 interactions between tasks and mutexes
(out of 15 interactions in total) due to restrictions in the value
analysis, which fails the correct syscall argument retrieval to
get the involved mutex instance. Especially for mutexes, the
GPSLogger uses a C++ wrapper class which forces the value
analyzer to resolve two indirections.

For the LibrePilot the SIA finds 17 tasks, 15 queues and
9 mutexes which are correct. Additionally, it can determine
12 interactions, while it ignores 22 invocations of interaction
syscalls due to restrictions in the value analyzer.

B. Zephyr

For Zephyr,4 we were not able to obtain any implemented
real-world application. Hence, we decided to choose two of
the bigger benchmarks from their test suite as applications:
sys_kernel and app_kernel.

The app_kernel application creates all OS objects statically,
for which we use a special preprocessing step. It detects 2
threads, 6 kernel semaphores, 4 message queues, 3 pipes and
1 mutex, which a manual check verifies as correct.

The OS objects are connected with 60 interactions. ARA
fails to determine the arguments of 2 interactions. They belong
to a pipe interaction in which the pipes are stored dynamically
in an array and therefore are not found by the value analyzer.

The sys_kernel benchmark creates its instances dynamically
of which ARA detects 22 threads, 14 queues, 6 kernel
semaphores, and 6 stacks. Additionally, ARA finds 274
interactions. A manual check confirms these results.

The sys_kernel application reassigns its OS objects to the
same memory location. This makes it impossible for a flow-
insensitive analysis like the SIA to retrieve a correct mapping
between OS object creation and its usage. Our model, therefore,
marks these objects as duplicated and cannot distinguish
interactions that lead to them. We plan to extend the SIA
in the future to become flow-sensitive for exactly those parts.

C. AUTOSAR

For AUTOSAR, we use the I4Copter [25], a safety-critical
embedded real-time control system (quadrotor helicopter), as
a test application. Due to its static nature, both the SIA and
SSE work with AUTOSAR.

Applying the SIA to the I4Copter results in 78 interactions.
They happen on 30 OS objects which are defined statically in
the configuration file that ARA parses in a preprocessing step.

Applying the SSE to the I4Copter results in an SSTG with
648 479 states and 2 032 326 transitions. We also ported the
SSE unit tests from dOSEK [9] to ARA and manually verified
all resulting SSTGs.

3https://www.librepilot.org/, Version 16.0.9
4https://www.zephyrproject.org/ Commit: c2a0b0f50b

https://github.com/grafalex82/GPSLogger
https://www.librepilot.org/
https://www.zephyrproject.org/

FreeRTOS Zephyr AUTOSAR POSIX
GPSLogger LibrePilot app_kernel sys_kernel i4copter libmicrohttpd

Lines of code 79 573 78 787 1603 1206 591 45 322
Number of basic blocks 11 268 19 974 1 152 688 148 41 698
Number of functions 1 311 3 028 212 95 30 2 755
Number of calls 118 919 49 34 0 129
Number of syscalls 37 187 56 91 48 88
Maximal call path depth 16 5 5 3 1 8

TABLE I: Code statistics of the benchmark applications.

D. POSIX

POSIX defines more than a thousand syscalls. A huge part
of them (e.g. strcmp) does not need the operating system or
defines concepts that are unusual in embedded systems (e.g.
fork). We therefore restricted our POSIX model to the subset
of calls5 that is likely to be employed in an embedded context.

We evaluated the model with libmicrohttpd,6 an HTTP server
library, which is well suited for embedded controllers due to
its small memory footprint. To make use of the library, we
decided for fileserver_example_dirs as an application, which
libmicrohttpd includes as an example. We built and analyzed
the library in conjunction with the musl libc7 as implementation
of the POSIX standard for the user space.

We found that libmicrohttpd on its own was too dynamic
to be useful for ARA. Therefore, we modified libmicrohttpd
to reduce its complexity, make the data more static, and
focus on the features that are supported by the model. The
demo application is runnable on our modified version of
libmicrohttpd.

The generated instance graph consists of 4 threads, 1 pipe,
19 files, and 64 mutexes. ARA was able to find 123 interactions.
For 46 invocations of interaction syscalls, it fails to determine
the belonging OS object due to dynamic calculations or a
complicated data flow. While ARA detects nearly all created
objects correctly one static mutex is missing since libmicrohttpd
typedef the standard mutex type which our preprocessing step
cannot resolve.

ARA finds 18 different call contexts for fopen and one call
to opendir which it tracks as files. However, this does not
reflect all loaded files at runtime since libmicrohttpd opens
all files in the current directory, which is inherently dynamic
information.

Overall, while we were not able to always find all OS object
instantiations and interactions this is not a restriction of the
model but of the value analyzer and the analysis algorithms.

V. DISCUSSION

Implementing the model for the four OSs shows the general
applicability of the approach, but also uncovers some practical
challenges:

5pthread_create, pthread_mutex_init, PTHREAD_MUTEX_INITIALIZER,
sem_init, pthread_cond_init, PTHREAD_COND_INITIALIZER, pipe, pause,
nanosleep, read, readv, sigaction, open, pthread_join, pthread_detach,
pthread_cancel, pthread_mutex_lock, pthread_mutex_unlock, sem_wait,
sem_post, pthread_cond_wait, pthread_cond_signal, pthread_cond_broadcast,
write, writev

6https://www.gnu.org/software/libmicrohttpd/ v0.9.73, Commit: 64e91ef6
7http://musl.libc.org/

Value analysis. The semantics of a concrete syscall is also
determined via its arguments. To statically extract their values,
we leverage a sophisticated value analyzer based on the Static
Value-Flow (SVF) [24] framework, which, however, is still
not able to find all value-flows in real-world C/C++ code.
Especially constant values that are passed around via (nested)
structs appear to be difficult to resolve.

Dynamic object creation. A general problem of static
analysis is the possibility to create new system objects at
run time. While most real-time applications behave well in
this respect in that they create and initialize all system objects
before entering the application’s main loop, the OS interface
does not enforce this. Luckily, the SIA is able to detect this
in a reliable manner [13].

The most analysis friendly system in these respects is
AUTOSAR, as all system-object instances and also some of
their possible interactions (e.g., which task may take which
resource) must be declared ahead of time in the configuration
file. FreeRTOS, Zephyr, and POSIX are less nicely. While
Zephyr, at least, supports static system object definition, POSIX
and FreeRTOS basically rely on dynamic object creation only.

Scheduling determinism. For the state change, the schedul-
ing policy is taken into account. Again, AUTOSAR specifies
a fixed priority scheduling (partitioned on multi core) which
requires no additional information in the state. FreeRTOS
allows tasks with the same priority that are scheduled in a
round-robin fashion via a timer interrupt which has to be
tracked in the state. Zephyr supports multi core but does not
really specify how tasks are scheduled on different cores.

Semantically uncompleted syscalls. Especially POSIX
defines syscalls that are not conclusive with respect to their
effect on the system state. Thread creation is a good example
here: To specify the exact behavior of threads, the developer
may optionally provide thread attributes, which need to be
created and modified by a sequence of syscalls before the actual
pthread_create call that puts the new thread into existence.
This may result in complex dependency chains, defined by the
control flow, rendering a flow-insensitive analysis like the SIA
impossible. In the future, we plan to extend the SIA to switch
to a flow-sensitive analysis for exactly these parts of the code.

OS/library interface ambiguities. The POSIX standard does
not distinguish between syscalls (like read()) and utility library
functions (e. g. strcmp()). Both of them are implemented within
the same libc. We tackle this by splitting the libc conceptually in
syscalls and user functions and analyzing only the former. This
can also be implementation-defined, so it might be required to
adopt the POSIX model for the concrete OS.

https://www.gnu.org/software/libmicrohttpd/
http://musl.libc.org/

Overall, our findings show that ARA is able to extract OS-
interaction knowledge regardless of the specific OS. The remain-
ing implementation challenges mostly result from idiomatic
anachronisms of the respective OS interfaces and programming
models (e.g., POSIX, FreeRTOS) and underspecification of its
semantics (e.g., multi-core scheduling), which naturally limits
static analysis. Note, however, that ARA still behaves sound
in these cases, even though it yields less tight analysis results.

VI. RELATED WORK

To the best of our knowledge, no other compiler exists that
tailors OSs while supporting multiple of them. However, there
do exist other usages of operating system models and compilers
for different purposes.

First, dOSEK [16] is a whole system compiler and able
to tailor applications written for the OSEK OS standard, the
predecessor of AUTOSAR. As part of its implementation, it
contains an abstract OSEK interpreter. In contrast to the OS
model of ARA, this interpreter is for OSEK only which includes
the restriction to single-core applications. However, ARA is
influenced by dOSEK and shares concepts and code with it.

SWAN [22] is a whole-system WCET analyzer that also
builds an SSTG to calculate tighter bounds for a better WCET.
While SWAN also operates on FreeRTOS, it does not use a
model of it but analyzes the internal syscall implementation to
calculate a tighter WCET bound.

With the RTSC, a whole system compiler exists that was
written to automatically convert event-driven real-time systems
(written for OSEK) into time-driven real-time systems (written
for OSEKTime) [20]. As an extension, it supports the mapping
on multi core and into a POSIX program [14]. The RTSC,
therefore, uses a system model for OSEKTime and POSIX but
aims for system generation only.

Another common use of operating system models is formal
verification or conformance checking. Brekling et. al. define a
precise operating system specification based on timed automata
[3]. With the help of UPAAL, the automata can both be
converted to running code and theoretically verified. The model
here, however, can be seen as another OS implementation and
does not try to unify and abstract existing OSs.

For the OSEK and AUTOSAR standard, several works exist
to convert the specification into a formal model to verify
the system like checking for schedulability or generating
conformance tests [4], [17], [27], [28], [26], [10], [11]. Similar
works try to formalize parts of FreeRTOS [5], [19], [6] or
Zephyr [12]. All of these works use models that are not used
to optimize the system but proof the real-time capabilities.
Furthermore, in contrast to ARA, no unifying model is
formulated.

VII. CONCLUSION

In this paper, we presented a generic interface to model OS
behavior for usage in static analysis. Thereby, we were able to
reduce the constraints for an OS to a minimum: The system
must communicate with a syscall interface.

We implemented the interface for the four OSs FreeRTOS,
AUTOSAR, Zephyr, and POSIX and evaluated all targets

with at least one test application. The results prove the
working of the model. While experiencing limitations, we can
assign them either to the analysis algorithm or inaccuracies in
the value analysis, not the OS model itself. We discussed
the characteristics of different OSs and their potential for
optimization.

REFERENCES

[1] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A tool for schedulability analysis and code generation
of real-time systems. In Formal Modeling and Analysis of Timed Systems.
Springer Berlin Heidelberg, 2004.

[2] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis
Vilanova, Enric Morancho, and Nacho Navarro. Building a global system
view for optimization purposes. In 2nd Work. on the Interaction between
Operating Systems and Computer Architecture (WIOSCA ’06). IEEE
Computer Society Press, 2006.

[3] Aske Brekling, Michael R. Hansen, and Jan Madsen. Models and formal
verification of multiprocessor system-on-chips. The Journal of Logic
and Algebraic Programming, 77(1), 2008. The 16th Nordic Work. on
the Prgramming Theory (NWPT 2006).

[4] Jiang Chen and Toshiaki Aoki. Conformance testing for OSEK/VDX
operating system using model checking. In 18th Asia-Pacific Software
Engineering Conf. (APSEC 2011). IEEE Computer Society Press, 2011.

[5] Nathan Chong and Bart Jacobs. Formally verifying FreeRTOS’ interpro-
cess communication mechanism. In Embedded World Exhibition and
Conf., 2021.

[6] David Déharbe, Stephenson Galvao, and Anamaria Martins Moreira.
Formalizing FreeRTOS: First steps. In Brazilian Symp. on Formal
Methods. Springer, 2009.

[7] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Cross-kernel
control-flow-graph analysis for event-driven real-time systems. In 2015
ACM SIGPLAN/SIGBED Conf. on Languages, Compilers and Tools for
Embedded Systems (LCTES ’15). ACM Press, 2015.

[8] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Global
optimization of fixed-priority real-time systems by RTOS-aware control-
flow analysis. ACM Trans. on Embedded Computing Systems, 16(2),
2017.

[9] Christian Dietrich and Daniel Lohmann. OSEK-V: Application-specific
RTOS instantiation in hardware. In 2017 ACM SIGPLAN/SIGBED Conf.
on Languages, Compilers and Tools for Embedded Systems (LCTES ’17).
ACM Press, 2017.

[10] Timothee Durand, Katalin Fazekas, Georg Weissenbacher, and Jakob
Zwirchmayr. Model checking AUTOSAR components with CBMC. In
2021 Formal Methods in Computer Aided Design (FMCAD). IEEE, 2021.

[11] Ling Fang, Takashi Kitamura, Thi Bich Ngoc Do, and Hitoshi Ohsaki.
Formal model-based test for AUTOSAR multicore RTOS. In 2012 IEEE
Fifth Intl. Conf. on Software Testing, Verification and Validation. IEEE,
2012.

[12] Zhang Feng, Zhao Yongwang, Ma Dianfu, and Niu Wensheng. Fine-
grained formal specification and analysis of buddy memory allocation in
Zephyr RTOS. In 2019 IEEE 22nd Intl. Symp. on Real-Time Distributed
Computing (ISORC), 2019.

[13] Björn Fiedler, Gerion Entrup, Christian Dietrich, and Daniel Lohmann.
ARA: Static initialization of dynamically-created system objects. In
27th IEEE Real-Time and Embedded Technology and Applications Symp.
(RTAS’21), 2021.

[14] Florian Franzmann, Tobias Klaus, Peter Ulbrich, Patrick Deinhardt,
Benjamin Steffes, Fabian Scheler, and Wolfgang Schröder-Preikschat.
From intent to effect: Tool-based generation of time-triggered real-time
systems on multi-core processors. In 19th IEEE Intl. Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC ’16). IEEE Computer
Society Press, 2016.

[15] T. Glek and Jan Hubicka. Optimizing real world applications with GCC
link time optimization. CoRR, abs/1010.2196, 2010.

[16] Martin Hoffmann, Christian Dietrich, and Daniel Lohmann. dOSEK:
A dependable RTOS for automotive applications. In 19th Intl. Symp.
on Dependable Computing (PRDC ’13). IEEE Computer Society Press,
2013. Fast abstract.

[17] Yanhong Huang, Yongxin Zhao, Longfei Zhu, Qin Li, Huibiao Zhu, and
Jianqi Shi. Modeling and verifying the code-level osek/vdx operating
system with csp. In 5th Intl. Symp. on Theoretical Aspects of Software
Engineering (TASE’11). IEEE Computer Society Press, 2011.

[18] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: a practical binary optimizer for data centers and beyond. In 2019
IEEE/ACM Intl. Symp. on Code Generation and Optimization (CGO).
IEEE, 2019.

[19] David Sanán, Liu Yang, Zhao Yongwang, Xing Zhenchang, and Mike
Hinchey. Verifying FreeRTOS’ cyclic doubly linked list implementation:
From abstract specification to machine code. In 2015 20th Intl. Conf.
on Engineering of Complex Computer Systems (ICECCS). IEEE, 2015.

[20] Fabian Scheler and Wolfgang Schröder-Preikschat. The RTSC: Leverag-
ing the migration from event-triggered to time-triggered systems. In 13th
IEEE Intl. Symp. on Object-Oriented Real-Time Distributed Computing
(ISORC ’10). IEEE Computer Society Press, 2010.

[21] Horst Schirmeier, Matthias Bahne, Jochen Streicher, and Olaf Spinczyk.
Towards eCos autoconfiguration by static application analysis. In 1st
Intl. Work. on Automated Configuration and Tailoring of Applications
(ACoTA ’10), CEUR Work. Proceedings. CEUR-WS.org, 2010.

[22] Simon Schuster, Peter Wägemann, Peter Ulbrich, and Wolfgang Schröder-
Preikschat. Proving real-time capability of generic operating systems by
system-aware timing analysis. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), 2019.

[23] Amitabh Srivastava and David W. Wall. Link-time optimization of
address calculation on a 64-bit architecture. 29(6), 1994.

[24] Yulei Sui and Jingling Xue. SVF: Interprocedural static value-flow
analysis in LLVM. In 25th Intl. Conf. on Compiler Construction, CC
2016. Association for Computing Machinery, 2016.

[25] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and
Wolfgang Schröder-Preikschat. I4Copter: An adaptable and modular
quadrotor platform. In 26th ACM Symp. on Applied Computing (SAC

’11). ACM Press, 2011.
[26] Dieu-Huong Vu, Yuki Chiba, Kenro Yatake, and Toshiaki Aoki. Verifying

OSEK/VDX OS design using its formal specification. In Proc. TASE’16.
IEEE Computer Society, 2016.

[27] Haitao Zhang, Toshiaki Aoki, and Yuki Chiba. Yes! you can use your
model checker to verify OSEK/VDX applications. In 8th IEEE Intl.
Conf. on Software Testing, Verification and Validation, ICST 2015, Graz,
Austria, April 13-17, 2015, 2015.

[28] Min Zhang, Yunja Choi, and Kazuhiro Ogata. A formal semantics
of the OSEK/VDX standard in K framework and its applications. In
Proc. WRLA’14. Springer, 2014.

[29] Ming-Yuan Zhu, Lei Luo, and Guang-Ze Xiong. The minimal model of
operating systems. SIGOPS Oper. Syst. Rev., 2001.

	Introduction
	System Model and Implementation
	OS Model Design
	SIA
	SSE
	A generic OS model

	Experimental Validation
	FreeRTOS
	Zephyr
	AUTOSAR
	POSIX

	Discussion
	Related Work
	Conclusion
	References

