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ABSTRACT
With shrinking structure sizes, soft-error mitigation has become
a major challenge in the design and certification of safety-critical
embedded systems. Their robustness is quantified by extensive fault-
injection campaigns, which on hardware level can nevertheless
cover only a tiny part of the fault space.

We suggest Fault-Masking Terms (MATEs) to effectively prune
the fault space for gate-level fault injection campaigns by using the
(software-induced) hardware state to dynamically cut off benign
faults. Our tool applied to an AVR core and a size-optimizedMSP430
implementation shows that up to 21 percent of all SEUs on flip-flop
level are masked within one clock cycle.
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1 INTRODUCTION
Due to shrinking transistor sizes and operating voltages, transient
hardware faults caused by single event upsets (SEUs) have become
an emerging challenge for safety-critical real-time systems [6].
Functional safety standards, such as ISO 26262 or IEC 61508 [14, 15],
cope with this problem by demanding explicit measures to assess
(and, if necessary, mitigate) the effect of soft errors on safety and
robustness. This is commonly done by performing extensive fault
injection (FI) experiments on the target system [2, 4] that try to
mimic either the physical causes for soft errors (by exposing the
system to, e.g., heat or radiation [11]) or their effects (by chang-
ing logic signals) and then observing the system’s behavior with
respect to its functional specification.

Compared to radiation or heat experiments, FI on the logic level is
a lot cheaper to carry out and has the huge advantage of experiment
controllability and repeatability: At discrete points in time in the
running system, faults are injected for discrete logic signals and
the system’s execution continues from there on until a predefined
terminal state or a timeout is reached. If the result is still correct, the
fault was benign, otherwise it has turned into an error, which can
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lead to an failure of the system. By repeating the same experiments
with different software-based hardening schemes, their impact on
the overall system’s robustness can be quantified.

Logic faults can be injected on the pin [16], flipflop [5, 28], or
ISA level [12, 24, 25] and it is an open question, which level is “best”
to assess a system’s robustness: Higher levels provide for much
higher fault-space coverage [24], but lower levels are closer to the
physics. Some researchers have shown that the injection level of the
commonly assumed SEUs can have quite an impact on the results
[5, 28], while others have argued that the reported difference is
probably less drastic due to calculation issues [23]. Nevertheless,
the lower the injection level (e.g., flipflop-level vs. ISA-level), the
more precisely we mimic the effects of real SEUs in the hardware.

1.1 Hardware-Assisted Fault Injection
In practice, however, low-level FI faces severe scalability issues.
The run-time costs of fault experiments are high, as the injection
of faults on the level of logic elements is typically only possible
in circuit simulators. Moreover, the fault space is huge, as an SEU
could affect every element at every clock cycle.

One way to mitigate the first problem is hardware-assisted fault
injection (HAFI) [9, 17], which takes advantage of the advent of
high-density FPGA devices to emulate the target logic circuit (i.e.,
the netlist) including the injection of faults, so basically the com-
plete FI campaign (including the detection of errors) runs on the
FPGA. For this purpose, HAFI approaches instrument the target
logic circuit to integrate fault injection and monitoring capabilities
directly into the FPGA design. This can yield a speedup for fault
experiments by three orders of magnitude [19].

However, even with hardware assistance, the fault space is still
way too large to inject every element in every cycle. Hence, to
increase the effectiveness of FI campaigns, it is of utmost importance
to prune the fault space by deriving equivalence classes for (possibly)
effective faults and cutting off points that beforehand can be proven
to be benign [24].

Fault-space pruning (FSP) is often performed offline on a
recorded execution trace. However, especially for HAFI-enabled FI
platforms, an online fault-list generation and FSP that is integrated
into the FPGA, reveals several advantages: (1) If one FI controller dis-
tributes the FI campaign over several FPGAs, injection commands
can bemore coarse grained (“inject(cycle=500)” vs “inject(cycle=500,
wire=42)”). (2) If recording a trace is infeasible due to indeterminism
or long-running programs, online FSP is still able to avoid ineffec-
tive fault injections. (3) If several programs are examined on the
same HAFI platform, we continuously benefit from a reduced fault
list without paying the cost for offline campaign planing.
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1.2 About This Paper
We present a new method for online fault-space pruning in HAFI
campaigns. In a nutshell, we exploit the (software-induced) execu-
tion state and the internal logic of the target element to dynamically
determine (and cut-off) injections that will become benign in the
further execution. Technically, we analyze the netlist for all possible
fault propagations and derive a fault masking term (MATE) for each
logic element that describes input combinations that would mask a
fault within one cycle. We employ a heuristic over an exemplary
execution flow to find and select MATEs that cut-off a high number
of injections. In particular, we claim the following contributions:

• We introduce the concept of MATEs, which dynamically
prune the fault space on a per-cycle level by examining the
current state of the synchronous circuit.

• We present a heuristic to find and select MATEs and provide
a prototype implementation as open source.

• We evaluate the concept with two real-world CPU designs
and quantify the fault-space reduction for two test programs.

Our results with an AVR 2-stage RISC core and a multi-cycle
MSP430 implementation show that up to 21 percent of all faults
on flipflop level can be eliminated as benign by MATEs, which
themselves will have only a moderate impact on FPGA resources.

2 SYSTEM MODEL
Our fault model is SEUs in synchronous circuits with internal state,
employed in special-purpose (deeply embedded) HW–SW systems.
Without loss on generality, we focus on the CPU part. An SEU is
assumed to manifest as a state change of any flipflop at any point in
time, so the underlying fault space is (flipflops × cycles). Figure 1b
depicts our example fault space, which spans over 5 flipflops and
8 clock cycles. We mimic these faults with HAFI for a concrete
execution trace in an FPGA-based emulation of the circuit.

Our goal for this paper is to prune the space of possibly effective
faults in this setting. A fault is considered as possibly effective, if it
could eventually propagate to externally visible state (i.e., visible
on an output pin or by the software on ISA level). Otherwise (i.e.,
if it gets masked by the current state within one clock cycle), it is
surely considered as benign.

Note that our definition of benign faults is sufficient, but not
complete: A possibly effective fault might still be masked and never
propagated to the higher level (e.g., ISA) and, thus, might never
yield an error with respect to the system’s specification. However,
a fault that is benign already on the logic level could never lead to
an error on the system level.

3 FAULT-MASKING TERMS
When a transient hardware fault occurs in a logical circuit, it can
propagate to a large number of elements and, therefore, lead to a
cascade of faulty secondary signals and erroneous behavior. In a
synchronous circuit this propagation happens in a time-discrete
manner: Faulty signals influence gate outputs, which are input to
other gates, and more and more wires become faulty down the road.
If such a faulty signal reaches a flipflop, it is stored at the end of the
current clock cycle and then has the possibility to poison the circuit
behavior in the next time interval. However, not every primary
fault comes that far and reaches a flipflop within the first clock cycle

after the fault. Some are masked right away by the combination of
the current (unfaulty) state and the circuit’s structure. We want to
detect situations, where a fault is masked within one clock cycle to
avoid its injection in larger testing campaigns.

More formally, the logic of a synchronous circuit is a boolean
function N that takes a vector ®i of external inputs and the current
state (flipflops) and calculates a new state and some external outputs.
A fault function f becomes benign within one clock cycle, if the
faulty input vector f (®i) results in an unchanged output vector:

N (f (®i)) = N (®i) → f is benign for ®i
Within the physical realization of N , a fault propagates only to a
certain area of gates and wires, the fault cone. Within this fault
cone, we have to distrust all signals, until proven otherwise, as
they are potentially faulty. However, there are signals that cross
the fault-cone border from the outside and bring new hope to the
fault cone as only they can mask the fault. If the values of these
border wires are appropriate, the fault is masked on all paths from
the faulty input to the outputs and the fault becomes benign.

Definition (Fault-masking term, MATE). A fault-masking term
Mf for a fault function f is a boolean function of primary inputs and
intermediate signals of a circuit. If it becomes true, the fault is surely
benign and N (f (®i)) = N (®i). Otherwise, we have no knowledge about
the effect of f in this cycle.

Let us illustrate this concept with an example (Figure 1a): The
fault cone for the input d contains the wires {d, g, k, l} and the
gates {B, D, E}. There are two paths ([B,D], [B,E]) for the fault to
propagate from the primary input d to one of output wires {k, l}.
The fault-cone has three border wires {c, f, h}, each influencing
a single cone gate. As B is an XOR gate, it has no fault-masking
capabilities and a fault will always propagate through B, regardless
of the value of c. However, both D (an AND gate) and E (an OR
gate) have a fault-masking capability if at least one input is known
to be unfaulty. Therefore, a fault in d is masked within one cycle if
(f, h) have the values (0, 1). So one MATEMd is (¬f ∧ h); another
one is (a ∧ b ∧ ¬e). For the input e, there exists no MATE, as there
is a path ([C]) where no gate has any fault-masking capabilities.

Figure 1b depicts how a MATE set for the circuit from Figure 1a
can be used to prune the fault space. Starting from an offline-
recorded execution trace or directly at run time in a HAFI platform,
the MATEs are connected to the input and internal wires of the cir-
cuit. On a per-cycle basis, all MATEs are evaluated and the benign
faults are removed from the fault space. For example, in the first
two cycles, the MATEs ¬b and ¬a trigger and, therefore, the wires
a and b are removed form the fault space.

A MATE for a fault can be formulated over any wire that is not
within the fault cone. However, as every MATE can be reformulated
to contain only border wires as terms, we will concentrate on these
border MATEs. Border MATEs reuse parts of the already existing
circuit and can, therefore, be integrated into a HAFI platform with
little effort.

4 HEURISTIC TO FIND HIGH-IMPACT MATEs
Formulating a MATEMf (i) for an input wire i is easy as we could
simply duplicate the fault cone, feed it with the unfaulty value of i



Cross-Layer Fault-Space Pruning for Hardware-Assisted Fault Injection DAC ’18, June 24–29, 2018, San Francisco, CA, USA

&

A

=1

B

1

C

a

b

c

d

e

�

&

D

≥1

E

f

g

h

k

l

(a) Fault Cone for input wire d. If a fault occurs at d, it can propagate
within the entire fault cone (d,g,k,l) and the output wires (k, l) is po-
tentially faulty. However, the fault can be stopped from propagating,
when border wires (c,f,h) have the values f=0, h=1.

a
b
c
d
e

Execution Trace Fault Space

Mb = ¬a MATEs
Ma = ¬b
M{c,d} = a ∧ b ∧ ¬e

(b) Fault-space pruning with fault masking terms (MATEs). The cur-
rent state of the circuit is fed into a set of MATEs to detect whether a
fault could lead to an error (filled dot) or becomes benign within one
clock cycle (empty dot).

Figure 1: Fault cone for a single faulty wire and fault-space pruning capabilities for the respective MATEs of the whole circuit.

and compare the results of all output wires. Although this MATE
is the most precise one and detects all situations where a fault in
i becomes benign, it is inefficient to implement this strategy in
hardware for every input. Therefore, we look heuristically at the
whole circuit to find several smaller MATEs that detect as many
faulty-but-benign wires as possible. With this whole-circuit view,
we also find MATEs that detect more than one benign fault.

The starting point for our heuristic search is the netlist of a syn-
thesized circuit and the used gate library. As a first step, we analyze
all gates within the library for their fault-masking capabilities. For
every gate type, we iterate over all combinations of faulty input
wires and find all input-pin assignments that will mask the current
faulty-input set. For example, for a 1-bit multiplexer MUX (x ,a,b)
and the faulty-input set {x}, we will find the gate-masking terms
GM(MUX , {x}) = {(¬a ∧ ¬b), (a ∧ b)}. Phrased differently: If the
select signal of a multiplexer is faulty, the fault is stopped at this
gate given that the selected inputs are not faulty but equal.

In the second step, we iterate over every wire that can be faulty
according to the fault model. For each possibly-faulty wire, we
search for MATEs independently. We enumerate all paths of gates
in the fault cone up to a given depth (heuristic parameter). Enumer-
ating longer fault-propagation paths enlarges the search space, but
also unveils more gates that can potentially stop the fault. However,
masking a fault early in the fault cone is easier, as fewer wires are
potentially affected by the fault.

For the gates covered by the enumerated paths, we collect all gate-
masking terms, while we assume that every wire within the fault
cone is to be mistrusted. If there is a path where no gate can mask
the fault, we abort the search early and proceed to the next faulty
wire. Otherwise, we generate all combinations of gate-masking
terms as MATE candidates up to a given number of terms (heuristic
parameter) and check their conjunction against the propagation
paths. If a MATE candidate masks the fault on every propagation
path, it is an actual MATE for the investigated faulty wire.

As a third step, we collect and summarize all MATEs for all
possibly-faulty wires. Oftentimes, one active MATE indicates the
masking of more than one fault. For example, most CPU execution

stages have an operation where they select only one operand to
implement themov/ld instruction. Therefore, aMATE that triggers
on this operation can mark all faults in the other operand as benign.

At this point, we have a large set of actual MATEs. However, we
do not know whether these MATEs can trigger at all or whether
they trigger only in very specific and rarely seen situations. There-
fore, we select a subset of all discovered MATEs by replaying an
exemplary trace of the circuit in action. For every cycle, we calcu-
late which MATEs would trigger. Beginning from the MATE that
masks the most faults, we increase a hit counter for every MATE
that masks an additional input wire. After replaying the trace, we
select the top-N MATEs with the highest hit counter.

5 EVALUATION
For the evaluation, we apply the heuristic MATE search for two
fully synthesized processors with different instruction-level ar-
chitectures, namely an 8-bit RISC AVR/Atmel-compatible micro-
controller, implementing a two-stage pipeline design, and a 16-bit
multi-cycle MSP430-compatible microcontroller. On both proces-
sors, we simulate two test programs and record a wire-level trace of
all internal and external signals. With the calculated MATE sets and
the recorded trace, we quantify what proportion of the potential
fault-space is surely benign.

5.1 Experimental Setup
First, we performed an ASIC synthesis for both processors using
Synopsys Design Compiler 2017.09-SP1. For that, the freely avail-
able 15nm FinFET-based Open Cell Library [18] was chosen, op-
timizing both designs for area. Then, two test programs (i.e., a Fi-
bonacci sequence computation and a convolution function), which
use different instruction subsets, were implemented for both proces-
sors. Finally, both test programs were executed on both processors
bymeans of a netlist simulation. During the simulation, we recorded
a VCD (value change dump) trace file for each program/processor
that describes the values of all wires for every clock cycle.

We implemented the MATE search as a Python program and
executed the prototype with the optimizing just-in-time compiler
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Table 1: Statistic for the heuristic MATE search.

AVR MSP430

FF FF w/o RF. FF FF w/o RF

Faulty Wires 383 135 743 519
Avg. Cone [#gates] 656 840 287 151
Med. Cone [#gates] 547 581 236 27

Run Time [s] 164 34 126 90
#Unmaskable 81 57 96 70
#MATE candid. 3 · 107 7 · 106 4 · 107 2 · 107
#MATE 24 536 3226 19 180 17 649

PyPy 5.9.0. The search was executed on a Intel i7-6600 @ 2.60
Ghz (2 cores, 2 hardware threads) machine. We utilized the parallel
processing capabilities of the machine, by running theMATE search
for different faulty flipflops in parallel.

The input for the MATE search are the generated netlists and
the used standard cell library (i.e., the logical function of each gate).
For the following MATE selection and the quantification of the
fault-space reduction, the VCD trace files were used. Furthermore,
we executed the MATE search twice for every processor model: 1.
for all flipflops in the netlist (“FF”). 2. for all flipflops in the netlist
that are not located in the register file (“FF w/o RF”). We added the
second set of faulty wires, since most CPU operations write only
a single register and, therefore, most faults in the register file will
naturally live longer than one clock cycle. These register-level faults
are more likely to be pruned on an inter-cycle pruning strategy.

5.2 MATE Search Performance
Table 1 characterizes the four input sets (2 processors, 2 FF sets)
and the performance of our MATE search. For the small AVR core,
most flipflops are located in the register file as it contains 31 8-bit
registers. Only 135 flipflops are used in the pipeline logic. Since the
multi-cyle MSP430 holds more state between cycles, the impact of
the register file (14 registers a 16 bit) is much smaller. However,
the average (and median) fault-cone for both processors is quite
different. Although the MSP430 is the more powerful CPU, the
multicycle implementation results in fault cones with about half as
many gates.

We ran theMATE searchwith the following heuristic parameters:
(1) Search 8 gates deep into the fault cone to enumerate the fault-
propagation paths. (2) Use at most 4 gates to stop the propagation
of a fault. (3) Abort the search after trying at most 100 000 MATE
candidates per faulty wire. With these parameters, it always took
less than 3 minutes to calculate the MATE sets used in the rest of
the evaluation. During all search operations, the RAM allocation
remained below 1 GiB.

5.3 Fault-Space Reduction
As a first step to quantify the impact of our (complete) MATE
sets, we replayed the wire-level traces of both test programs and
recorded, for every cycle, which MATE would have triggered and
what faulty wires would be detected as benign. The selection of
high-impact MATEs is done and evaluated in a second step.

Table 2: AVR MATE Performance. We selected the top N
MATEs according to one test programand calculated the per-
centage of the full fault space was detected as benign by the
MATE set. Both programs ran for 8500 clock cycles.

AVR
MATEs

fib() conv()

FF FF w/o RF FF FF w/o RF

#Effective MATEs 279 209 390 247
Avg. #inputs 5.4± 1.6 4.9± 1.2 5.8± 1.8 4.9± 1.2
Masked Faults 7.15% 14.37% 7.90% 16.48%

Top 10 2.61% 7.32% 2.35% 6.04%
Top 50 5.79% 13.77% 5.30% 14.23%
Top 100 7.06% 14.29% 7.17% 14.68%
Top 200 7.15% 14.37% 7.48% 15.39%

Top 10 2.27% 5.93% 2.58% 7.05%
Top 50 4.62% 13.86% 5.90% 15.86%
Top 100 6.84% 14.12% 7.79% 16.43%
Top 200 7.04% 14.22% 7.89% 16.48%
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Table 3: MSP430 MATE Performance. We selected the top N
MATEs according to one test programand calculated the per-
centage of the full fault space was detected as benign by the
MATE set. Both programs ran for 8500 clock cycles.

MSP430
MATEs

fib() conv()

FF FF w/o RF FF FF w/o RF

#Effective MATEs 387 386 441 437
Avg. #inputs 3.2± 1.8 3.2± 1.8 3.4± 1.9 3.4± 1.9
Masked Faults 14.63% 20.91% 14.32% 20.45%

Top 10 4.97% 7.12% 4.97% 7.11%
Top 50 13.37% 19.14% 13.28% 19.01%
Top 100 14.28% 20.42% 13.95% 19.93%
Top 200 14.63% 20.91% 14.30% 20.43%

Top 10 4.97% 7.11% 4.97% 7.11%
Top 50 13.19% 18.88% 13.11% 18.77%
Top 100 14.18% 20.26% 14.01% 20.02%
Top 200 14.61% 20.88% 14.32% 20.44%
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ed
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The first section of Table 2 and Table 3 gives an overview of the
complete MATE set on both traces. For the complete AVR and the
Fibonacci (fib()) program, 279 MATEs triggered at all, and we could
reduce the fault space by 7.15 percent. Without considering the
register file, and although the number of effective MATEs reduces,
the fault-space shrinkage rises up to 14.37 percent. For the con-
volution (conv()), the results were slightly better and significantly
more MATEs (+39.78%) triggered at least once. For the MSP430
(see Table 3), the general trends for the fault-space reduction are
similar, although the overall performance of our approach is much
better, and we achieve at least 14 percent of fault-space reduction.
For both programs the results are similar to the AVR results, while
more MATEs are triggered by the execution trace. However, the
fault-space reduction for conv() is about the same size as for fib().
From the average number of MATE inputs, we can conclude that
the hardware overhead to implement a single MATE is negligible
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and, with less than 6 input signals (on average), also friendly for an
FPGA implementation.

As the discovered MATE sets are quite large (at least 3226 ele-
ments), we use the described method (see Section 4) to subset the
high-impact MATEs. By replaying the execution traces of one test
program, we rate the MATEs for their impact on the fault space
and selected a subset of the most efficient MATEs. For the evalu-
ation, we took the simulation trace for fib() (respectively conv())
and generated a top-n set. This subset was then evaluated against
both traces to investigate: (a) How well does a small subset per-
form? (b) How well are MATE sets transferable between different
hardware-usage patterns? The second and third section of Table 2
and Table 3 contain these results, as well as the results for the cross
validation. For example, the 50 most effective MATEs for all flip
flops selected for the fib() trace, reduce the fib() fault space by 13.37
percent. Applied to the conv() trace, the fault space is pruned by
13.28 percent.

As a general trend, both for AVR andMSP430, we see that already
50 MATEs exhibit a fault-space reduction that is very close to the
results of the complete MATE set. For MSP430, we see that the
achieved fault-space reduction is not significantly dependent on
the trace that was used in the selection process. However, the
experiments where selection and evaluation trace differ are slightly
worse for the AVR core. We consider this as an indicator that
MATE selection remains (mostly) stable, even in case the software
is slightly changed and the MATE-enriched HAFI platform can be
used for several different programs.

6 DISCUSSION
6.1 Integration of MATEs into HAFI Platforms
As our experiments have shown the average MATE-complexity is
rather small and, thus, well suited for synthesis into FPGA LUTs.
With their average input size of less than 6 wires, one MATE fits
into one or two LUTs. Compared to the size of current HAFI FPGA-
based platforms, which utilize between 1500 and 6000 LUTs [9, 19]
only for the fault-injection control unit, or the capacity of midrange
Virtex-6 FPGA (XC6VLX240T, 150k LUTs), the extra LUTs required
by 50 to 100 MATEs are negligible.

6.2 Higher Fault Models
Our fault model is based in the common assumption of single, uncor-
related faults caused by SEUs that each induce a logic flip in a single
element (Section 2) — an assumption that is frequently criticized,
but still considered valid [26]. However, despite the requirement
that at most one input is faulty, MATEs do actually not rely on any
further assumption about the fault characteristics: Our approach
works out of the box also with upsets that hold more than one cycle
or cause an input to become logically unstable. Conceptually, also
2-bit faults (or more) could be considered in the construction of
MATEs – as well as MATEs for faults that are masked only within
more than one clock cycle. Depending on the gate types, such multi-
bit/multi-clock MATEs will become more expensive on the FPGA,
but might also have a much higher impact on fault space prun-
ing. This underlines the necessity of efficient heuristics to select
high-impact/low-cost MATEs and is a topic of further research.

6.3 Extension to ISA Level
The fact that currently the derived MATEs only address fault-
masking within a single clock cycle means that faults in flipflops
not overwritten in the next cycle could never be masked. Hence,
MATEs are very effective if applied to, for instance, stage buffers or
the status register, but mask only few faults in the general register
file, as on most architectures at most one register is overwritten per
clock cycle. This is also observable in the numbers from Table 2 and
Table 3, respectively: The multi-cycle architecture of the MSP430
implementation seems to be more beneficial in this respect than the
RISC-style architecture of the AVR. However, independently of the
architecture, the number of faults masked within one clock cycle
is considerably higher if we exclude the register-file flipflops from
HAFI. We consider the numbers excluding the register file as more
relevant, as faults in general-purpose registers (or even external
memory) affect ISA-visible state, so they are on the border of our
system model (Section 2). At this stage, ISA-level software-based
pruning techniques could take over, which have proven as a very
effective as means for FI experiments that target bit flips in regis-
ters or volatile memory [12, 25] and achieve full coverage of the
fault-space of single-bit flips in typical embedded control systems
[24]. Hence, with respect to the question which level is “best” to get
realistic results when assessing a system’s robustness against SEUs
[5, 28], we envision the combination of HAFI on flipflop level with
software-based FI taking over at ISA level as the ideal combination.

7 RELATEDWORK
Fault-space pruning on the hardware level is done with two differ-
ent goals in mind. First of all, chip manufacturers want to reduce the
number of test patterns that is required to asses the functional cor-
rectness of all gates on an actual chip die. Fault collapsing is a tech-
nique to statically analyze a netlist for possible faults that are equiv-
alent in their error behavior. Several techniques [1, 10, 20] were
proposed to find such equivalence classes, including approaches
that utilize specialized binary decision diagrams [27] and the hier-
archical nature of hardware designs [21]. However, fault collapsing
does not take the current state during a fault-injection campaign
into account and is targeted at stuck-at faults. Furthermore, the
combination of MATEs and fault collapsing could be profitable
when all wires are subject to injection.

Software reliability assessment is the second large area, where
fault-space pruning is employed to make large injection campaigns
feasible. Here, the fault space is spanned by the program-under-test
as it is executed on the hardware. Due to the huge fault spaces,
sampling heuristics are used to concentrate on the most important
faults [8]. Grouping faults into classes with similar error behav-
ior is done by means of data-structure dependencies [7], address
bounds [22], and memory states [13]. However, these pruning tech-
niques are more coarse grained as they span multiple execution cy-
cles. Furthermore, as we already discussed, such inter-cycle pruning
techniques complement the presented intra-cycle MATE approach.

Similar to our approach, Asadi et al. [3] consider the error prop-
agation of single gates in a circuit when used with a concrete soft-
ware. From an execution trace, they calculate a propagation proba-
bility to estimate the chance of a whole-system failure. In contrast
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to our approach, they do not focus on fault injection or the fault
propagation on a per-cycle basis.

Finally, one way to accelerate fault injection campaigns is the
use of HAFI tools, which basically instrument the netlist of the
SUT to allow fault injection while emulating the SUT on an FPGA
platform. An extra control unit is required, which can access in
parallel or serially the gates of the instrumented netlist to inject
single or multiple faults in the desired cycle and to read the state
for subsequent evaluation. The functionality of the control unit can
easily be implemented by means of a soft-core processor [17] or a
dedicated finite state machine [9]. Moreover, information about the
physical location of the gates extracted from the layout of the SUT
can be used to emulate realistic multi-event upsets (MUE) [19].

8 CONCLUSION
Experimental fault injection (FI) is a broadly accepted means to as-
sess the functional correctness of safety-critical embedded systems
with respect to transient errors. With hardware-assisted fault injec-
tion (HAFI) the throughput of gate-level FI campaigns is drastically
increased by injecting the faults online during the FPGA-based em-
ulation of the circuit’s netlist. However, even with HAFI techniques,
the fault space is way too large to achieve full coverage, while on
the other side a significant number of faults get logically masked
(and, thus, benign) in the real execution.

We introduced fault masking terms (MATEs) as an additional
means to prune the fault space in HAFI campaigns. MATEs exploit
the software-induced flipflop state to detect faulty inputs that, how-
ever, would not propagate to the next clock cycle. The MATEs for
all logic elements of the circuit are derived offline from the netlist;
a heuristic selects a subset to be integrated into the FPGA-based
emulation. Our evaluation results with two test programs on two
embedded CPU architectures show that already a small number
of 50 MATEs with very moderate hardware costs is sufficient to
cut off nearly 20 percent of all flipflop-level faults as benign, which
leads to a significant reduction in the number of FI experiments to
carry out.
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