
Data-Flow–Sensitive Fault-Space Pruning
for the Injection of Transient Hardware Faults

Oskar Pusz, Christian Dietrich, Daniel Lohmann

June 22, 2021

Motivation

op DFPrune – Motivation 2 – 10

Motivation

op DFPrune – Motivation 2 – 10

The Fault Space

Fault injection campaign for a given program (execution)
FM: Uniformly-distributed soft errors in registers and memory
Goal: Quantify the failure-behavior of a single program execution.

// initial r0=5, r1=11
//////////////////////
// shift-left by 1
r0 := SHL r0, 1 //r0=10
// bit-wise XOR with 7
r1 := XOR r1, 7 //r1=12
// bit-wise AND
r1 := AND r0, r1 //r1=8
// move result to r0
r0 := MOV r1 //r0=8
// result in r0

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

Plan and inject!

Record a fault-free execution of the program-under-test.
Inject every memory location in each processor cycle.
Wait.... (40 injections)

op DFPrune – Motivation 3 – 10

The Fault Space

Fault injection campaign for a given program (execution)
FM: Uniformly-distributed soft errors in registers and memory
Goal: Quantify the failure-behavior of a single program execution.

// initial r0=5, r1=11
//////////////////////
// shift-left by 1
r0 := SHL r0, 1 //r0=10
// bit-wise XOR with 7
r1 := XOR r1, 7 //r1=12
// bit-wise AND
r1 := AND r0, r1 //r1=8
// move result to r0
r0 := MOV r1 //r0=8
// result in r0

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

Plan and inject!

Record a fault-free execution of the program-under-test.
Inject every memory location in each processor cycle.
Wait.... (40 injections)

op DFPrune – Motivation 3 – 10

The Fault Space

Fault injection campaign for a given program (execution)
FM: Uniformly-distributed soft errors in registers and memory
Goal: Quantify the failure-behavior of a single program execution.

// initial r0=5, r1=11
//////////////////////
// shift-left by 1
r0 := SHL r0, 1 //r0=10
// bit-wise XOR with 7
r1 := XOR r1, 7 //r1=12
// bit-wise AND
r1 := AND r0, r1 //r1=8
// move result to r0
r0 := MOV r1 //r0=8
// result in r0

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

Plan and inject!
Record a fault-free execution of the program-under-test.

Inject every memory location in each processor cycle.
Wait.... (40 injections)

op DFPrune – Motivation 3 – 10

The Fault Space

Fault injection campaign for a given program (execution)
FM: Uniformly-distributed soft errors in registers and memory
Goal: Quantify the failure-behavior of a single program execution.

// initial r0=5, r1=11
//////////////////////
// shift-left by 1
r0 := SHL r0, 1 //r0=10
// bit-wise XOR with 7
r1 := XOR r1, 7 //r1=12
// bit-wise AND
r1 := AND r0, r1 //r1=8
// move result to r0
r0 := MOV r1 //r0=8
// result in r0

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

Plan and inject!
Record a fault-free execution of the program-under-test.
Inject every memory location in each processor cycle.

Wait.... (40 injections)

op DFPrune – Motivation 3 – 10

The Fault Space

Fault injection campaign for a given program (execution)
FM: Uniformly-distributed soft errors in registers and memory
Goal: Quantify the failure-behavior of a single program execution.

// initial r0=5, r1=11
//////////////////////
// shift-left by 1
r0 := SHL r0, 1 //r0=10
// bit-wise XOR with 7
r1 := XOR r1, 7 //r1=12
// bit-wise AND
r1 := AND r0, r1 //r1=8
// move result to r0
r0 := MOV r1 //r0=8
// result in r0

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

Plan and inject!
Record a fault-free execution of the program-under-test.
Inject every memory location in each processor cycle.
Wait.... (40 injections)

op DFPrune – Motivation 3 – 10

Fault Space Pruning

Def-Use Pruning
Observation: Faults between read/write events have equivalent behavior
Faults only become active on a read; a write makes it benign.
Select one fault-injection pilot for each equivalence interval

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

fault
equivalence

read
event

write
event fault pilot

Significantly reduces number of injections (40 → 24), but...
Equivalences are only formed horizontally, not vertically.
Some instructions mask errors or only propagate them.

op DFPrune – Def-Use Fault Space Pruning 4 – 10

Fault Space Pruning

Def-Use Pruning
Observation: Faults between read/write events have equivalent behavior
Faults only become active on a read; a write makes it benign.
Select one fault-injection pilot for each equivalence interval

r0

r1
t

0 1 2 3 4
SHL XOR AND MOV

fault
equivalence

read
event

write
event fault pilot

Significantly reduces number of injections (40 → 24), but...
Equivalences are only formed horizontally, not vertically.
Some instructions mask errors or only propagate them.

op DFPrune – Def-Use Fault Space Pruning 4 – 10

In a nutshell: Data-flow-Sensitive Pruning

Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,

we can extend the equivalence set.

r0

r1

1
0
1
0

0
1
0
1

0
1
0
1

0
1
0
1

0
0
0
1

1
1
0
1

1
1
0
1

0
0
1
1

0
0
0
1

0
0
0
1

t
0 1 2 3 4

SHL XOR AND MOV

Golden run is one path through the program
Knowledge: instructions, register values, instruction semantic

→ We can calculate masking and propagation behavior.

op DFPrune – Data-flow–Sensitive Pruning 5 – 10

In a nutshell: Data-flow-Sensitive Pruning

Basic principle
As long as an single-bit error does not escalate to a multi-bit error or becomes visible,

we can extend the equivalence set.

r0

r1

1
0
1
0

0
1
0
1

0
1
0
1

0
1
0
1

0
0
0
1

1
1
0
1

1
1
0
1

0
0
1
1

0
0
0
1

0
0
0
1

t
0 1 2 3 4

SHL XOR AND MOV

Golden run is one path through the program
Knowledge: instructions, register values, instruction semantic

→ We can calculate masking and propagation behavior.
op DFPrune – Data-flow–Sensitive Pruning 5 – 10

Step 1: Build a data-flow graph

0001

r0 0101 SHL 1010 1010 ε 1010 MOV 1000

r1 1011 1011 XOR 1100 AND 1000 ε 1000

0111

0 1 2 3 4

1011

1010

t

final value

instruction immediate

value

Directed graph of operations (blue) and operands (yellow)
All values and operations are known from the golden run
Artificial ε-nodes model the influence of read events

Choosing read or final value nodes for injection leads to Def-Use pilots

op DFPrune – Data-flow–Sensitive Pruning 6 – 10

Step 1: Build a data-flow graph

0001

r0 0101 SHL 1010 1010 ε 1010 MOV 1000

r1 1011 1011 XOR 1100 AND 1000 ε 1000

0111

0 1 2 3 4

1011

1010

t

final value

instruction immediate

value

Directed graph of operations (blue) and operands (yellow)
All values and operations are known from the golden run
Artificial ε-nodes model the influence of read events

Choosing read or final value nodes for injection leads to Def-Use pilots

op DFPrune – Data-flow–Sensitive Pruning 6 – 10

Step 2: Form local fault equivalences

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

1011

1011

SH
L

1

× ↓ ↓ ↓

M α β γ

α β γ δ

0101

1010

LO
GI

C
N

O
T

↓ ↓ ↓ ↓

α α α α

β γ δ α

0000

0001

source
value

read mask

local
equivalence

set (α)

destination
value

Error propagation of a single instruction
Assumption: Exactly one input bit is faulty
Combine instruction semantic and operand values

op DFPrune – Data-flow–Sensitive Pruning 7 – 10

Step 3: Propagate equivalences globally

r0 r1

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

AN
D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

a b c d

1100

e f g h

1000

i j k l

1000

q r s t

1000

m n o p

injection
symbols

pilot
injection

masked
fault

One FI symbol per operand bit
All occurrences are equivalent
Goal: Propagate symbols

Propagation Phase
readers = 0→ mark benign
readers = 1→ propagate back
readers > 1→ do nothing

Mask and Plan
Operation can mask faults
One injection per symbol

op DFPrune – Data-flow–Sensitive Pruning 8 – 10

Step 3: Propagate equivalences globally

r0 r1

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

× × × ×

α β γ δ

α β γ δ

AN
D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

q r c d

1100

q f s h

1000

q r s t

1000

q r s t

1000

0 0 0 0

injection
symbols

pilot
injection

masked
fault

One FI symbol per operand bit
All occurrences are equivalent
Goal: Propagate symbols

Propagation Phase
readers = 0→ mark benign
readers = 1→ propagate back
readers > 1→ do nothing

Mask and Plan
Operation can mask faults
One injection per symbol

op DFPrune – Data-flow–Sensitive Pruning 8 – 10

Step 3: Propagate equivalences globally

r0 r1

M
O

V

↓ ↓ ↓ ↓

α β γ δ

α β γ δ

ε

× × × ×

α β γ δ

α β γ δ

AN
D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α β M M α M γ M

α β γ δ

1010

q r 0 0

1100

q 0 s 0

1000

q r s t

1000

q r s t

1000

0 0 0 0

injection
symbols

pilot
injection

masked
fault

One FI symbol per operand bit
All occurrences are equivalent
Goal: Propagate symbols

Propagation Phase
readers = 0→ mark benign
readers = 1→ propagate back
readers > 1→ do nothing

Mask and Plan
Operation can mask faults
One injection per symbol

op DFPrune – Data-flow–Sensitive Pruning 8 – 10

Evaluation: MiBench and Microbenchmarks

#Faults [106] Def-Use #Inj. [104] DFPrune #Inj. [104] ∆ Inj. [%]

mi/BC 70.33 222.40 181.43 -18.42
mi/BFD 1894.82 331.38 295.95 -10.69
mi/BFE 1880.82 326.93 292.97 -10.39
mi/QSORT 1623.90 270.58 234.31 -13.40
mi/RDD 3506.17 397.60 345.37 -13.13
mi/RDE 3457.59 397.99 351.90 -11.58
mi/SHA 242.63 252.79 219.74 -13.07

µ/FIB 1.15 8.87 7.56 -14.78
µ/LSUM 0.02 0.26 0.26 0.00
µ/MIXED 0.03 0.45 0.40 -11.83
µ/QSort 0.18 1.27 1.22 -4.36
µ/QSortIter 1.20 4.23 3.88 -8.18

op DFPrune – Evaluation 9 – 10

Summary

Def-Use Pruning is one-dimensional
Equivalences are only formed along the time axis
Instruction can mask errors benign or propagate them

DFPrune: Data-Flow–Sensitive Fault Space Pruning
Faults are equivalent as long as the error does not escape!
Propagate FI Symbols on the Data-Flow Graph
Instruction-local Fault Equivalences

DFPrune reduces the number of required injections
Between 10 and 18 percent reduction for MiBench
Reductions across all failure classes
At least as good as Def-Use Pruning

op DFPrune – Summary 10 – 10

	Motivation
	Motivation
	Motivation
	The Fault Space
	The Fault Space
	The Fault Space
	The Fault Space
	The Fault Space

	Def-Use Fault Space Pruning
	Fault Space Pruning
	Fault Space Pruning

	Data-flow–Sensitive Pruning
	In a nutshell: Data-flow-Sensitive Pruning
	In a nutshell: Data-flow-Sensitive Pruning
	Step 1: Build a data-flow graph
	Step 1: Build a data-flow graph
	Step 2: Form local fault equivalences
	Step 3: Propagate equivalences globally
	Step 3: Propagate equivalences globally
	Step 3: Propagate equivalences globally

	Evaluation
	Evaluation: MiBench and Microbenchmarks

	Summary
	Summary

