ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

Function Based Benchmarks to Abstract Parallel
Hardware and Predict Efficient Code
Partitioning

loannis Zgeras, Jiirgen Brehm, Mark Akselrod

Leibniz University of Hannover
Institute of Systems Engineering
Appelstr. 4, 30167 Hannover, Germany
[zgeras | brehm] @sra.uni-hannover.de

Abstract. To increase the performance of a program, developers have
to parallelize their code due to trends in modern hardware development.
Since the parallelization of source code is paired with additional program-
ming effort, it is desirable to know if a parallelization would result in
an advantage in performance before implementing it. This paper exam-
ines the use of benchmarks for estimating the performance gain looking
at the parallelization of Population Based Algorithms (PBAs) like Ge-
netic Algorithms (GAs) and Particle Swarm Optimization Algorithms
(PSOs) to be implemented on multi- and many-cores. These benchmarks
are named function based benchmarks due to their dependence on the
PBAs’ functions. Furthermore, the software-hardware mapping with the
most performance gain is suggested.

Keywords: Benchmark, Parallel Programming, Multi-Core Architecture, Ge-
netic Algorithm, Particle Swarm Optimization, GPGPU (General Purpose Gra-
phics Processing Unit)

1 Introduction

In the last years, microprocessor development has arrived to a point where
smaller integrated circuits and higher clock speeds are no longer feasible due
to physical phenomena. To still increase performance, multi- and many-core ar-
chitectures have become more and more important where performance gain is not
only achieved by higher frequencies but primarily through parallelization. As a
result, shorter execution times of application programs depend on the capability
of the software engineers to parallelize their programs and thus take advantage
of the parallel structures of modern computer hardware. The use of massively
parallel GPGPUs as accelerators has added another level of complexity to the
hardware.

One of the main challenges at achieving the best possible speedup with par-
allel software is to identify the best partitioning of the executable code on the
hardware. This requires knowledge whether a piece of code performs better run-
ning single threaded or hyper threaded on one core of the CPU, multi threaded

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

on several cores of a multi-core CPU or multi threaded on a many-core machine
such as a GPGPU. This decision is nor trivial neither automatically accomplish-
able. It depends on static and dynamic constraints like e.g. input size, branching
factor of the code or complexity of computational operations. In this paper, we
introduce an approach for identifying the best partitioning of the code with the
support of function based benchmarks (FBBs) especially designed for a class of
Population Based Algorithms (PBAs) (2.1) represented by Genetic Algorithms
(GAs) (2.1) and Particle Swarm Optimization Algorithms (PSOs) (2.1). The
benchmarks are designed by abstracting the characteristic functions of popula-
tion based algorithms.

Benchmarks to evaluate the performance of hardware have a long history in
computer architecture. Starting with Dhrystone [1] and Whetstone [2] to eval-
uate the number of instructions and the number of operations per time unit
they have evolved since. Nowadays, they are used to evaluate the performance
of GPUs [3] or the performance of whole computer systems. We are introduc-
ing FBBs designed to predict the performance of PBAs on different hardware
architectures like single threaded CPUs, multi-core CPUs and GPGPUs.

The rest of the paper is organized as follows: Section 2 contains a short survey
of related work. In Section 3, we describe the concept and implementation of
the FBBs for PBAs. Section 4 presents evaluation results. Finally, Section 5
concludes with future research opportunities.

2 Related Work

Benchmarks are designed to evaluate the performance of hardware. One of the
first known synthetic benchmarks is Whetstone [2]. The basic idea is to look
at the operation mix of many typically scientific programs written in Algol 60
[4] and use it as characteristic load to benchmark the hardware. One of the
first benchmarks that measured the performance on parallel machines were the
NAS Parallel Benchmarks[5] that were developed to determine performance in
Computational Fluid Dynamics and are further developed by NASA [6]. In [7] the
authors describe a benchmark suite for parallel computers focusing on multi-core
architectures (OpenMP). In [8] a benchmark suite specialized on AMD GPUs
is described. The authors in [9] describe in their paper an interesting approach
of benchmarking complex heterogeneous architectures. However, they do cover
a more general purpose scenario than the focus of this paper.

2.1 Population Based Algorithms

PBAs are nature inspired heuristics, all PBAs have similar structures. The main
part is the population that consists of a set of solutions for a given problem.
These solutions are called individuals, particles or, more general, agents. These
agents execute in each iteration of the algorithm different kinds of operations to
improve their solution. The quality of a solution is called fitness. The function
or problem that the agents have to optimize (or solve) is called fitness function.
Two representatives of PBAs the so called GAs and PSOs that are used for this
paper are now described in more detail.

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

Genetic Algorithms: GAs [10][11] are heuristics based on the idea of natural
selection. The population of GAs consists of individuals that represent a solution
of a given problem where every solution consists of single chromosomes. E.g. the
solution of an individual for an n-dimensional function would consist of n values
of this function. The vector representing these values is the chromosome of this
individual and every value of this vector is called gene. The outer iteration loop
of GAs consists of three main operations - Crossover, Mutation and Selection -
that are performed after a random initialization process until a break condition
(e.g. finding the minimum) is achieved.

The crossover operation uses two individuals (parents) to generate new indi-
viduals (children) by crossing the solutions of the two parents. There are many
different crossover operations, some popular examples can be found in [10]. In
the next step, some chromosomes of the individuals are randomly changed, this
operation is called mutation. Again, there are different methods for implement-
ing mutation [10]. The individuals are now ranked based on their fitness value
that indicates the quality of their solution. In the last step, the individuals are
selected to become part of the population for the next iteration. Once again,
there are many different ways to select the individuals [10]. There are many
parallel implementations for GAs. Some of them can be found in [12][13][14].

Particle Swarm Optimization: PSO algorithms [15][16] have similarities to
GAs but the approach is different. PSO is based on the natural behavior of
birds. The population of a PSO algorithm is called swarm and the individuals
are called particles. Every particle is represented by a position and a velocity
where the position represents a solution of the problem and velocity the speed
and direction this particle changes it’s position.

In each iteration step, the particles try to approximate better solutions by
detecting the best neighbor and updating their velocity and position value taking
into account the velocity and position values of the best neighbor. The iteration
loop is repeated until a break condition is fulfilled. Like for GAs, different parallel
PSO algorithms can be found in the literature [17][18].

CUDA: As GPUs became more and more complex, their use was no longer
limited to tasks belonging to graphical programming. Different programming
languages were developed to facilitate the GPUs towards more general purpose
processing. The company NVIDIA published CUDA (Compute Unified Device
Architecture) as a programming environment for their GPUs. CUDA became
a common programming language extending the C language by a small set of
instructions, allowing the programmer to develop code running in parallel. The
parallel code is executed on so-called CUDA kernels. More about CUDA can be
found in [19][20].

3 Function Based Parallel Benchmarks for PBAs

This section describes the concept and implementation of FBBs for PBAs such as
GAs and PSOs. Subsection 3.1 contains the concept of the FBBs, in 3.2 we give

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

a more detailed insight of the single benchmark kernels while the parallelization
techniques of the kernels are explained in Subsection 3.3. The runtime parameter
dependent software-hardware mapping (partitioning) is shown in 3.4.

3.1 Concept

The developed FBBs cover a variety of implementations of population based
algorithms without becoming too generic. PBAs like shown in 2.1 consist of a
sequence of characteristic operations (mutation, selection, ...) whereby the im-
pact of the single operations can vary depending on the concrete implementation.
For that reason, we implemented the benchmarks using these sequences of opera-
tions generalizing them as much as necessary without loosing their characteristic
properties.

Single operations can have multiple appearances, which cannot all be imple-
mented in separate benchmarks. To face this problem, the operations are divided
into complexity classes. We chose common complexity classes like (O(1), O(n),
...) and implemented an individual benchmark kernel for each class as described
in 3.2. If necessary, our implementation is easily expandable for other complexity
classes. In the evaluation (Section 4), we show that this kind of generalization
is suitable for PBAs such as GAs and PSOs. We have used kernel functions
from PBAs for the crossover and mutation benchmarks while for the selection
benchmarks we have abstracted the fitness functions (kernels vs. abstract ker-
nels). The reason behind is an infinite number of fitness functions. Abstraction
is necessary to cover them without writing an infinite number of test cases. Fur-
thermore, the selection part consumes in almost all cases the overwhelming part
of the computation time, so it is more important to treat the selection part
separately to achieve accurate results. The fitness computation is considered as
part of the selection. In the following, we show the concept of the GA- and
PSO-benchmarks.

Genetic Algorithms: The main parameters of GAs are:

Population size — Number of individuals

— Individual size — Number of chromosomes per individual
— Iteration size — Number of iterations to be executed

— Fitness function — Kind of operations

The first two parameters are easily adjustable, if the population is implemented
as an array. Every individual is represented as a field of a dynamic array (the
population). In addition, the third parameter is also easily adjustable, it is the
number of executions of the outer loop of the program. The fourth parameter is
much more complicated to be described by a FBB. The single operations have
to be analyzed and classified into complexity classes. In the following subsection
(3.2), we show kernels with different complexity classes.

Particle Swarm Optimization: PSO algorithms have a similar structure as GAs:

— Size of the swarm — Number of particles

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

— Dimension size — Dimension of the solution space of the given problem
— Iteration size — Number of iterations to be executed
— Fitness function — Kind of operations

The first two parameters of the algorithms are comparable with GAs by replacing
individuals by particles and chromosomes by dimension. The last two parameters
are on par with the last two parameters of GAs.

The function based benchmarks for PBAs evaluate the most time consuming
operation$ using the parameters described above. These operations are summa-
rized into kernels. Each kernel evaluates the runtime behavior of parts of the
PBAs. To get more accurate results, we do not just simulate the execution times
of population based algorithms but implement kernels for the concrete opera-
tions on sequential and parallel hardware and order the results by execution
times.

Initialization

Crossover Mutation Selection

Abstract Abstract

Fig. 1. Function Based Benchmark Model GA

Figure 1 shows a model of a simple GA benchmark. There are different kernels
for each genetic operation. The reason for that are the many different variations
of GAs and PBAs. We have tried to cover the most common ones and have held
the extension interfaces quite open, so that new variations can easily be added.
In the following, we give a short overview of the GA kernels used for evaluation.

3.2 Benchmark Kernels

Crossover: This benchmark kernel evaluates the behavior and performance of
the crossover operations in GAs. Crossover, in this case, is always between two
parent individuals and there are always two new individuals generated. We have
considered the two mainly used crossover methods, 1-point-crossover and uni-
form crossover[10]. 1-point-crossover is a simple method where the parents’ chro-
mosomes are cut at one point to produce new individuals (childs). The first child
is generated by merging the first part of the first parent’s chromosome and the
second part of the second parent’s chromosome, the second child is generated
vice versa. This method has the time complexity of O(M) for one individual,
O(N M) (M - chromosome length; N - population size) for the whole popula-
tion, respectively. Other methods (like 2-point-crossover) have similar structures
and the same complexity and thus can be represented by this fairly simple kernel.

Another very important crossover implementation is uniform crossover. Here,
for every position of the individuals (i.e. for every chromosome) a random num-
ber z is generated. If (z = 0), the chromosome is filled with the value of the
chromosome in this position from the first parent, if (z! = 0) from the second
parent. For the second individual, the procedure is used vice versa. This method

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

generates N x M random numbers and differs significantly from 1-point-crossover
performance wise. More information about crossover methods can be found in
[10].

Mutation: We have chosen three different mutation operations to cover most
implementations. The first one is mutation of one chromosome with a time
complexity of O(N), the second is mutation of all chromosomes with a com-
plexity of O(N x M) and, additionally, generating of O(N % M) random values.
The last mutation method is mutation of a permutation with a complexity of
O(N x M) but with less random number generating steps as in mutation of
all chromosomes. For more information about the detailed procedure of these
methods please consider [10].

Selection: Selection consists of two operations. Firstly, the fitness of each in-
dividual has to be computed. Secondly, the individuals have to be chosen to
become part of the new population in the next iteration step. We have imple-
mented three common fitness functions to cover a larger set of functions. These
functions are:

— fi(x) = Mil(xi)z (complexity O(M))

1=

M—-1

~ f@) =X (

(=)

x;)? (complexity O(M?))

.
M=
o

— f3(x) = Ng cos(z;)? (complexity O(M * cos(1))

The first two functions are popular and often used in benchmark functions
for different problems [21]. The third function is chosen to evaluate the impact
of trigonometric functions. Especially in GPGPU environments, functions with
trigonometric operations often perform worse than functions without.

For the second part, selecting the individuals, we have implemented three of
the most common methods. Tournament selection with a complexity of O(N),
roulette selection with a complexity of O(N?) and rank selection with a com-
plexity O(N?). Roulette selection and rank selection are similar whereby an ad-
ditional sort operation in the roulette selection algorithm has to be performed.
A detailed explanation of selection algorithms can be found in [10].

3.3 Parallelization

The described FBBs are designed to not only benchmark sequential machines
but also multi- and many-core machines. Thus, the benchmarks have to be par-
allelized. Note that the investigated sequential program is not parallelized but
the benchmarks. This procedure has to be done only once and can be used af-
terwards for benchmarking various different PBAs. Parallelization of sequential
programs is difficult and not always obvious. The parallelization on multi-core
machines is comparatively straight forward. Most parallelizable code segments in
PBAs are loops that can easily be parallelized using e.g. OpenMP. The individ-
uals are divided evenly on the threads which execute the operations in parallel.

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

Actualization of positions in PSOs (2.1) and sorting in rank election have to be
considered separately. In position actualization the global best position may only
be accessed by one particle simultaneously to prevent errors. OpenMP offers a
simple way to do that by denoting a code segment as critical.

For sorting in rank election we have used a Mergesort implementation [22].
This implementation does not generate new threads if the subfields of the arrays
that are generated in recursive sorting fall below a given threshold. Thereby, it is
guaranteed that the recursive generation of new threads has no negative impact
on system performance.

Parallelization on many-core machines is realized with CUDA (2.1). The
whole population of the GA (the swarm in PSO algorithms, respectively) is rep-
resented by a grid where each block of the grid is arranged one dimensionally
and represents the individuals (particles in PSO) one after another. Each chro-
mosome (dimension) of the individuals is represented by a thread. If the number
of chromosomes (dimension) becomes less than a given threshold, the whole in-
dividual is represented by a single thread. The benchmarks represent groups of
operations with characteristic complexities.

3.4 Mapping

Software-hardware mapping is the last step in the benchmarking process. The
benchmark programs need some information about the considered program as
shown in Figure 2. Most of the values are trivial like population size or number
of iterations. These values are normally static and known to the programmer.
To accurately evaluate the complexity of operations the programmer has to find
the correct complexity class. Alternatively, we are planning a function parser to
help estimate the parameters:

— Population size — Swarm size

— Individual size — Number dimensions

— Complexity of genetic operations ~ — Complexity of fitness function
— Number iterations — Number iterations

Fig. 2. Necessary parameters for GAs and PSOs

The corresponding benchmarks to the given parameters are executed several
times to exclude fluctuations as a result from workload on the machine and
the mean values are used. The benchmark kernels are executed single threaded,
multi threaded and parallelized on the GPU using CUDA. Allocation time 470
of CUDA memory has to be considered separately. Furthermore, the time to copy
the population from main memory into GPU memory and back (tcpy — tapu,
tapu — topu) has also to be considered. Execution time of genetic algorithms
is computed as:

tezecGA = tailoc + Iterations x (tymean(Crossover) + tmean (Mutation) +

tmean(Selection)) +n* (tch — tGPU) +m * (tGPU — tch).

It is possible that data are copied more than once between CPU memory and
GPU memory, this is represented by the values n and m. For PSO, the execution
time is computed as follows:

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

tezecPsO = talioe + Iterations x (tmean(VelocityComputation) +

tmean (PositionComputation))+nx*(tcpy — tapu)+m*(tapu — topu)

If the GPU is not used, tg0c is 0 and if the algorithm is a CPU/GPU
implementation (some parts on the CPU and some on the GPU), the values
tepu — tapu, tapu — topu have to be added in each iteration between the
operations. This leads to 27 (selection,crossover,mutation (3)+data copy between
operations(3)+CPU,multi-core, GPU(3) — 3 3x*3) different execution times for
genetic algorithms and 9 different execution times for PSO. The implementation
with the smallest execution time is suggested by the benchmark program as the
best mapping.

4 Evaluation

To evaluate the accuracy of the benchmarks, we have implemented different
PBAs (GAs and PSOs written in C++4) and compared the execution times
of the real algorithms with the execution times predicted by the benchmarks.
The test programs were implemented in a single threaded, multi threaded (using
OpenMP) and GPGPU version using different parameters. The results presented
in this paper are restricted to GAs due to page limitations. The used parameters
of the test GA are:

— Crossover: 1-point crossover (complexity O(N * M))

— Mutation: Mutation of all chromosomes (complexity O(N = M))

Selection: Tournament selection (complexity O(NV))

Fitness function 1: f(c1,...,car) = |e1 — ea| + |ea — 3|+ .. + |epr—1 — enr| +

lenr — e
M M
— Fitness function 2: f(c1,...,cr) = D>, > ¢
i=li=1

The first fitness function has linear complexity while the second has a quadratic
complexity, both are represented by the benchmarks of their related class of
complexity

The test bench consists of a AMD Phenom X6 1090T (6 cores) with a
NVIDIA GTX 580 (driver version 295.41, SKD version 4.2.9) running Ubuntu
11.04 (32bit). The gee compiler is version 4.5.2-8ubuntu4. The evaluation results
consist of the measured execution times for different iteration numbers. Further-
more, we have evaluated different population (V) and chromosome (M) sizes
denoted as (N * M).

4.1 Genetic Algorithm - Linear Fitness Function:

Figure 3 shows the predicted execution times (left) and the real execution times
(right) of the test program. For the multi-thread implementations there are
two curves (multi-thread (min) and multi-thread (max)) which are caused by
background processes of the operating system affecting the programs. The sin-
gle threaded version is not affected by these processes because one core is re-
served for the program execution exclusively and the processes run on the other

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

cores, similar with the GPU implementation. The results of the benchmarks for
2000 iterations show a slightly benefit of the multi-core implementation over
the GPU implementation. The single threaded implementation only performs
well for small populations (N * M). The speedup of the GPU implementation
is about 5.2 to 5.8 while the speedup of the multi-core (max) implementation
is about 3.0 to 4.8 and multi-core (min) even 4.5 to 6.5. The speedup of the
OpenMP implementation exceeds the estimated value of 6 (6 cores), that means
the implementation achieves a super scalar speedup. The reason for that is the
cache hierarchy of the Phenom CPU which consists of L1-,1.2- and L3-Caches.
L1 and L2 are located on the single cores while L3 is shared. By using all 6 cores
more faster L2 cache is available. That leads to a super-linear speedup. Dif-
ferent from the GPU implementation, the multi-core implementations achieve
also reasonable speedup with small populations, because of the relatively high
overhead of the GPU implementation and the small execution times using small
populations. Whereas the populations size increases the execution times increase
also and the overhead is negligible. Table 1 summarizes the speedup comparison
results whereby the Benchmarked speedup the predicted speedup by our bench-
marks shows and Real speedup the achieved speedup by the test application.

3.5 ; - , 35
Single-Thread ——
Multi-Thread (min) ——
3+ Multi-Thread (max) —— - 3+ —
GP!
251 251 4
€ 2r £ 2t/ 1
o o
E 151 E 150 R
[= /
/
10 14/ B
/
0.5 0.5 7[- B
7

L L L L L L 0 L L L L L L
20000 40000 60000 80000 100000 120000 20000 40000 60000 80000 100000 120000
N*M N*M

Fig. 3. Runtime of benchmarks and test program - 2000 iterations

IImplementation [Benchmarked speedup[Real speedup‘
Multi-Thread (min) |4.5 to 6.5 6.5 to 7.2
Multi-Thread (max)|3.0 to 4.8 4.0 to 7.2
GPU 5.2 to 5.8 6.5 to 7.2

Table 1. Speedup comparison 2000 iterations - linear fitness function

We have also investigated GAs with greater iteration sizes. On Table 2 the
results of 8000 iterations are shown. Again, the expected values differ slightly
from the real measured values but obviously show that the GPU implementation
performs best as proven by the test program.

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

IImplementation [Benchmarked speedup[Real speedup‘
Multi-Thread (min) |5.5 to 6.6 6.8 to 7.1
Multi-Thread (max)|4.9 to 5.2 4.5 10 6.5
GPU 6.8 to 7.2 7.5 to 8.2

Table 2. Speedup comparison 8000 iterations - linear fitness function

The shown results imply that a mixed implementation using different hard-
ware does not perform better than a multi-core or GPU only implementation.
Single threaded implementations do only outperform multi-and many-core im-
plementations in small population sizes while multi-and many-core implemen-
tations are too close in terms of performance that the copy overhead between
main memory and GPU memory is too big compared to the benefit of a hybrid

CPU-GPU implementation.
4.2 Genetic Algorithm - Quadratic Fitness Function:

3

Single-Thread ——

3 - \ ‘
Single-Thread —— | >
Multi-Thread —— / Multi-Thread ——
251 GPU — i 250 ‘,‘ GPU — a
f
|
2 2+ f’ -
n [} "!
c c |
0 15 0 15 | 7
£ £ |
= = |
1 1) 7
0.5 0.5 / R

0 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
N*M

N*M

Fig. 4. Runtime of benchmarks and test program - quadratic GA - 1000 iterations

In the evaluation graphs we have relinquished to separate multi-thread (min)
and multi-thread (max) results because of the large performance gap between
multi- and many-core implementation results. In Figure 4, one drawback of the
benchmark method is shown. The behavior of the test program (right graph)
differs from the behavior of the benchmark program (left graph) in terms of ab-
solute values, while the progression of the speedup curves are similar. The reason
for that is the fitness function. In the benchmarks the fitness function executes
w operations but the fitness function in the test program executes M?2
operations. Both functions are within the complexity class O(M?) but it makes
a huge difference which to choose in real world scenarios.

The multi-core implementation does not reach speedup values as in the GA
with a linear function (Figure 5). Again, the reason is the architecture of the
Phenom CPU. When using just one core, the CPU clocks the core with 500 MHz
more than when using all cores. As the quadratic function needs more compu-
tational power, a higher clocked core has a huge impact on the performance of

the single core implementation.

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ISBN 978-3-8007-3492-4

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

10 }
T T " Multi-Thread ——
9+ GPU — | ,L =
8 |
6 i -
7 |
a 6) T |
: =]
z B al
w [0}
’ Q.
& 4 o -
3 -
2 i -
2
1 1 |
0

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 399 8999 8399 0999 0399 1999 1399 2999
N*M N*M

Fig. 5. Speedup of benchmarks and test program - quadratic GA - 1000 iterations

Overall, FBBs are well suited to predict correct partitioning of PBAs. The
benchmarks have predicted that it is worthwhile to parallelize the GA with
linear function at any point except very small population sizes regardless of
the mapping. This assumption has been proven by the results with our test
program. Furthermore, the benchmarks suggest a mapping on the GPU if the
iteration size increases (over 8000 iterations), this assumption has been proven
by the test program as well. For the GA with quadratic function, the benchmarks
recommend a mapping of the GA on the GPU if the population size exceed 1500
while the test results show that a mapping on the GPU is worthwhile if the
population size exceeds 450. While in this case the accuracy of the prediction is
not as high as in the first evaluation scenario, it is still a helpful result to map
the program on the best performing hardware.

There are some inaccuracies by using complexity classes as the main classifi-
cation method looking at the total execution times. Nevertheless, the progression
of the speedup curves is predicted correctly which leads to a good partitioning
of the code.

5 Conclusion and Future Work

In this paper, we have presented an approach for speedup estimation and parti-
tioning of PBAs on multi-and many-core architectures using FBBs. The struc-
ture of the benchmarks are based on the structure of the PBAs by implementing
characteristic operations. The different operations are divided into complexity
classes to enable the FBBs to simulate their behavior on parallel machines. First
evaluation results are promising and show correct trends of achieved speedups.
The evaluation results have also shown some drawbacks by using complexity
classes for classification. This is apparent from the fact that differences in op-
erations with equal complexity classes can have a large impact on execution
times. We want to address this problem by a more precise classification of the
operations. Furthermore, we are working on methods to extend the benchmarks
by more features - e.g. more extensively analysis of memory operations. Also,
we are working on more general kernels for the other functions (e.g. selection,

© VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

mutation, ...). Finally, we plan to extend the FBBs to supercomputers with more
than one compute node using MPI.

References

1. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun.
ACM 27(10) (October 1984) 1013-1030

2. H. J. Curnow, B. A. Wichmann, T.S.: A synthetic benchmark. In: The Computer
Journal. (1973) 4349

3. Papadopoulou, Sadooghi-Alvandi, Wong, H.: Micro-benchmarking the gt200 gpu.
Processing (2009) 235-246

4. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis,
A.J., Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijngaar-
den, A., Woodger, M.: Report on the algorithmic language algol 60. Numerische
Mathematik 2 (1960) 106-136 10.1007/BF01386216.

5. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The nas parallel benchmarkssummary
and preliminary results. In: Proceedings of the 1991 ACM/IEEE conference on
Supercomputing. Supercomputing 91, New York, NY, USA, ACM (1991) 158-165

6. NASA, A.S.D.: Nas parallel benchmarks. http://www.nas.nasa.gov/publications/
npb.html (2012)

7. Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W., Parady, B.:
Specomp: A new benchmark suite for measuring parallel computer performance.
In Eigenmann, R., Voss, M., eds.: OpenMP Shared Memory Parallel Programming.
Volume 2104 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2001) 1-10

8. Taylor, R., Li, X.: A micro-benchmark suite for amd gpus. In: Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on. (sept. 2010) 387
-396

9. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), IEEE (October 2009)

10. Mitchell, M.: An Introduction to Genetic Algorithms (Complex Adaptive Systems).
Third printing edn. A Bradford Book (February 1998)

11. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine
Learning 3 (1988) 95-99 10.1023/A:1022602019183.

12. Luong, T.V., Melab, N., Talbi, E.G.: Gpu-based island model for evolutionary
algorithms. In: Proceedings of the 12th annual conference on Genetic and evolu-
tionary computation - GECCO ’10, New York, New York, USA, ACM Press (July
2010) 1089

13. Luong, T.V., Melab, N., Talbi, E.G.: Parallel hybrid evolutionary algorithms on
gpu. IEEE Congress on Evolutionary Computation CEC (2010)

14. Parrilla, M., Ar, J., Dormido-canto, S.: Parallel evolutionary computation: Appli-
cation of an ea to controller design

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks,
1995. Proceedings., IEEE International Conference on. Volume 4. (nov/dec 1995)
1942 -1948 vol.4

16. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1 (2007) 33-57 10.1007/s11721-007-0002-0.

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

ARCS 2013, February 19 — 22, 2013, Prague, Czech Republic

17. Zhan, Z.h., Zhang, J.: An parallel particle swarm optimization approach for multi-
objective optimization problems. In: Proceedings of the 12th annual conference on
Genetic and evolutionary computation - GECCO 10, New York, New York, USA,
ACM Press (July 2010) 81

18. Zhou, Y., Tan, Y.: Gpu-based parallel particle swarm optimization. In: Evolution-
ary Computation, 2009. CEC ’09. IEEE Congress on. (may 2009) 1493 —1500

19. NVIDIA: NVIDIA CUDA Compute Unified Device Architecture - Programming
Guide. (2007)

20. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: A unified
graphics and computing architecture. In: IEEE Micro. Volume 28., Los Alamitos,
CA, USA, IEEE Computer Society Press (2008) 39-55

21. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, par-
ticle swarm optimization, and evolutionary algorithms on numerical benchmark
problems. In: Evolutionary Computation, 2004. CEC2004. Congress on. Volume 2.
(june 2004) 1980 — 1987 Vol.2

22. Pieloth, C.: Paralleles mergesort mit hilfe von openmp. Master’s thesis (2010)

ISBN 978-3-8007-3492-4 © VDE VERLAG GMBH, Berlin, Offenbach

