
Levels of Specialization in
Real-Time Operating Systems

Björn Fiedler, Gerion Entrup, Christian Dietrich, Daniel Lohmann
Leibniz Universität Hannover

{fiedler, entrup, dietrich, lohmann}@sra.uni-hannover.de

Abstract—System software, such as the RTOS, provides no
business value on its own. Its utility and sole purpose is to serve
an application by fulfilling the software’s functional and nonfunc-
tional requirements as efficiently as possible on the employed
hardware. As a consequence, every RTOS today provides some
means of (static) specialization and tailoring, which also has a
long tradition in the general field of system software.
However, the achievable depth of specialization, the resulting
benefits, but also the complexity to reach them differ a lot
among systems. In the paper, we provide and discuss a taxonomy
for (increasing) levels of specialization as offered by (real-time)
system software today and in the future. We argue that system
software should be specialized as far as possible – which is
always more than you think – but also discuss the obstacles that
hinder specialization in practice. Our key point is that a deeper
specialization can provide significant benefits, but requires full
automation to be viable in practice.

I. INTRODUCTION

While the domain of real-time control systems is broad and
diverse with respect to both, applications and hardware, each
concrete system has typically to serve a very specific purpose.
This demands specialization of the underlying system software,
the real-time operating system (RTOS) in particular: An “ideal”
system software fulfills exactly the application’s needs, but no
more [19]. Hence, most system software provides built-in static
variability: It supports a broad range of application requirements
and hardware platforms, but can be specialized at compile-time
with respect to a specific use case. Historically, this has led to
the notion of system software as program families [25], [14]
as well as a myriad of papers from the systems community
that demonstrate the efficiency gains by specializing kernel
abstractions to the employed application, hardware, or both.
Examples include [27], [6], [20], [26].

A. System Software Specialization

Specialization (of infrastructure software) for a particular
application–hardware setting is a process that aims to improve
on nonfunctional properties of the resulting system while
leaving the application’s specified functional properties intact.
If the application employs an RTOS with a specified API and
semantics (e.g., POSIX [2], OSEK/AUTOSAR [4], ARINC
[3]), a specialized derivative of the RTOS does no longer fulfill
this API and semantics in general, but only the subset used
by this concrete application and hardware. If successful, this
specialization leads to efficiency gains with respect to memory
footprint, hardware utilization, jitter, worst-case latencies,

This work was partly supported by the German Research Foundation (DFG)
under grant no. LO 1719/4-1

robustness, security and so on; it increases the safety margins or
makes it possible to cut per-unit-costs by switching to a cheaper
hardware. For price-sensitive domains of mass production, such
as automotive, this is of high importance [8].

Intuitively, any kind of specialization requires knowledge
about the actual application: The more we know, the better
we can specialize. In the domain of real-time systems (RTSs),
we typically know a lot about our application and its exe-
cution semantics on the employed RTOS: To achieve real-
time properties, all resources need to be bounded and are
scheduled deterministically. Timing analysis depends on the
exact specification of inputs and outputs, including their inter-
arrival times and deadlines; schedulability analysis requires that
all inter-task dependencies are known in advance – and so on.

Even though all this knowledge should pave the road to a
very rigorous subsetting of the RTOS functionality, this rarely
happens in practice. Part of the problem is that the specialization
of the RTOS typically has to be performed manually by the
application developer or integrator, which adds significant
complexity to the overall system development and maintenance
process. We are convinced that automation is the key here, as
most of the required knowledge could be extracted by tools
from the application’s code and design documents – the RTOS
specialization should become an inherent part of the compilation
process, like many other optimizations.

Another part of the problem is, however, that static spe-
cialization itself is only rarely understood. This holds in our
observation for both, RTOS users and RTOS designers, both
of which typically have been educated (and tend to be caught)
in the mindset and APIs of general-purpose operating systems,
such as Linux or Windows. So while every system software
provides some means for static specialization and tailoring, the
rigorosity at which this (a) could be possible in principle, (b) is
possible in the actual RTOS provisioning, and (c) is employable
by users in practice, differs a lot.

B. About This Paper

Our goal with this paper is to shed some light on the
aspects and the fundamental levels of specialization that
are provided by system software today and, maybe, in the
future. We claim the following contributions: (1) We provide a
classification for specialization capabilities on three increasing
levels (Section II). (2) We discuss the challenges and benefits
of system specialization by examples from the literature
(Section III). (3) We show, on the example of a small experiment
with FreeRTOS [5], the potential of different specialization
levels, even for an RTOS API that is supposed to “look like
POSIX” (Section IV).



Fe
at

ur
es

Fe
at

ur
es

(g) Generic (a) Abstractions (b) Instances (c) Interactions

Thread
TT ...

ISR
II ...

activate

block

interrupt

activate

preempt

Event
EE ...

set

wait set
int

err
up

t

Thread
TT ...

ISR
II ...

activate

block

interrupt

activate

preempt

Event
EE ...

set

wait set

int
err

up
t Thread

T1 T2

ISR
I1

activate

block

interrupt

activate

preempt

Thread ISRactivate

T1

T2

I1activate

interrupt

interrupt

preem
pt

RTOS API/standard, like POSIX [2],
OSEK/AUTOSAR [24], or ARINC [3].
Supports any application.

Like Linux or eCos [22], specialized
for applications that employ threads
and ISRs, but not events.
Supports a class of applications.

Like ERIKA [1], specialized for an
application that employs well-defined
threads T1 and T2 and ISRs I1.
Supports a specific application.

Like dOSEK [10], specialized for the
concrete interactions that happen in a
specific application.
Supports a concrete implementation.

Thread

ISR

Nested ISR

Event

ThreadX

ISRX

Nested ISR

Event

T1 : Thread

T2 : Thread

I1 : ISR

«instanceOf»

«instanceOf»

«instanceOf»

T2 I1 T1

interrupt

activate

interrupt

iret

resume

Fig. 1: Levels of RTOS specialization. From left to right, each level further constraints how the application may use the kernel.

Many aspects about specialization we describe in this paper
are based on our own experience with the design, development,
and employment of highly configurable application-tailorable
system software. We apologize for the (shameless) number of
self-citations, but felt that leaving them off would not have
contributed to the accessibility of the paper.

II. A TAXONOMY OF SPECIALIZATION LEVELS

In this section, we give a taxonomy of system specialization
and the different levels specialization can reach. In short, a
generic RTOS (g) can be specialized by (a) removing complete
abstractions (e.g., threads or a specific syscall), (b) make
instances fixed (e.g., there are only threads T1 and T2), and
(c) make interactions fixed (e.g., only T1 waits on event E1).
We examine these terms at the example of RTSs, which we
specify for the purpose for this paper as follows:

A (hard) real-time system RTS consumes time-labeled input
events ~I and produces observable, time-labeled output events
~O, while fulfilling strict timing constraints between both event
streams. An implementation RTS A

RTOS
HW of the abstract RTS consists

of a concrete application A that runs, mediated by a concrete
RTOS implementation RTOS, on a concrete hardware HW. We
encapsulate the specification and timing requirements of the
RTS in an equality operator RTS= that compares two outputs.

RTS(~I) = ~O RTS= RTS A
RTOS
HW (~I)

Every correct implementation of RTS produces an output
stream that is equal, under the RTS specification, to the outputs
of the abstract/ideal RTS. Therefore, we derive: Every special-
ized implementation RTS A

RTOS
HW

′ has to be a correct implementation
of RTS and the observable outputs must not change with respect
to the specification of the real-time system.

However, not every RTS A
RTOS
HW is a specialized implementation.

Specialization is the process of reducing flexibility from one or

more system components of an already existing implementation.
For real-time systems, it can take place in the application A,
the RTOS, or/and the hardware HW. For the rest of the paper,
we focus on the specialization of the RTOS, while application
and hardware remain unchanged.

The specialized RTOS′ fulfills all requirements of the
specific application that runs on top and works on the specified
hardware. However, this RTOS′ does not necessarily provide
the correct semantics to execute an alternative A′ or correct
instructions to execute on an alternative HW′. Therefore, RTOS
specialization always depends on the application that uses the
RTOS and the targeted hardware.

In the following we exemplify this by a simple RTOS that
supports only three abstractions: Threads, interrupt service
routines (ISRs) and Events. Figure 1 (g) shows the whole range
of functions provided by our example RTOS as an interaction
graph. Nodes are system abstractions that are provided by
the RTOS standard; edges are interactions between them. The
generic RTOS (i.e., the respective standard) provides the illusion
that abstractions can be instantiated arbitrarily often and all
instances (nodes within nodes) can interact according to their
abstraction. For example, every ISR can activate every thread.

When we specialize our generic RTOS, we (a) remove
abstractions, (b) make instances fixed, and (c) forbid concrete
interactions. The shrunk interaction graph reflects the reduced
flexibility of the specialized RTOS. We define three levels of
specialization, which subsequently need more information about
the actual interaction graph of the application and remove more
flexibility. Every level is a true superset of the previous one.

Specialization of Abstractions: remove complete abstrac-
tions and types of interactions.
Specialization of Instances: number and identity of instances
become fixed; dynamic instantiation is not possible.
Specialization of Interactions: interactions are constrained to
concrete instances instead of (generic) abstractions.

2



The following sections describe the levels in detail and
outline the information is needed to reach the respective level.
If we specialize a RTOS implementation to a certain level, it
only ensures that applications with the corresponding interaction
graph are executed correctly. For all other applications, the
result is undefined. The effects of the specialization levels
(Figure 1 (a)-(c)) are examined using the following example
application code:

BoundedBuffer bb;

ISR I1 { // priority: ∞
data = readSerial();

bb.put(data);

activate(T1);

}

Thread T1 { // priority: 2

while(data = bb.get())

handleSerial(data);

}

Thread T2 { // priority: 1, autostart

while (true)

handleADC(readADC());

}

The nonpreemptable ISR reads serial data into a bounded buffer,
which is handled by the higher-priority worker thread T1. The
background thread T2 continuously reads analog data and
handles the result. For compactness reasons, we ignored the
lost wake-up problem between I1 and T1.

A. Specialization of Abstractions

Specialization on the level of abstractions is the most generic
one that is commonly used to select the availability of RTOS
features. The needed knowledge to conduct this specialization
is confined to the list of used abstractions, which could be
derived from code or explicitly listed in a configuration. This
kind of specialization is possible in most operating systems.
For instance, Linux, eCos and FreeRTOS provide support to be
specialized on the level of abstractions. The example application
employs only threads and ISRs, while events are not used at all.
Therefore, the RTOS specialized on abstractions (Figure 1 (a))
avoids everything event related. Furthermore, we can safely
forgo the nesting of ISRs and, therefore, remove the “interrupt”
interaction between ISRs.

B. Specialization of Instances

One level deeper, specialization of instances means to
specify the concrete instances of each abstraction and their prop-
erties. In addition, knowledge about these concrete instances
is necessary. For threads, this could be their name, priority,
stack size, periodicity and initial activation state. Some RTOS
specifications, such as OSEK, already require this information
in a configuration file. For others this information may be
gathered out of the source code. An instance-level specialized
RTOS looses the capability to create system objects at run time.
All instances need to be specified statically at compile time.

In an OSEK implementation like ERIKA [1], the OSEK
Implementation Language (OIL) file [23] describes all system
objects of the application and their properties. For our example
application this would be two threads, namely T1 and T2 and
one ISR, namely ISR1. The priority of ISR1 is ∞ and T1 and
T2 have the priorities 2 and 1. In Figure 1 (b), only the three
concrete instances (T1, T2, I1) remain in the interaction graph,
while the interactions are still attached to the abstractions.

C. Specialization of Interactions

The most extensive specialization takes place at the level of
interactions. Here, we limit the concrete interactions between

the system-object instances rather than abstractions. By limiting
interactions, we can derive optimized kernel paths, like remov-
ing dead code branches (e.g., syscall parameter checking). In
essence, we take the viewpoint of an optimizing whole-system
compiler that knows the RTOS semantics and thereby could,
for instance, derive scheduling decisions already at compile
time. To optimize the RTOS on this level, we have to know of
all concrete interactions of our applications. This can be done
by static code analysis or examination of external-event timing
constraints to derive possible invocation sequences.

For our application, we can derive that there is no inter-
thread activation, no interrupt blockade, and only T1 can
preempt T2. Furthermore, we know that I1 can only activate
T1, while it potentially interrupts both threads. This results in
Figure 1 (c) contain just these interactions.

D. Summary

In summary, by specialization of the RTOS kernel we
remove flexibility from the kernel implementation by restricting
the possible run-time interactions of the application already at
compile time. This can take place on the (subsequently stricter)
levels of (a) Abstractions, (b) Instances, and (c) Interactions,
which, in turn, subsequently cut of more from the unneeded
RTOS functionality.

III. SPECIALIZATION: BENEFITS AND CHALLENGES

In our experience, the less-is-more philosophy (i.e., it is a
good thing to reduce flexibility) tends to be counter-intuitive
for many software engineers and in any case it is arguable.
In the following, we discuss some benefits and challenges of
specialization in general and with respect to the different levels.

A. Benefits

Memory footprint reduction is the most obvious benefit –
and still the driving factor for industries of mass production,
such as automotive [8]. It is not a coincidence that OSEK
(and later AUTOSAR) were designed for specialization on
the instance level from the very beginning. The compile-
time instantiation of kernel objects and their management in
preallocated arrays instead of linked lists facilitates significant
RAM savings. In [17], the transformation of an RTS from the
abstraction-level specialized eCos [22] to the instance-level
specialized CiAO [21] reduced the RAM footprint by half.
But also abstraction-level specialization alone can pay off, if
applied systematically: The specialization of a Linux system
running typical appliances, such as a LAMP server or an
embedded media player, can reduce its code size by more
90 percent compared to a standard kernel [30], [28].
Security and safety improvements are less obvious, but a
corollary from memory footprint reduction: What is not there
can neither break nor be attacked or exploited and does not need
to be later maintained in this respect. For instance, specializing
the mentioned LAMP server on the level of abstractions did
not only reduce its code size, but also cut the number of
relevant entries in the CVE database1 by ten percent [30]. The
instance-level specialization of the RTS in [17] also increased
its robustness regarding bit flips by a factor of five.

1https://cve.mitre.org

3

https://cve.mitre.org


Further significant improvements in this respect are possible if
one specializes down to the level of interactions, for instance,
by inserting control-flow assertions [11].
Better exploitation of hardware by a direct mapping of
RTOS abstractions. Modern µ-Controllers are not only equipped
with an increasing number of cores, but also large arrays of
timers, interrupt nodes and so on. Nevertheless, most RTOS
implementations still multiplex a single hardware timer and
IRQ context. In Sloth [16], [15] the specialization on instance-
level is the prerequisite to map system objects at compile-time
directly to the available hardware resources, which results in
minimal kernel footprints and excellent real-time properties.
If specialization of the hardware itself is also an option, a
kernel specialized on interaction-level could even be placed
directly into the processor pipeline [12].
Reduction of jitter and kernel latencies is a further benefit
of memory footprint reduction and the better exploitation of
hardware. Intuitively, removing code, state, and indirection in
the control and data flows of the kernel also reduces noise
caused by memory access and cache pressure and increases
determinism. Shorter kernel paths and the direct mapping of
kernel objects to hardware yield a direct benefit on interrupt
lock times and event latency.
Analyzability and testability is both improved as well as
impaired (see below). In principle, any reduction of possible
kernel states and execution paths increases determinism and
makes it easier to analyze, test, and validate the kernel against
the RTS specification. The model that is required for instance-
level specialization can directly be used for static conformance
checking to find, for instance, locking protocol violations. If
specializing on interaction level, the underlying interaction
model [11] further paves the path to whole-system end-to-end
response-time and energy-consumption analysis [13], [31].

B. Challenges

However, specialization does not come for free. It depends
on a very deep understanding of your RTS on the systems level,
as well as the ability and willingness to express its properties
and demands towards the RTOS. In our experience, deep
specialization remains a hopeless attempt if the configuration
of the RTOS is mostly based on experience and manual labor
of the RTS developer. Full (or at least nearly full) automation
of specialization by tools is the key to success.

You have to know what you need and this is probably the
major challenge. In practice the burden is on the developer –
and this already hits its limits when specialization takes place
on the level of abstractions: Recent versions of Linux (4.16), but
also smaller RTOSs like eCos, provide an unbearable number of
configuration options (more than 17000 in Linux, respectively
5400 in eCos). Hence, most developers have long ago stopped
specializing more than necessary and employ, in the case of
Linux, a one-size-fits-all standard distribution kernel instead.
To be viable in practice, the RTOS configuration has to be
derived automatically: In fact, the 90 percent code savings in
Linux mentioned above were only achievable by an automatic
specialization approach that measures the required features
on a standard distribution kernel in order to derive a tailored
configuration [30], [28]. Schirmeier and colleagues suggested
automatic detection of required eCos features (level of ab-
stractions) by static analysis of the application source [29].

However, they also identified limits of their approach when
the decision about an abstraction (e.g., the need for a costly
priority inheritance protocol in the mutex abstraction) depends
on information only available on the instance or interaction
level (i.e., who accesses a particular mutex at run time).
Hence, for the developer automatic configuration becomes
actually easier with instance- or interaction-level specialization.
As she has to think about the employed system objects anyway,
specifying the requirements on the instance level is closer
to the application and more natural, while the configuration
tool can automatically derive the necessity of, for example, a
priority inheritance protocol in mutex objects. OSEK, which is
specialized on instance level, automatically derives the priority
of the resource objects specified in the OIL file [23], [24].
If interaction-level information is required, a manual provision-
ing would become completely intractable. However, in this
case static analysis of the application source code is even more
promising than on the feature level: Programming is the act
of writing down desired interactions between instances, which
are technically expressed by syscalls, and we can use static
analysis to extract these interactions. For example, Bertran
et al. [7] analyze all libraries and executables of a concrete
Linux system and remove system calls that cannot be activated.
Furthermore, with a complete and flow-sensitive analysis of the
application’s execution across the syscall boundary we could
retrieve a complete interaction model [11]. This, however, has
exponential overhead if indeterminism by external events needs
to be considered. Hence, the analysis needs to be constrained
by further information that is commonly not expressed in the
source code, such as event-activation frequencies.
You have to be able to express what you need is therefore
another challenge – and unfortunately in many cases the RTOS
interface even hinders the expression of instance-level developer
knowledge [18]: Most RTOSs adhere to (or at least mimic)
a POSIX-style API with dynamic allocation and instantiation
of a conceptually arbitrary number of system objects at run
time. This mindset stems from interactive multi-user systems
(UNIX), but has to be considered as a strong misconception in
the world of real-time systems – for both sides, developers and
users of an RTOS. The already mentioned reductions in the
kernel’s memory footprint when switching from the POSIX-like
eCos to the OSEK-like CiAO in [17] are rooted in the kernel-
internal overhead of implementing an interface that favors
(unneeded) dynamic instantiation. So, if the RTOS employs
such a “flexible” syscall interface, more additional information
has to be provided by the developer to enable instance- and
interaction-level specialization.
Testability and certifiability is in our opinion becoming the
most significant obstacle towards systematic specialization
of system software. With the advent of autonomous driving
features, the industry is facing new challenges with respect to
functional safety; ISO 26262 and ASIL D demand the employ-
ment of a certified RTOS. While in principle the certification
of a less flexible system should make this easier (see discussion
of the respective benefit in the previous section), existing
certification procedures mostly follow a certify-once-and-never-
touch-again philosophy that is fundamentally the opposite of
application-specific specialization. The certification of an RTOS
kernel is extremely expensive, so vendors shy away from the
even higher costs of certifying a kernel generator. However,
without a certified generator, each specialized kernel instance

4



Serial DMA
ISR

GPS
Thread

Logging
Queue

SD Writer
Thread

LED
Thread

Lock
Semaphore

Display
Thread

SPI DMA
ISR

Button
Thread

Events
Queue

I2C DMA
ISR

sleep

sleep

wait

wakeup w
ait

w
ak

eu
p

waitwakeup

lock

lock

put

get

put get

Fig. 2: Interaction Graph for GPSLogger

would have to be certified individually. In the extreme case
(full interaction-level specialization) this would be necessary for
every change of the application implementation. Hence, certified
RTOSs, such as RTA-OS (ETAS), MICROSAR OS (Vector),
or tresos Safety OS (EB) offer not more, but significantly less
room for specialization.
So one has either to forgo the benefits of specialization or to
swallow the bitter pill of certifying a complete kernel generator,
which is highly unrealistic. A more promising direction could
be to make a virtue out of necessity and extend the (automatic)
specialization to the certification process as well: We do not
need to validate the specialized kernel against the full RTOS
specification, but only to those parts and interactions that are
actually used on the concrete RTS. If the interaction model
could be assumed as sound and complete, it can be employed
with model checkers to automatically validate the generated
kernel instance. [9]

C. Summary

Despite very high improvements regarding many nonfunc-
tional properties, RTOS specialization is performed only half-
hearted in practice, as explicit configuration puts to much
burden on the developer. This is partly caused by unsuitable
UNIX-inspired syscall APIs and misconceptions about “what
the OS is and provides”. Hence, deep specialization requires
automation to remove the burden of having to understand
and know the details from the developer. The analysis of the
application’s requirements interactions as well as the generation
of a fitting RTOS instance has to be provided by tools.

Nevertheless, also with existing RTOSs implementations
that offer a less-than-ideal API, significant savings are achiev-
able. In the following, we exemplify this by re-analyzing an
existing application running on FreeRTOS from the viewpoint
of our taxonomy.

IV. AN EXPERIMENT WITH FREERTOS

Our example is the a freely available GPSLogger2 applica-
tion, which uses FreeRTOS [5] to orchestrate its threads. The
system runs on a “STM32 Nucleo-F103RB” evaluation board
that is equipped with a STM32F103 MCU. It is connected to
a graphical display (I2C), a GPS receiver (UART), a SD card
(SPI), and two buttons (GPIO). The application consists of 5
threads, 3 ISRs, 2 blocking queues, and one binary semaphore.
Due to a broken SD card library, we replaced the SD card
operations with a printf().

2https://github.com/grafalex82/GPSLogger

In Figure 2, we extracted the interaction graph for this appli-
cation manually from the source code. For compactness reasons,
we omitted some interactions from the figure (i.e. preempt).
The inter-process communication is mainly done with blocking
message queues. However, the GPS thread and the display
thread bypass the kernel for the transferred data and use a
shared memory region that is protected by a binary semaphore.
For most IO operations, GPSLogger uses a pattern where
one thread blocks passively until one DMA ISR signals the
completion of a data transfer. However, for the button thread,
GPSLogger uses active polling with a passive sleep. While
the employment of full-blown queues is overkill to transmit
small datagrams in 1:1 interactions, it is the primary abstraction
offered by FreeRTOS.

a) Specialization of Abstractions: FreeRTOS provides
abstraction-specialization capabilities by using conditional com-
pilation and C preprocessor macros. However, there is no formal
or semi-formal feature model, like it is provided by Linux
KConfig or the eCos configuration tool, but the configuration is
placed in a header file. As another specialization, unreachable
functions are automatically removed by the linker, as the build
system uses function- and data sections in combination with
link-time garbage collection.

At this specialization level, the resulting binary uses 91,084
bytes for code and 18,328 bytes of mutable RAM. The kernel
takes 60,426 cycles of startup time, before the first task starts.
Startup times were measured 100 times and the standard
deviation always was below 35 cycles.

b) Specialization of Instances: For the instance level,
we removed the dynamic system-object allocation in favor of
statically allocating them in the data section. These system
objects include the thread stacks, the thread control blocks,
queues, and the ready list. FreeRTOS, since version 9.0.0,
supports that the user provides a statically allocated memory
to hold system objects and, thereby, gets rid of the special
FreeRTOS heap. With static allocation, we use 112 more bytes
of code, but save 856 bytes of RAM and 6,598 cycles of startup
time compared to baseline. The increase in code size stems
from the additional parameter of the static object-initialization
functions.

As a second step, we removed the dynamic initialization
of stacks, thread-control blocks, and the scheduler. Instead,
we initialized their values and pointers statically such that the
data section already contains a prepared memory image to
start FreeRTOS. Compared to baseline, the statically initialized
GPSLogger saves 344 bytes of code and 7,327 cycles of startup
time. The RAM usage is equal to the variant only with static
memory allocation.

c) Specialization of Interactions: After carefully ex-
amining the GPSLogger, we came to the conclusion that a
interaction-level specialization that is restricted to the RTOS
is not possible here. From the FreeRTOS API usage it is hard
to tell why a specific API was used, since it hindered the
expression of the developer’s intention (see also Section III).

However, we extend the scope of the specialization to the
application. From the interaction model (Figure 2), we know
that the LED thread does not interact with any other thread
as it only periodically blinks the LED. Furthermore, toggling
a GPIO pin takes far less cycles than the thread-management

5

https://github.com/grafalex82/GPSLogger


overhead. Therefore, we can safely inline the GPIO toggling
into the timer ISR and remove the LED thread, including its
stack and TCB. Compared to baseline, the system becomes 512
bytes of code and 1,616 bytes of RAM smaller. The startup
time decreases by 9,397 cycles.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we described a taxonomy of specialization for
real-time systems and define three levels of specialization that
successively remove (unneeded) flexibility from the system. On
the abstraction level, instance, and interaction level, we can
remove abstractions, make instances fixed, and forbid concrete
interactions. Furthermore, we discussed the benefits and chal-
lenges introduced by specialization. Although specialization
yields significant improvements of nonfunctional properties,
manual specialization has long outgrown engineers capabilities
and is thus mostly applied on the coarse-grained abstraction
level. Therefore, we argue that specialization on deeper levels
requires automation to reach it’s full potential.

To illustrate our taxonomy, we (manually) specialized an
example application on the three specialization levels. Although
the application was not designed with specialization in mind,
we were able to extract the actually required interaction graph
and, in consequence, were able to specialize the system to
show improved nonfunctional properties. Therefore, we plan to
integrate automated analysis and specialization into the build
process and the compiler toolchain. If once automated, all levels
of specialization can be generated and compared at compile
time to choose the variant with the best nonfunctional properties
for the specific use case.

REFERENCES

[1] ERIKA Enterprise. http://erika.tuxfamily.org, visited 2014-09-29.
[2] Portable operating system interfaces (POSIX R©) – part 1: System api –

amendment 1: Realtime extension, 1998.
[3] AEEC. Avionics application software standard interface (ARINC

specification 653-1), 2003.
[4] AUTOSAR. Specification of operating system (version 5.1.0). Technical

report, Automotive Open System Architecture GbR, 2013.
[5] Richard Barry. Using the FreeRTOS Real Time Kernel. Real Time

Engineers Ltd, 2010.
[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility safety and
performance in the spin operating system. In 15th ACM Symp. on
Operating Systems Principles (SOSP ’95). ACM Press, 1995.

[7] Ramon Bertran, Marisa Gil, Javier Cabezas, Victor Jimenez, Lluis
Vilanova, Enric Morancho, and Nacho Navarro. Building a global
system view for optimization purposes. In 2nd Work. on the Interaction
between Operating Systems and Computer Architecture (WIOSCA ’06).
IEEE Computer Society Press, 2006.

[8] Manfred Broy. Challenges in automotive software engineering. In 28th
Intl. Conf. on Software Engineering (ICSE ’06). ACM Press, 2006.

[9] Hans-Peter Deifel, Christian Dietrich, Merlin Göttlinger, Daniel
Lohmann, Stefan Milius, and Lutz Schröder. Automatic verification of
application-tailored OSEK kernels. In 17th Conf. on Formal Methods
in Computer-Aided Design (FMCAD ’17). ACM Press, 2017.

[10] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Cross-kernel
control-flow-graph analysis for event-driven real-time systems. In 2015
ACM SIGPLAN/SIGBED Conf. on Languages, Compilers and Tools for
Embedded Systems (LCTES ’15). ACM Press, 2015.

[11] Christian Dietrich, Martin Hoffmann, and Daniel Lohmann. Global
optimization of fixed-priority real-time systems by RTOS-aware control-
flow analysis. ACM TECS, 16(2), 2017.

[12] Christian Dietrich and Daniel Lohmann. OSEK-V: Application-specific
RTOS instantiation in hardware. In 2017 ACM SIGPLAN/SIGBED Conf.
on Languages, Compilers and Tools for Embedded Systems (LCTES

’17). ACM Press, 2017.
[13] Christian Dietrich, Peter Wägemann, Peter Ulbrich, and Daniel Lohmann.

Syswcet: Whole-system response-time analysis for fixed-priority real-
time systems. In Real-Time and Embedded Technology and Applications
(RTAS ’17). IEEE Computer Society Press, 2017.

[14] Arie Nicolaas Habermann, Lawrence Flon, and Lee W. Cooprider.
Modularization and hierarchy in a family of operating systems. Com-
munications of the ACM, 19(5), 1976.

[15] Wanja Hofer, Daniel Danner, Rainer Müller, Fabian Scheler, Wolfgang
Schröder-Preikschat, and Daniel Lohmann. Sloth on Time: Efficient
hardware-based scheduling for time-triggered RTOS. In Real-Time
Systems (RTSS ’12). IEEE Computer Society Press, 2012.

[16] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-
Preikschat. Sloth: Threads as interrupts. In Real-Time Systems (RTSS

’09). IEEE Computer Society Press, 2009.
[17] Martin Hoffmann, Christoph Borchert, Christian Dietrich, Horst

Schirmeier, Rüdiger Kapitza, Olaf Spinczyk, and Daniel Lohmann.
Effectiveness of fault detection mechanisms in static and dynamic
operating system designs. In ISORC’14. IEEE Computer Society Press,
2014.

[18] Tobias Klaus, Florian Franzmann, Tobias Engelhard, Fabian Scheler,
and Wolfgang Schröder-Preikschat. Usable RTOS-APIs? In 10th
Annual Work. on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT ’15), 2014.

[19] Butler W. Lampson. Hints for computer system design. In 9th ACM
Symp. on Operating Systems Principles (SOSP ’83). ACM Press, 1983.

[20] Jochen Liedtke. On µ-kernel construction. In 15th ACM Symp. on
Operating Systems Principles (SOSP ’95). ACM Press, 1995.

[21] Daniel Lohmann, Wanja Hofer, Wolfgang Schröder-Preikschat, Jochen
Streicher, and Olaf Spinczyk. CiAO: An aspect-oriented operating-
system family for resource-constrained embedded systems. In 2009
USENIX Annual Technical Conf. USENIX Association, 2009.

[22] Anthony J. Massa. Embedded Software Development with eCos. New
Riders, 2002.

[23] OSEK/VDX Group. OSEK implementation language specification 2.5.
Technical report, OSEK/VDX Group, 2004. http://portal.osek-vdx.org/
files/pdf/specs/oil25.pdf, visited 2014-09-29.

[24] OSEK/VDX Group. Operating system specification 2.2.3. Technical
report, OSEK/VDX Group, 2005. http://portal.osek-vdx.org/files/pdf/
specs/os223.pdf, visited 2014-09-29.

[25] David Lorge Parnas. On the design and development of program families.
IEEE Trans. on Software Engineering, SE-2(1), 1976.

[26] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
operating system is the control plane. In Operating Systems Design and
Implementation (OSDI’14). USENIX Association, 2014.

[27] Calton Pu, Henry Massalin, and John Ioannidis. The Synthesis kernel.
Computing Systems, 1(1), 1988.

[28] Andreas Ruprecht, Bernhard Heinloth, and Daniel Lohmann. Automatic
feature selection in large-scale system-software product lines. In 13th
Intl. Conf. on Generative Programming and Component Engineering
(GPCE ’14). ACM Press, 2014.

[29] Horst Schirmeier, Matthias Bahne, Jochen Streicher, and Olaf Spinczyk.
Towards eCos autoconfiguration by static application analysis. In 1st
Intl. Work. on Automated Configuration and Tailoring of Applications
(ACoTA ’10), CEUR Work. Proceedings. CEUR-WS.org, 2010.

[30] Reinhard Tartler, Anil Kurmus, Bernard Heinloth, Valentin Rothberg, An-
dreas Ruprecht, Daniela Doreanu, Rüdiger Kapitza, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. Automatic OS kernel TCB reduction
by leveraging compile-time configurability. In 8th Work. on Hot Topics
in System Dependability (HotDep ’12). USENIX Association, 2012.

[31] Peter Wägemann, Christian Dietrich, Tobias Distler, Peter Ulbrich,
and Wolfgang Schröder-Preikschat. Whole-system worst-case energy-
consumption analysis for energy-constrained real-time systems. In 30th
Euromicro Conf. on Real-Time Systems 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018. to appear.

6

http://erika.tuxfamily.org
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/oil25.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

