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Abstract—Due to shrinking structure sizes and operating
voltages, hardware becomes more susceptible to transient faults.
Fault injection campaigns are a common approach to system-
atically assess the resilience of a system and the effectiveness
of software-based counter measures. However, experimentally
injecting all possible faults to achieve full fault-space coverage
is infeasible in practice. While precise pruning techniques, such
as def/use pruning, already provide a significant reduction of the
campaign size, the number of injections remains still challenging
for even medium-sized systems.

We propose fault-space regions (FSRs) as a method to ap-
proximately cover the complete fault space with a significantly
lower number of required injections. Instead of probabilistic
subsampling of the fault space, our approximation exploits the
actual program structure and execution trace (e.g., flow of basic
blocks) to identify injection points that are representatives for a
larger set of faults. We identify such data-flow regions and inject
only data values that flow across region boundaries. Thereby,
we can further reduce the number of injections by up to 76
percent, while the results divert only by less than 2.7 percent
from those of a complete and precise fault-injection campaign.
Furthermore, we keep the locality of the results regarding silent
data corruptions to a deviation of less than 6.9 percent.

Index Terms—reliability, functional correctness, single event
upset, bit flip, fault injection, fault space approximation

I. INTRODUCTION

Due to shrinking transistor sizes and operating voltages,
transient hardware faults are an emerging challenge for safety-
critical systems [8]. Functional safety standards, such as the
automotive ISO 26262 standard [20, 21], take up this fact and
recommend explicit measures to assess (and possibly mitigate)
the effects of single-event upsets (SEUs) causing transient
hardware faults (soft errors) [26] to the functional safety of the
system. This is commonly done by performing extensive fault
injection (FI) campaigns on the target system [2, 6] that try to
mimic either the physical causes for SEUs (by exposing the
system to, e.g., heat or radiation [14, 29]) or their effects (by
changing logic signals). In this paper, we focus on injections of
logic faults on ISA-level (i.e., bit flips in all software-accessible
registers and memory), but the proposed concepts could be
applied to other levels as well.

Every single injection within a FI campaign mimics an
SEU and its impact on a concrete system’s behavior. To reach
full fault space (FS) coverage of all possible single-bit faults,
one has, in principle, to inject each bit at every cycle of the
application’s execution. The resulting error-rate function would
be complete and precise, but the FS to examine is prohibitively
huge. However, it is possible to reduce the number of required

injection experiments by pruning techniques, such as the well-
known def/use-pruning (DUP) [34, 16, 13, 17]. In the paper,
we present an approximative approach that, applied on top
of DUP, can reduce the number of necessary injections even
further at only very little costs regarding precision.

A. About This Paper

We present a program–structure–guided FI method to calcu-
late, approximately, the resilience of a given program execution
against bit flips. In a nutshell, we use the program’s control-flow
structure (e.g., jumps) in the fault-free execution trace to form
fault-space regions (FSRs) as consecutive instruction sequences.
For each region, we inject those data flows that cross region
boundaries as they transfer computation results from region to
region. By assigning appropriate weights to each region and
each performed injection, we derive an approximation of the
actual error-rate function for the given program, which would
include inter- and intra-region data flows.

Figure 1 illustrates our idea and shows the control- and
data-flow, as well as a fragment of the fault space, for the
inner loop of a CRC32 checksum. Here, the jump at the end
of the loop acts as a region boundary such that each loop
iteration becomes one FSR. In the fault space, we see the
fault-equivalence sets and their representative faults as they
are produced by DUP, which here would require ten FIs. With
our method, we avoid the injection of the intermediate results
within the loop body by executing only three FIs in values that
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loop:
mov ecx, eax
shr ecx
and eax, 1
neg eax
and eax, 0xEDB88320
xor eax, ecx
sub edx , 1
jne loopfo
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Fig. 1: Program structure for the inner loop of a CRC32
implementation. The corresponding fault-space fragment is
partitioned with def/use pruning into equivalence sets, and we
have to inject all representative (red) faults for a complete
coverage.
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cross the region boundaries. Since we assume that a fault within
a FSR manifests in an erroneous region-crossing data flow, we
thereby concentrate our injection efforts on the neuralgic spots
of the program execution without jeopardizing the precision
of the resilience investigation.

In particular, we claim the three following contributions:
• We introduce the fault-space region (FSR) concept, which

uses the program structure and data flow in an execution
trace, to drastically reduce the number of fault injections.

• We present two instantiations of the FSRs concept using
basic blocks as well as function calls, and extend the
available FAIL* [32] FI framework to support FSR.

• We evaluate our approach with established benchmarks
(MiBench [15]) and demonstrate that our approximation
of the error rates is comparable to a precisely-covered
fault space.

In the following, we first describe our fault- and system
model in Section II and then present FSRs, which is our core
contribution, in Section III. We evaluate our approach with a
set of benchmarks from the MiBench suite in Section IV and
discuss some general findings in Section V. In Section VI we
summarize the related work and finally conclude the paper in
Section VII.

II. FAULT MODEL

We want to investigate on the resilience of a program in the
presence of transient hardware faults (soft errors) [26], which
arise from SEUs caused by radiation, electromagnetic inter-
ferences or other environmental influences. These influences
manifest within the system, in combinatorial logic, registers,
and memory cells [5, 19, 33] and surface, at some point, as
bit flips at the hardware/software boundary.

The fault model (FM) determines the type, location, time,
and probability of the considered faults. In this work, we
use three FMs with uniformly-distributed single-bit flips
that happen in between instructions in (1) the processor’s
general purpose registers, (2) the main memory, and (3) both
registers and memory. In combination with a concrete, fault-free
execution (golden run) of the program-under-test, we derive
the rectangular fault space (FS), with time and location axis,
as the set of all possible faults. In Figure 2, we show a fault
space that spans over 12 instructions and 4 bits, and contains
48 possible faults (squares), which are equally likely.

We use these FMs as examples, although our approach is
applicable to a wider range of models and spaces as long as:
(1) the time axis is synchronized with the program execution.
(2) the number of fault locations is fixed and known. (3) the
probability pf of each fault is known.

With a single FI, we flip a bit of data at the given time and in
the given location in a deterministic re-execution of the program
and classify the subsequent error and failure behavior of the
program by using the golden run as a reference. Therefore, fault
injection is a function that maps faults to error classes, like
“benign error”, “detected error”, or “silent data corruption”.

ET (C) =
∑
{pf |f ∈ FS, FI(T, f) = C}

time [instructions]
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Fig. 2: Fault space with DUP equivalence sets

Goal of a FI campaign is to deduce the combined error-rate
function E , which gives a probability for each error class C that
such an error occurs during a program execution T . For our
uniformly-distributed single-bit fault model, it is sufficient
to give and compare error-classification counts instead of
accumulated probabilities [30] as they differ only in a constant
multiplicative probability factor (pf ).

If a FI method is complete, it derives an error classification
for each member of the fault space. This can either be done
by injecting every fault or by interpolating classifications from
a partial covering. If a FI method is precise, the error function
perfectly represents the error rates for a concrete fault space.
In this classification, our method is complete but not precise as
we only provide an approximation Ẽ of the error-rate function,
but at a much lower number of required fault injections. For
this, we sample faults and weight the results according to the
program structure.

III. PROGRAM-STRUCTURE-GUIDED APPROXIMATION

We introduce the concept of fault-space regions (FSRs), a
program-structure-guided fault-space approximation method to
reduce the number of required FIs.

The standard technique to reduce the required FIs is def/use-
pruning (DUP) [34, 16, 13, 17], which reduces the FS up
to five orders of magnitude [4]. This operation principle is
shown in Figure 2: In the rectangular FS (location × time),
we consider each location (rows) in isolation and split the
time-axis aligned sequence of faults at read/write accesses into
partitions (see Figure 2). These partitions are equivalence sets
(ESs) with regard to their error classification as a fault can
only become effective at the next accessing instruction. ESs
that end in a write access will always result in a benign error
(gray), because every fault within an ES will be overwritten
by the write access. Read ESs can lead to an actual erroneous
behavior and manifest in the system. It does not matter in
which instruction of the ES a fault is injected, because the data
is not used until the read access and every fault within a read
ES lead to an equivalent behavior. So, for each read ES, we
have to inject only one representative fault. We call the set of
all read ESs the effective fault space. The DUP is a precise
and complete FI method if we inject all representative faults.

Despite using DUP, a FI campaign can still be infeasible
due to a too large number of representative FIs. Therefore,
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Fig. 3: Fault space with a fault space region.

different heuristics [17, 24] were proposed to reduce the number
of necessary FIs even further. While our method also falls in
this category, we base our approximation of error-rate function
on the DUP technique i.e., its ES and we deduce the required
injections using program structures from the program trace.
Thereby, the FSRs concept is application-tailored, based on a
precise pruning method, and provides a complete but imprecise
FI method. We start out by explaining the FSRs concept in
general, before we present two possible instantiations that use
basic blocks and call/return instructions as the guiding program
structures.

A. The Fault-Space–Region Concept

For our approach, we partition the time axis of the FS
into continuous sequences of instructions. The fault model’s
information about the available locations or bits define the
formation of FSRs. We derive the FSR border from the
fault-free execution trace, which is the recorded sequence of
instruction pointers (IPs) for the investigated program path.
From the trace, we extract program structures (e.g., basic blocks,
function scopes or module boundaries) and use them as a guide
to portion the time-axis. Figure 3 shows exemplary two FSR
borders at bi and bi+1.

DUP results in the previously mentioned effective ESs of
different lengths. With the FSRs, we select all of the effective
ESs, that start within a given FSR. We decide for every element
of an FSR if it is an inner ES, which does not extend beyond
the next FSR border (bi+1), or if it is an outer ES, which
transport computation results from this FSR into a following
one. In Figure 3, all ineffective (write) ESs were removed
(gray) and only the effective ESs for the FSR i are shown;
inner ESs are filled in blue, the two outer ones are drawn
green.

For the FI campaign, we only execute injections for the
outer ESs and weight their results to get an approximation of
the error-rate function. With this weighting, we compensate
for the influence of the omitted inner injections and interpolate
from the classification results of the outer ES to a classification
for all effective ESs. Our rationale for this focus on the outer
injections is that faults in inner sets have to manifest in an

outer ES, which carries the error to other FSRs where it can
become a failure. In essence, we treat each FSR as a black
box and only inject faults into its outputs.

One key component of the FSR approach is the weighting
function for the injection results of outer ESs. First, we define
the weight wr of an FSRr as the sum of all cardinalities of
covered (inner and outer) ESs. Please note that the sum over all
FSR weights is equal to the sum of all ES weights if we only
apply DUP. We distribute the FSR weight over its outer ESs
set Er and their injection results je of every outer ES e ∈ Er.
In our experiments, we developed two different methods that
distribute the weights uniformly (wmean) or rather according to
the relative DUP weight within the FSR (wwmean):

wmean(je) =
1

|Er|
· wr e ∈ Er

wwmean(je) =
|e|

wr,outer
· wr e ∈ Er wr,outer =

∑
ek∈Er

|ek|

The first one is the mean-like function wmean(je) that
uniformly distributes the FSR weight wr uniformly over all
|Er| outer ESs. As a refinement, we developed wwmean(je) as
a second weighting method, which considers the weight |e| of
the outer ES e with respect to the other outer ESs. For this
weighted mean, we sum up (wr,outer) the cardinalities of the
region’s outer ESs Er. Thereby, injections with a higher DUP
weight also get a higher weight with the wwmean function, where
a higher weight with the wmean function is evenly distributed
over all outer injections.

With this FSR concept, we have the tools to inject only
a subset, namely the outer ESs, of all representative faults
determined by DUP and calculate an approximation of the
error-rate function by weighting the results. Without the ESs
of DUP, each instruction is considered as an isolated ES and
none of the ESs would ever cross a border between FSRs,
which means that not a single FI will be executed. Thus, the
formation of ESs is a necessary condition for the usage of
FSRs. However, we still have defined how we derive FSR
borders from the execution trace. While the FSR concept can
be combined with different FSR-forming methods, we will
present two instantiations based on the control-flow structure
of the program in the following.

B. Basic-Block and Call Regions

The (control- or data-flow) structures of a program are static
properties that are most relevant in the context of compilers
or static-program analysis. We take this term from the static
world and apply it to the execution trace, which is one control-
flow path through the program. By analyzing the trace, we
deduce basic-block regions (BBRs) and call regions (CRs) as
two different granularities of FSRs.

a) Basic block regions: For a compiler, a basic block (BB)
is a single-entry–single-exit region of machine instructions that
is only entered at the first instruction and only left at the last
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one. Thereby, the inner instructions of a BB are branch free,
and they are never target of a jump or call instruction. As BBs
are the building block for the control-flow graph, they are one
of the smallest structuring elements of programs that is larger
than an individual instruction.

Instead of extracting the BBs from the binary itself or getting
it from the compiler, we deduce dynamic BBs from the program
trace. First, we want to find all instructions that start a new
BB. For this, we iterate over the trace and find all changes to
the control flow where instructions are not executed directly
in sequence (i.e., jumps, calls). All instructions that follow
such a change in the trace and the static successor of the
jump instruction start a new BB and thus an FSR. In a second
run over the program trace, we use the set of all FSRs and
determine the outer ESs as well as the resulting FIs.

Please note that our dynamic BBs are sometimes larger (but
never smaller) than the actual BB that are produced by the
compiler. This happens, if the execution from a basic block
directly falls through to the successor block and the trace
contains no explicit jump to the successor (e.g., a while loop
with one loop iteration).

b) Call regions: For call regions (CRs), we use the BBR
construction but only consider control-flow changes that stem
from call or return instructions as FSR borders. Thereby, we
end up with larger FSRs, which increases the number of inner
ES even further. For example, the execution of a leaf function,
which calls no other functions, becomes a single FSR. The
resulting CRs also is the compound of all BBRs between call
and/or return instructions.

IV. EVALUATION

For the evaluation, we apply basic-block regions (BBRs) and
call regions (CRs) to seven benchmarks from the MiBench [15]
benchmark suite. We use the classical DUP technique as a
baseline and compare the FSR method in terms of required fault
injections and the relative deviation we get for the error-rate
function ET . This comparison is done in three different FMs
(memory only, register only, both) and with both presented
weighting functions. At the end of the evaluation, we examine
whether the regions can keep the locality of the results despite
deviations.

A. Experimental setup

For the fault injection, we use the simulation-based FI
framework FAIL* [32], which extracts program traces, performs
the DUP, and simulates the representative faults using the Intel
IA-32 simulator Bochs. We extended tooling to support the
BBR and the CR instances of the FSR concept.

Due to its client-server-architecture and the independence of
the injections, we performed the necessary fault injections on
a cluster system using 17 Intel Xeon X5650 @ 2.67GHz (12
cores each). The DUP and the FSR calculation were performed
on an Intel i5-7400 @ 3GHz (4 cores).

B. Evaluation scenario

To evaluate FSRs we use seven selected programs of
the automotive and security branch of the benchmark suite
MiBench [15] and executed them with a reduced input size.
We choose the automotive branch, since FIs are recommended
to be performed for safety analyses and certifications in the
automotive sector [20]. For this branch, we use bit count
(BC) and quick sort (QSORT) and omitted the basicmath
benchmark, since FAIL* does not yet support injections into
floating-point registers. Furthermore, we also skipped the susan
benchmarks (image processing), since failure behavior of image
recognition is rather gradually, due the amount of redundancy
within the image, than classifiable with a few error classes.
From MiBench’s security branch, we choose the encryption
algorithms blowfish encode (BFE), blowfish decode (BFD),
rijndael encode (RDE), rijndael decode (RDD) and sha1 (SHA).
These benchmarks are interesting since every single bit is
important for the correct execution of the encryption and
therefore it is also challenging for the FSRs concept. We
consider these benchmarks to be sufficient and decided to omit
the benchmark PGP as it has similar properties in comparison
to the other security benchmarks.

For the error classification after the fault injection, we used
five error classes: (1) benign error; the program recovered
and produced the correct result. (2) silent-data corruption; the
program terminated but produced an erroneous output. (3)
timeout; the program took significantly longer than the fault
free execution. (4) trap; the processor reported a trap during
the execution. (5) write text segment; the program tried to
write to the read-only code section.

We evaluate the FSR concept with three uniformly-
distributed single-bit fault models as described in Section II:
(1) Memory; each bit in memory can flip between two
instructions. (2) Register; each bit in each of the eight general-
purpose registers of an IA-32 processor can flip. (3) Combined;
combination of memory-only and register-only FM where the
rows of both are stacked to form a combined FS. By using these
models, we can make predications about injections into register
and memory data separately as well as about the interplay of
the combined usage patterns.

For the Register FM, we excluded the control-flow–related
registers (i.e., program counter and flags) on purpose: Since the
PC register changes with every instruction, its ESs have always
only one element and therefore can never cross a FSR border.
Similar to this, during a normal program execution, the flags
register on IA-32 is mainly used to store comparison results
shortly before the final branch instruction of a basic block.
Therefore, ESs of the flags register end with the FSR border.
Furthermore, we excluded floating-point registers, since the
FAIL* platform is currently unable to inject the floating-point
unit (FPU). Nevertheless, with the Memory FM, we still cover
all FPU input and output values when they are read from or
written to the main memory.
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fault model Memory Register Combined

#injections BBR[%] −9.79 −83.73 −69.91
CR [%] −38.03 −95.44 −83.87

Deviation δ BBR[%] 19.80 14.01 31.92
[mean] CR [%] 20.54 37.73 20.93

Deviation δ BBR[%] 0.04 16.87 0.91
[wmean] CR [%] 1.79 31.74 3.66

TABLE I: Overview of the reduced number of required fault
injections and the deviations δ [geo. mean] in the classification
for both presented weighting functions wmean and wwmean.

C. Reduced number of FIs

In the following, we characterize our benchmarks, quantify
the reduction of required FIs, and calculate the approximation
error introduced by our FSR concept if compared with
a precise and complete DUP injection campaign. Due to
different run times and error-classification distributions of
the benchmarks, we calculate the relative deviations for each
error class separately and use the geometric mean δ over
these error-classification deviations as the metric for the FSR
accuracy. Thereby, we avoid that a long-running benchmark or
a dominating classification distort the results. Calculating the
FSRs themselves took end-to-end no more than 4.1 seconds.

1) Overview: The number of instructions, BBRs, and CRs
are presented in Table II; they are valid for all FSs, because
the same program trace was used for all FSs. Table I shows
the percental reduction of required FIs and the deviations δ
for the precise error-rate function ET . We present the results
for the two possible weight functions wmean and wwmean for
FSRs. Overall, we could reduce the number of FIs by up to
95 percent with a deviation of 38 percent (register-only FM,
CR, wmean). The lowest deviation of only 0.04 percent was
achieved with BBRs for the memory FM, but resulted only
in a FI reduction of nearly 10 percent. In total, the wmean
function is more inaccurate and results in at least 14 percent
deviation. Therefore, in the following, we only show results for
the weighted-mean function wwmean in our detailed examination

of the results for the individual benchmarks and the three FSs.
2) Memory-only FM: Table II shows the results of our

approximation method for the memory-only FM. For SHA
and RDE, BBRs causes its maximal deviations of 0.19 and
0.17 percent under a reduction of FIs of 22.72 and 34.55
percent; the other deviations caused by BBRs are negligible.
Furthermore, the #injection reduction of BBRs ranges from a
little under 1 percent (BFE) to 35 percent (RDE). The minor
reduction observed for the blowfish benchmarks (BFD, BFE)
is caused by many large ESs that cross region borders. In such
cases, where memory is not used for intermediate results, BBR
injection converges to the DUP method.

For CRs, we see the largest deviation of around 10 percent for
the SHA benchmark accompanied by the drastic FI reduction
of 23 percent. This is caused by the small number of functions
calls, which leads to large but few FSRs. It shows that CR are
not practical if a program contains a small amount of function
calls. Besides SHA, CRs reduce the number of FIs at least
25 percent (up to 44%) with deviations ranging between 0.15
percent and 6.27 percent.

Summarized, for the memory-only FM, CRs (except SHA)
and especially BBRs provide significant reductions at moderate
approximation errors.

3) Register-only FM: For the register-only FM, the results
paint a different picture (Table III). First of all, we see that
the register FS is three orders of magnitude smaller than the
memory FS and it is much more densely packed with short
read ES, as can see from the minor FS reduction by DUP. This
is caused by the small number of registers, compared to the
number of touched memory cells, and the short retention time
of register data.

Over both methods, we can save at least 72 percent of
all injections at the price of much higher deviations up to 41
percent for BBRs (RDE) and up to 109 percent for CRs (SHA).
Only for the arithmetic intense BC benchmark we get a good
approximation. These huge deviations are caused by a common
register-usage pattern that conflicts with our assumption that
we capture FSR computation results by selecting the border-

Memory-only FM BC BFD BFE QSORT RDD RDE SHA

FS Size time axis [instr.] 112 848 56 141 55 444 46 240 71 318 71 411 41 113
total [·109 faults] 2.23 3.07 3.04 2.77 6.25 5.59 0.99
effective [·109 faults] 0.68 1.93 1.93 1.66 3.56 3.56 0.26

#regions BBR 21 405 5850 5031 7436 4049 4215 5644
CR 8818 434 436 1010 415 504 67

#injections DUP [·106] 1.04 0.57 0.57 0.52 1.10 1.10 0.50
BBR [%] −14.66 −1.51 −0.91 −15.49 −35.10 −34.55 −22.72
CR [%] −24.75 −25.21 −25.42 −44.26 −42.55 −41.40 −92.98

Deviation δ BBR [%] 0.117 0.004 0.002 0.062 0.123 0.168 0.186
CR [%] 0.147 2.475 2.655 0.998 6.270 0.942 10.232

TABLE II: Memory-only FM. Detailed statistic for the memory-only FM for seven MiBench benchmarks. With DUP, we
reduced the total fault space to the effective fault space by excluding FIs directly before write accesses. The number of injections
refer to the pruning method def/use-pruning (DUP) as well as our approximations basic-block region (BBR) and call region
(CR). The deviation δ is the geometric mean over the relative error-classification deviations. The number of instructions (time
axis) and the number of regions are valid for all fault spaces.
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Register-only FM BC BFD BFE QSORT RDD RDE SHA

FS Size total [·106] 32.50 16.17 15.97 13.32 20.54 20.57 11.84
effective [·106] 15.68 11.90 11.32 8.38 14.35 13.15 7.83

#injections DUP [·106] 4.00 2.70 2.65 2.19 2.83 2.86 2.01
BBR [%] −72.18 −86.60 −89.43 −73.96 −92.21 −92.46 −81.87
CR [%] −82.32 −97.82 −97.80 −95.79 −97.89 −98.04 −99.62

Deviation δ BBR [%] 3.67 25.41 12.59 12.33 23.76 41.30 27.39
CR [%] 3.17 34.28 56.78 24.59 40.45 48.57 108.77

TABLE III: Detailed statistic for the register-only FM

Combined FM BC BFD BFE QSORT RDD RDE SHA

FS Size total [·109] 2.26 3.08 3.05 2.79 6.27 5.61 1.00
effective [·109] 0.70 1.95 1.94 1.67 3.57 3.58 0.26

#injections DUP [·106] 5.04 3.27 3.22 2.71 3.93 3.96 2.51
BBR [%] −60.31 −71.71 −73.75 −62.75 −76.28 −76.37 −70.02
CR [%] −70.43 −85.11 −84.97 −85.91 −82.45 −82.30 −98.29

Deviation δ BBR [%] 0.17 1.16 1.14 0.33 2.66 1.73 1.48
CR [%] 0.18 7.34 6.43 2.88 9.37 3.33 11.48

TABLE IV: Detailed statistic for the combined FM (memory + register)

crossing ESs. While intermediate results are calculated in
registers, they are written to memory before the region is
left (e.g., caller-saved registers for the CRs). Thereby, the
relevant data flows happen within the FSR and the results
bypass our method in memory. We therefore conclude that
FSRs are unsuitable for a register-only FM if intermediate
results are mainly communicated through main memory.

4) Combined FM: Caused by our experience for the register-
only FM, we decided to apply FSRs also to the combined
FM. This FM provides the resilience investigator with a more
realistic picture for a whole system in a harsh environment
as it considers faults in all relevant storage and computation
components (processor, memory, and indirectly also caches).
Table IV shows the results of the combined FM.

With BBRs, we end up with a maximum deviation of 2.7
percent (1.24 % on average). At this cost, we get a reduction
of required injections that ranges between 60 percent and 76
percent (70.17 % on average). For the coarser CR method,
the average deviation increases to around 5.9 percent but the
FI reduction is at least 70 percent and goes up (excluding
SHA) to 86 percent. Again SHA proves difficult because of
the low number of function calls. Summarized, we see that
BBRs well suited for the combined FM and CRs when a bit
higher deviation is accepted.

D. Locality of the Results

For a resilience assessment, often not only the end-to-end
error rate is of interest, but also a comparison of different
program phases or sections. For example, with detailed FI
results, we can make an informed choice which function
requires additional software-based hardening measures, like
triple-modular redundancy.

With FSRs, we coarsen the focus point of the FI from
individual instructions to larger code regions. Therefore, we
are no longer able to distinguish between two neighboring

instructions, but we can only calculate local error rates for
each FSR. This is still possible since we approximate, for
each region individually, from the injection results of the outer
ESs to all ESs in the region. Furthermore, since FSRs are
formed according to the program structure and since they
partition the execution trace on the time axis, we can still
distinguish between different program phases and code blocks.
For example, with BBRs, we can still judge if the first execution
of a loop body is more vulnerable than the last one. In the
following, we will investigate how well the FSRs method is
able provide local results and if this locality is sensitive for
a specific benchmark, fault model, or error class. Since CRs
already showed a higher approximation error on the whole-
program level, we focus only on BBRs.

For each BBR, we calculate two error-rate vectors, a precise
and an approximated one, that hold the results for each of our
five error classes: As precise baseline, we use the FI results
for the inner and the outer ESs and weight them according to
their ES size. For the approximated one, we weight the results
of the outer ESs according to wwmean. We calculate the relative
deviations, element by element, and use the geometric mean
to summarize the BBR-local precision.

1) Benchmark- and Fault-Model Sensitivity: First, we want
to look at the sensitivity of the local results with respect
to different benchmarks and the three used fault models. In
general, we expect that a higher precision on the whole-program
level (Table II-IV) also translates into better local results.

For the register FM, which already proved to be already
difficult on the whole-program level, our method shows large
deviations if looking at individual BBRs: We end up with
median deviations that range from 20.46 percent (BC) up to
88.82 percent (SHA). The 75-percent quantile even goes up
to 100 percent deviation from the actual result. Again we see,
that our FSR approach is less suited for a register-only FM as
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Fig. 4: Local-result deviations for the combined FM. he red line is the median, the boxes represent the 0.25 and 0.75 quantiles,
and the whiskers refer to the last value within 1.5 times the interquartile distance. We omitted the outliers for clarity reasons.

local results can bypass the region borders in memory.
For the combined FM, we show the boxplot over the BBR-

result deviations in Figure 4a. Overall, we see that the median
deviations always stay below 40 percent with a 75-percent
quantile up to 77 percent (BFE). Thereby, good results in the
whole-program approximation (Table IV) also translate into
more precise results for the local error-rate function: BC and
QSORT show a median deviation of 7.3 percent and 10.44
percent.

For the Memory FM, we observed, as already predicted
by the whole-program approximation, the most precise local
results: Here, all benchmarks showed a median relative error
of zero and only three benchmarks had a 75-percent quantile
unequal to zero: BC and QSORT stayed below 0.33 percent
and only SHA had a 13 percent deviation in 0.75-quantile.
Therefore, we conclude that our BBRs is not only well suited
for whole-program approximation but also provides precise
local results for the Memory FM.

2) Error-Class Sensitivity: Besides benchmark and fault-
model sensitivity, we were also interested into the sensitivity
of BBR-local results towards different error classes, since our
evaluation metrics were not error-class separated until now.
However, in reality, some error classes, especially the silent-
data corruption (SDC) class, are more important to judge the
resilience of a program phase or code block. Therefore, we took
a deeper look into the local deviation results for the combined
FM, since this model provides the highest coverage of the
program behavior.

In Figure 5, we show the boxplots over the relative error-rate
deviations over all benchmarks and grouped by error class. We
see that benign faults, where the system recovered from the
injection, and invalid text-segment writes, show the highest
amount of imprecision (median: > 20%). From this higher
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Fig. 5: Boxplots of all error classes containing data points from
all benchmarks for the combined FS.

imprecision, we can speculate that such outcomes arise more
often from injections within a BBR. On the other hand, we
see that our BBR approximation provides the best results for
the most important error class: SDC. Here, the median is 6.88
percent and the 75-percent quantile keeps below 12 percent.

With this in mind, Figure 4b focuses only on SDCs and
shows the per-benchmark quality of BBR local results. In
essence, this figure is the same boxplot as Figure 4a but filtered
for the SDC class. We see that the median precision for local
SDC rates is higher for all benchmarks, with the exception of
QSORT. The medians range between 1.03 percent for SHA, 8
percent for BC, and 18.98 percent for QSORT; 0.75 quantiles
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are between 9.65 percent (RDE) and 45 percent(BFE). Since
local results for the SDC class are (most of the time) more
precise than for other error classes, we conclude that especially
those data flows that result in a SDC cross a BBR border and
are captured by our method.

From our investigation on local error rates, we see that BBRs
approximation is able to provide a high degree of locality.
Especially for SDCs, which are the most critical error class,
our approximation provides low deviations from a precise FI
that covers the entire FS, but at much lower injection costs.

V. DISCUSSION

1) Influence of the ISA: In our experiments, the FSR concept
led to a large approximation error for the register-only FM
because intermediate results do not cross the region border in
a register, but in main memory. This conflicts with our premise
that all values that transport data from region to region are
visible at the region border. For the combined FM, we could
avoid this as the bypass channel was also covered.

This bypass effect is highly dependent on the ISA of the
executing processor. In our evaluation, we used the Intel IA-
32 architecture, which is known for its high register pressure
as it has only 8 general-purpose registers. This forces the
compiler to spill intermediate results to memory instead of
keeping them in a data register. Hence, the applicability of
FSRs on register-only FMs is dependent on the ISA. We can
assume it will improve with a higher number of register if the
compiler exploits them properly. Using architectural properties
to improve the FSR’s accuracy for the register-only FM is a
topic of further research.

2) Determining Borders: In the paper, we proposed to
extract the program structures that guide the FSR construction
from the program trace. However, other sources for the region
borders are possibly also available. For example, as the compiler
produces all jump targets in a program, we could use this static
information instead of extracting dynamic basic blocks from
the trace. However, such a static method would have to cope
with dynamic branch targets or memory-indirect jumps that
are unknown at compile time.

Therefore, we think that our approach of extracting the
necessary information from the fault-free execution trace, which
definitely covers all required program structures, is preferable.
Nevertheless, it might be beneficial to enrich the trace-derived
region formation by static information from the compiler (or a
static analysis tool).

3) Limitations of the Approach: Our approach is limited to
FI scenarios for which a fault-free execution trace is available
and DUP is applicable. For example, if faults should be injected
in a continuously running system, we cannot prepare a list of
representative faults as no deterministic re-execution of the
system is possible. However, for such scenarios, the general
undertaking to calculate the error-rate function by a complete
coverage of the fault space is impossible.

The applicability of our approach is limited, if the chosen
program structures are not present. This was the case for the
SHA benchmark with CR, as a call-region program structure

is mainly absent in the binary. Similar situations can arise for
BBRs, if the compiler emits code using instruction predicates
or straight-line code. Here, we cannot detect jumps, although
some kind of control flow is still performed.

In a same direction, the FSR approach is sensitive to some
compiler optimizations that reduce the number of regions.
For example, with loop unrolling, a small loop body is
concatenated several times into one large basic block. In this
case, our BBR method would only inject data that flow in
and out of the loop, but no data-flow between loop iterations
is considered. To mitigate this, static information about the
program structure could be used (e.g., from the compiler-
generated debug information).

4) Generalizability: We performed the formation of FSRs
on the ISA level, where faults (virtually) only happen between
instructions in user-visible registers and memory. However, we
could also apply the concept of FSRs to fault models on other
abstraction levels. For example, we could apply FSRs to a
flip-flop–level fault model, where we inject the processor on
the gate level. Flip-flops define the location axis of the FS and
cycles the time axis. For FSRs to work, we only need to form
ES for each flip-flop and define region borders from the trace
of flip-flop values.

We could also generalize FSRs to higher abstraction levels,
such as a program executed by a language interpreter. Here,
the set of all language variables become the location axis and
the executed statements the time axis. In this scenario, we also
could extract information about the program-structure directly
from the interpreter as it has to be available anyway.

VI. RELATED WORK

As covering large FS is often infeasible in practice, several
methods were proposed to reduce the number of required
fault injections. The methods can be categorized in terms of
completeness and precision as defined in Section II.

Using the precise and complete DUP, which was proposed
several times [7, 17], already reduces the number of injections
significantly. Most similar to our FSR approach are methods
that group faults using structural characteristics with similar,
instead of equal error, behavior by data-structure dependen-
cies [11], address bounds [28], or memory states [18]. While
these methods also use program properties, they only consider
and prune a special section of the FS in comparison to the FS
relevant for the complete program.

Without using coarser-grained program structures, sampling
heuristics are used to approximately cover the FS [27, 22] or
concentrate on the most important faults [10]. However, these
pruning techniques are coarser grained and make no complete
statement about the FS and are, as every sampling method, not
precise. The Relyzer tool [17] as like as SmartInjector [24]
provide heuristics that combine multiple ESs into compounds
and inject one FI of this compound only. The disadvantage
is the inflexibility regarding the result accuracy and the
complexity of the analysis steps, as they mainly focus on
silent data corruptions. However, in many cases, other error
classes become more relevant [9, 25]. With the fault-similarity

8



heuristic [31], machine-learning techniques, with the recorded
machine state at the fault location as training data, were used
to avoid injections of similar faults, but is not reproducible
at all. In contrast, forming FSRs is flexible, reproducible, the
accuracy depends on the weight function only, and it works
independent of the error classification.

Besides the injection-based resilience assessments, different
methods [1, 3, 35, 11, 12] estimate the program reliability
by determining different vulnerability factors. For this, they
statically combine information about the program execution,
about the program structure, and even about the processor
architecture. However, these vulnerability factors provide no
quantitative classification of actual occurring errors, neither on
the whole-program nor on a region-local level. Furthermore,
since these methods analyze the program without executing
the program, they provide neither a complete nor precise
picture of the fault-space. The tool Trident [23] also uses
sequences of instructions to split a program for determining
the SDC probability. They provide an injection-free heuristic
based on the propagation of faults between these sequences,
their branches and memory dependencies. However, this tool is
similar to (e)PVF [35, 12] and is, due to branch probabilities
and pruned data dependencies, also neither complete nor
precise.

VII. CONCLUSION

With FI, we can quantify a program’s resilience against
transient hardware faults in the process of assessing the
functional safety of a critical system. For this, we inject
different faults into a large number of program re-executions
and classify the following erroneous behavior. However, the
number of required faults quickly rises and even with precise
reduction methods, like def/use-pruning (DUP), complete and
precise fault space (FS) coverage is not feasible.

Therefore, we presented the fault-space region (FSR) concept
as an approximation method that reduces the number of
required FIs while the deviation in the error classification
keeps relatively low. We form these FSRs from program
structures (i.e., basic blocks and call instructions) by analyzing
the program trace and inject faults only in those data flows
that cross a region boundary. In the evaluation, we compare
the number of required faults between the DUP technique and
our FSR concept and quantify the approximation error between
both if applied to three different fault models (general-purpose
registers, main memory and both at once). For seven MiBench
benchmarks from the automotive and the security category, we
could reduce the number required faults, on average, for the
combined FM, by 76 percent at a relative approximation error
of under 2.7 percent. Furthermore, we keep the locality of the
results regarding silent data corruptions to a deviation of less
than 6.9 percent.
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LIST OF ACRONYMS

Acronym Benchmark

BB basic block BC bit count
BBR basic-block region BFE blowfish encode
CR call region BFD blowfish decode
DUP def/use-pruning QSORT quick sort
ES equivalence set RDE rijndael encode
FI fault injection RDD rijndael decode
FS fault space SHA sha1
FM fault model
FSR fault-space region
IP instruction pointer
SEU single-event upset
SDC silent-data corruption
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