

Cross-Layer Fault-Space Pruning for Hardware-Assisted Fault Injection

Christian Dietrich, Achim Schmider, Oskar Pusz Guillermo Payá Vayá, Daniel Lohmann

Leibniz Universität Hannover

June 27, 2018

ISE

RA Hardware-Assisted Fault Inject Platforms

- Transient hardware faults are becoming more frequent on sea level
 - Shrinking hardware structure sizes
 - More transistors and more embedded systems
- Safety-critical software must be rated for the resilience
 - Fault injection of one golden run can provide realistic measure
 - Fault space is *Huge*! (cycles × locations)
 - Simulation of faulty behavior is slow (especially for circuits)
- Hardware-Assisted Fault Inject Campaigns
 - Campaign server sends injection commands to FPGA Boards
 - FPGA simulate netlist + fault-injection logic
 - FPGAs can prune the fault list for benign faults at run time

Iniversität

RA Hardware-Assisted Fault Inject Platforms

- Transient hardware faults are becoming more frequent on sea level
 - Shrinking hardware structure sizes
 - More transistors and more embedded systems
- Safety-critical software must be rated for the resilience
 - Fault injection of one golden run can provide realistic measure
 - Fault space is *Huge*! (cycles × locations)
 - Simulation of faulty behavior is slow (especially for circuits)
- Hardware-Assisted Fault Inject Campaigns
 - Campaign server sends injection commands to FPGA Boards
 - FPGA simulate netlist + fault-injection logic
 - FPGAs can prune the fault list for benign faults at run time

\Rightarrow Prune Fault List depending on the Dynamic State

Approach

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted
- Conservative fault propagation in netlist
 - One untrusted input leads to untrusted gate outputs

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted
- Conservative fault propagation in netlist
 - One untrusted input leads to untrusted gate outputs
 - If fault reaches outputs \rightarrow fault might lead to error

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted
- Conservative fault propagation in netlist
 - One untrusted input leads to untrusted gate outputs
 - \blacksquare If fault reaches outputs \rightarrow fault might lead to error
 - No wire values \rightarrow we must distrust the fault cone

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted
- Conservative fault propagation in netlist
 - One untrusted input leads to untrusted gate outputs
 - \blacksquare If fault reaches outputs \rightarrow fault might lead to error
 - \blacksquare No wire values \rightarrow we must distrust the fault cone
- Fault-cone-border wires can stop the fault
 - Gates can mask the fault, if some inputs are trusted
 - Constraint on border-wires indicates benign fault

- Fault model: Single-event upsets in flip flops
 - One flip-flop output becomes untrusted
 - Other flip-flops remain trusted
- Conservative fault propagation in netlist
 - One untrusted input leads to untrusted gate outputs
 - \blacksquare If fault reaches outputs \rightarrow fault might lead to error
 - No wire values \rightarrow we must distrust the fault cone
- Fault-cone-border wires can stop the fault
 - Gates can mask the fault, if some inputs are trusted
 - Constraint on border-wires indicates benign fault
- Fault Masking Term (MATE)
 - Logic expression of internal netlist wires
 - $MATE_d = 1$, iff fault_d is known to be benign

 $\neg f \land h \Rightarrow fault(d)$ is benign

For every input wire: Fault must be masked on any path input \rightarrow output

Finding and Employing Fault MATEs

- For every input wire: Fault must be masked on any path input \rightarrow output
 - Every gate has a set of masking terms that stop propagation here
 - Combine one masking term from every path into a candidate MATE
 - Collect MATE-candidate sets overall input wires
 - Use VCD trace of the circuit to find and rate effective MATEs

Finding and Employing Fault MATEs

- For every input wire: Fault must be masked on any path input \rightarrow output
 - Every gate has a set of masking terms that stop propagation here
 - Combine one masking term from every path into a candidate MATE
 - Collect MATE-candidate sets overall input wires
 - Use VCD trace of the circuit to find and rate effective MATEs
- Integrate TOP-N MATEs into FPGA fault-injection platform
 - MATEs are connected to the netlist-internal wires
 - If MATE triggers, the corresponding fault(s) can be remove from the fault list
 - MATE prune the fault list depending on the dynamic state in every cycle

Results

- Test Benchmarks
 - ASIC synthesis using Synopsys Design Compiler 2017.09-SP1
 - 15nm FinFET-based Open Cell Library
 - Sythesized netlist for 2 processor designs: AVR, MSP430 (neo430)
- Search for heuristically for candidate MATEs
 - Use sets of flip-flop outputs as start points
 - Two sets: All flip-flops (FF) and flip-flops outside of register file (FF w/o RF)
 - One MATE can prune several detect several benign flip-flops
- Select and rate MATEs with wire trace of running program
 - Fibonacci and convolution
 - Select MATEs that triggered most (Top-N)
 - Calculate fault-list reduction
 - Cross validation between selection and rating in the paper

AVR: 8-bit RISC microcontroller, implementing a two-sta

- AVR: 8-bit RISC microcontroller, implementing a two-stage pipeline design
 - 383 flip-flops, without register-file: 135 FFs
 - Average Fault-Cone Size: 656 gates
 - 164 seconds for MATE exploration

Fault List Reduction

- neo430: 16-bit multi-cycle MSP430-compatible microcontroller
 - 743 flip-flops, without register-file 519 FFs
 - Average Fault-Cone Size: 287 gates
 - 126 seconds for MATE exploration

SRA Fault List Reduction

l l Leibniz i o 2 Universität i o 4 Hannover

- AVR: 8-bit RISC microcontroller, implementing a two-stage pipeline design
- neo430: 16-bit multi-cycle MSP430-compatible microcontroller
- Results for 8,500 cycles of a convolution:

	A		neo430		
	FF	FF w/o RF		FF	FF w/o RF
#Eff. MATEs	390	247	4	41	437
Avg. #inputs	5.8 ± 1.8	4.9 ± 1.2	$3.4\pm$	1.9	3.4 ± 1.9
Masked Faults	7.90%	16.48%	14.32	%	20.45%
Top 10	2.58%	7.05%	4.97	' %	7.11%
Top 50	5.90%	15.86%	13.11	%	18.77 %
Top 100	7.79%	16.43 %	14.01	%	20.02 %
Top 200	7.89%	16.48%	14.32	%	20.44%

- Fault-masking terms detect surely benign faults
- Easy to integrate with FPGA-based injection platform
- Reducion of fault list by 8-14 percent (up to 16-20 percent w/o RF)

		AVR	MSP430		
	FF	FF w/o RF.	FF	FF w/o RF	
Faulty Wires	383	135	743	519	
Avg. Cone [#gates]	656	840	287	151	
Med. Cone [#gates]	547	581	236	27	
Run Time [s]	164	34	126	90	
#Unmaskable	81	57	96	70	
#MATE candid.	3 · 10 ⁷	7 · 10 ⁶	$4 \cdot 10^{7}$	$2 \cdot 10^{7}$	
#MATE	24,536	3,226	19,180	17,649	