
An InfoSpace Paradigm for Local and Ad hoc Peer-to-
Peer Communication

J. Brehm, G. Brancovici, C. Müller-Schloer, T. Smaoui, S. Voigt

Institute of Systems Engineering – System- and Computer Architecture, Appelstraße 4,
30167 Hannover, Germany

{brehm, brancovi, cms, smaoui, voigt}@sra.uni-hannover.de

R. Welge

Dpt. of Automation Technology, University of Applied Sciences of NE Lower Saxony
Volgershall 1, 21339 Lüneburg, Germany

welge@fhnon.de

Abstract. A key feature of ubiquitous handheld devices will be their simple
usability in mobile and highly dynamic ad-hoc peer-to-peer environments. With
LINDA, JAVASPACES and TSPACES, shared memory-based communication con-
cepts have been realized on the system level with corresponding APIs. This ar-
ticle proposes to consequently use the same simple communication paradigm
also on the user interface level. In this paper we examine existing basic tech-
nologies, analyze typical application scenarios and the underlying communica-
tion patterns. We discuss in detail, how these patterns can be realized with the
InfoSpace mechanism which offers to each user a private local space and a
view on a common space shared between all participants. Finally we show an
architecture which realizes the InfoSpace infrastructure and report on first ex-
perience with a JXTA-based solution.

Introduction

The direct interaction between people is helped if not dominated by context infor-
mation. Clues given by body language like facial expression, gestures, voice melody
etc., as well as by the common knowledge of present time and location make other-
wise cryptic messages intelligible. Handheld computers so far have very limited sen-
sory equipment. Today, basic context information can be made available with rela-
tively little effort [1]. Examples are location (point in the 3D space), position (vector
in the 3D space), time and date, present user, temperature etc. With little effort, also
the proximity of one device to another can be detected. Here, the limited range of
Bluetooth [2] connections is an advantage.

We make use especially of the latter possibility and will exploit the related context
information. Two (or more) devices which find themselves in the same physical space
(the extent of which is defined by the radio range) are candidates for local information
exchange. They can enter a common information space, an InfoSpace, – provided
their respective users choose to do so.

L
1

 Communication

space

Infospace

Common Space

Fig. 1. Human and ubiquitous communication spaces

The mind set of two humans communicating to each other can be described in the
same terms: The existence of a physical channel – e.g. audibility plus eye contact –
establishes a common information space. Every communication partner is allowed to
drop information into this common space, usually guided by synchronization rules (s.
fig. 1). Additional partners can be accepted to this space or excluded from it. A user
interface which stays as close as possible to these traditional and well accepted pat-
terns has good chances to get adopted.

Projects dealing with information sharing and exchange in the local area have been
realized. The 7DS Project [3] of the University of North Carolina is a peer-to-peer
system providing distributed information retrieval among (wireless) hosts in the
neighborhood. It is based on HTTP request/answer, the GUI for the information re-
trieval is implemented by a web browser. Each peer stores data in a separate cache.
The DataSpace project of Winlab at Rugers is a further example of interesting work
concerned with forming information spaces related to physical objects. The spaces
(the so-called datacubes) are of different scales. Locality and distance in DataSpace
are not defined by the logical structure of the underlying network but rather by geo-
graphic space [4]. In this paper we will make clear how our project differs from the
above mentioned ones in the underlying architecture as well as in the user interface
concept.

This project builds on the JINI, JXTA and tuple space technologies. Tuple spaces are
a basic shared memory paradigm proposed by D. Gelernter [5]. JINI and JXTA provide
basic functionalities to advertise and discover services. They are alternatives in this
project because they provide similar functionality.

JINI [6,8] is a network technology which permits various devices to build an ad hoc
network. The devices can offer services over JINI for other devices. JINI has the fol-
lowing characteristics:
• Ad hoc networking: JINI builds connections without any knowledge about the un-

derlying physical network. Hence JINI is prepared for dynamic networks.
• Service Infrastructure: All devices can use and offer services. A typical example is

a printer service.
• Connecting heterogeneous systems: JINI is based on JAVA. All devices which sup-

port JAVA can participate in a JINI community.
• Leasing: Leasing is an especially important feature in JINI. All Objects in JINI have

a validity period. This supports the idea of ad hoc networks and dynamic network-
ing.

JINI was first released in 1999 by Sun. Sun released JXTA two years later. The JXTA
project [7,9] started as a research project to address peer-to-peer1 communication.
This project has its roots in programs like Napster and Gnutella which connect par-
ticularly in a peer-to-peer mode instead of using connections based on the client-
server model. The main target of JXTA is to form a platform which offers all the func-
tionality to work in a peer-to-peer mode. JXTA intends to solve problems like:
• Interoperability: JXTA is designed to enable peers to provide various peer-to-peer

services to locate each other and to communicate with each other.
• Platform independence: JXTA does not depend on the programming language,

transport protocols and deployment platforms. This is reached with a fortified use
of XML.

• Ubiquity: The goal of JXTA is to make any device accessible and allow it to com-
municate.
The main difference between both architectures is that JXTA only defines a set of

protocols, expressed in XML. So it is only defined how to communicate and there is
need of equal platforms. JINI uses Java objects to communicate, so the architecture as-
sumes that Java Byte code can be interpreted anywhere. Therefore Jini is protocol in-
dependent but is tied to the Java platform.

Further on JINI uses a centralized service location broker. In a JINI community
there must be at least one Lookup Service. It is responsible for finding and searching
services. In JXTA entities can find other entities without a centralized service.

Each of these architectures works fine as a middleware in an ad hoc community.
Due to its basically decentralized architecture and the smaller footprint we have de-
cided in favor of JXTA.

The envisaged InfoSpaces system sketched in fig 1 requires a complex infrastruc-
ture which will be described in this article. Chapter 2 will discuss a few application
scenarios where InfoSpaces can be used. In chapter 3 we describe the basic interac-
tion patterns necessary for a local peer-to-peer communication between individuals
and groups. We will show that a tuple space is well suited for asynchronous commu-
nication. The following chapter 4 describes the basic concepts and protocols of our
InfoSpace architecture, chapter 5 a mapping between the interaction patterns and
some application scenarios and chapter 6 the architecture of the underlying infrastruc-
ture. In chapter 7 we report results of a JXTA-based pilot implementation. The final
chapter 8 summarizes the article and gives an outlook on future work.

Application Scenarios

The following examples serve illustrative purposes. With their help, we will be
able to check the suitability of the InfoSpace paradigm for real world applications.
Actually, many more application scenarios exist. We will come back to more scenar-
ios in chapter 5 after we will have discussed the mechanism in detail.

1 For clarity we would like to stress that the term „peer-to-peer“ in conjunction with InfoSpaces is used to

refer to (local) network technologies based on equal peers cooperating with each other for performing a
certain task. The term does therefore in our context not mean any of those networks (Gnutella, KaZaa…)
which are mostly used for file sharing across the internet.

Ad-hoc Communication

1. A visitor of a computer fair walks from one exhibition area to the next with her
handheld device turned on. Thereby she traverses the related potential InfoSpaces
offered by the respective exhibitors. If she decides to accept one of the offers she
enters the InfoSpace and starts to download information or to upload enquiries.

2. Two visitors meet in a crowd and want to exchange their business cards. Out of the
many InfoSpaces offered around them, they choose a private one for themselves
and exchange the desired information.

Interactive Lecture

For an interactive lecture, we assume that all students are physically present in the
same room or lecture hall. They are all equipped with notebook computers or tablets,
connected to a preferably wireless communication network. Defined by the physical
range of wireless communication of their notebook computers, the group members are
(physically) eligible for becoming members of the InfoSpace. The teacher might want
to restrict access to a smaller (logical) group of members of the InfoSpace. The note-
books provide to each accepted member of the group a common view which can be
used for information exchange in a very intuitive manner.

For the presentation, the instructor uses “transparencies” which carry the backbone
information of the lecture. There will probably be also some kind of multimedia en-
hancement like incremental build-up of the transparencies, animations, videos and
sounds or illustrative simulations. Two kinds of annotations will be used: The instruc-
tor will want to emphasize, add or correct the information on the transparency. The
student wants to have copies of these remarks and, in addition, wants to add his own
annotations.

A practise phase should interrupt the presentation every 20 – 30 minutes. This can
be done by assigning short task assignments to the students. A few multiple choice
questions could assist the students in a self test. Also a short simulation carried out by
the student is possible. An automatic answering and correction mode keeps this phase
from becoming too time consuming.

The students can ask written questions to the instructor anonymously during the
presentation or in special Q&A periods. The inhibition of many students to ask possi-
bly silly questions in the public can be overcome this way. On the other hand, there
should be a possibility for the instructor to trace questions back to the originator in
order to prevent misuse.

The test phase is similar to the practise pattern but requires a collective or individ-
ual back channel. An anonymous back channel allows for an aggregate statistical
evaluation of the answers which might lead to an adaptation of the presentation speed,
stepping back or skipping of parts of the lecture. Individualized task assignments and
answers make possible the assignment of micro credit points to the student.

Project Team

The objective of a project team is learning by doing in a co-operative team envi-
ronment. An example is the group-oriented development of a computer program. A
specific interaction pattern could be the one promoted by “Extreme Programming”
[10] proponents.

In a first step, a project team has to be instructed about the task assigned to them. A
common workspace is necessary which reflects and co-ordinates changes made by the
participants. Notebooks involved will form an ad-hoc community. In addition to the
shared development target (the program), a common discussion channel or space has
to be provided. In case of a team physically present in one location, the natural voice
channel will serve this purpose. Otherwise, a conference-call set-up is necessary
which requires means for synchronous communication.

Infokiosk

An infokiosk is the electronic equivalent of a bulletin board. It is realized through
large wall-mounted displays, possibly with touch-sensitive surface. In the simplest
case, the user can interact with the information kiosk via
fingertip and browser. If the user is equipped with a
portable device (PDA, tablet, notebook) she can set up a
conversation between her portable device and the
infokiosk. This conversation probably will involve some
identification of the user. Additional context information
like the location of the infokiosk (in front of the lecture hall or in the student restau-
rant) can help to pre-select the information offered. This interaction might lead to the
download of selected information to the portable device or, vice versa, to the upload
(or posting) of information to the bulletin board.

Interaction Patterns

We claim that the tuple space paradigm which essentially is a globally shared
memory for tuples or – in our case – objects, is sufficient to handle all interaction pat-
terns (I-patterns) typical for peer-to-peer-communication in a local environment. In
the following we will analyze such interaction patterns in more detail. The basic op-
erations available to the users are move and copy. Every user i has a local view Li
holding symbols (i.e. references to objects) stored within his own device, and a com-
mon view C shared with all users of the same InfoSpace. The total of the two local
spaces L1 and L2 and the common space C is one logical Infospace. Each device i sees
its device space consisting of the local space Li and a view of the common space C.

L1

C

L2

I-pattern A

The simplest interaction pattern is a symmetric peer-to-peer-communication be-
tween two equal partners. Both partners want to move or copy objects between their
respective L-view and C. There is no restriction on the type of objects or the sequence
of copies or moves. An example of this type of interac-
tion A(1:1) is the encounter of 2 persons (with their
InfoSpace-compatible handheld devices). An InfoSpace
is built up with two users, both have write and read
access to the common space C. They might use the
InfoSpace e.g. to exchange their business cards.

The I-pattern A can be generalized
from the 1:1 relationship to an n:n-
pattern. n users participate in the same
InfoSpace, all of them may write into C
or read from it. As in the 1:1 case, there
are no restrictions on the type of objects

or the sequence of operations.
An example for A(n:n) is a discussion group with free information exchange.

Every participant offers and consumes information at the same time. This arrange-
ment requires a certain discipline and trust between the partners in order to avoid
overloading of C or e.g. offensive postings. Hence, there has to be an acceptance pro-
cedure to become a member of this InfoSpace.

I-pattern B (Broadcast)

I-pattern B restricts the access of users to the common space C. It allows one of the
users to post information while all the others can only consume it. This I-pattern con-
stitutes a broadcast situation. It generally makes sense only in a 1:n relationship:
B(1:n). An example for I-pattern B(1:n) would be the menu in the students’ restaurant
which is published by the restaurant owner in a dedicated InfoSpace. It is not desir-
able to let users (students) use this I-Space for their personal postings.

I-pattern G (Gathering)

I-pattern G is the inversion of pattern B. Here we have n writers to the common
space and (usually) just 1 reader: G(n:1). This type of InfoSpace can be used to col-
lect and later evaluate information from a group of users. An example could be ques-
tionnaires filled in by students or answered multiple choice questions. The instructor
plays the role of the collector.

...

C

L1

L2

Ln

L1

C

L2

Interaction Matrix

If we denote the right to write into C with W, and
the right to read from C with R, the 3 I-patterns can be
shown as a table which assigns rights to the users U1,
U2 … Un. Alternatively (and more generally) we can
describe the I-patterns in terms of a directed relation-
ship graph or its equivalent interaction matrix M. The
users of the InfoSpace are listed as rows and columns
of the matrix M. Matrix element mij = 1 if there is a
write relationship from user i to user j, otherwise 0.

The matrices for the I-patterns A, B and G take following form:

1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
. . . .
. . . .
. . . .
1 1 1 . . . 1

1 2 3 . . . n

1
2
3
.
.
.
n

1 2 3 . . . n

1 1 1 . . . 1
0

 0

1
2
3
.
.
.
n

1 0
1
1
.
.
.
1 0

1 2 3 . . . n

1
2
3
.
.
.
n

I-pattern A(n:n) I-pattern B(1:n) I-pattern G(n:1)

Complex Interaction Patterns

Obviously the above interaction matrices are just special cases. A general interac-
tion pattern would be represented by an arbitrary distribution of 0’s and 1’s over the
interaction matrix M. Such patterns make sense in special applications and must be
supported by the InfoSpace mechanism. We will discuss just one such application as
an example taken from the university scenario as sketched in the introduction to this
article.

In an interactive lecture, the lecturer will from time to time ask questions to the stu-
dents in order to get feedback on their progress. The sequence of interactions is the
following:

1. Lecturer broadcasts question (same

question to all students).
2. Students read the question.
3. Students answer question (local action).
4. Students write answers to C.
5. Lecturer collects answers from C.
6. Lecturer evaluates answers (local ac-

tion).
Since all participants write and read at some time, we have I-pattern A(n:n). Look-

ing more closely, we have patterns B(1:n) superimposed by pattern C(n:1). This

 A B G
U1 RW W R
U2 RW R W
U3 RW R W

.
..

Un RW R W

T ...

C
 (1) (5)

(3) (3) (6)

(4) (2) (4) (2)

S1 Sn

means that, in addition to a general assignment of R and/or W rights to the common
space C, we need a more fine grained protection mechanism on the level of the single
users vs. the single objects. This solution is based on an access pattern carried by each
object, and a capability assigned to each user. This allows us to place objects with dif-
ferent access patterns into the common space C and check capabilities vs. access pat-
terns at access time.

InfoSpaces

Infospace Paradigm

The properties of all tuple space-based approaches (LINDA, JAVASPACES,
TSPACES) make them interesting for the realization of InfoSpaces. As the name indi-
cates, an InfoSpace is a common space to share information. In the context of this pa-
per the expression information is used for data and services synonymously. An
InfoSpace mimics the communication environment which is set up spontaneously
whenever two persons start to interact. It is required to meet the following goals:
1. Simple usability: Only few functions to provide and consume information have to

be made available through a graphical user interface.
2. Interoperability: Automatic ad hoc networking between a wide variety of different

devices.
3. Service infrastructure: All devices can start and support services. These services

can be used by any other device.
4. Data infrastructure: All devices can provide data to and consume data from the

InfoSpace.
5. Context sensitivity: The selection process for the shared information should be

context driven.
From the user point of view all elements of an InfoSpace are objects ready to be

used (in the case of services) or ready to be consumed (in the case of data). The user
should not be bothered with configuring network connections, browsing through large
file systems, entering network addresses and similarly annoying chores. In contrast,
he should be supported by his device to make life easier which is one of the main is-
sues of ubiquitous computing.

The view of user i on an InfoSpace is divided into two parts, a local space Li and a
common space C. The local space contains all data and services provided by the local
device (workstation, PC, PDA, mobile phone, etc.). The common space is dynamic in
a sense that its data and services are provided in an ad hoc network built from devices
with their respective local spaces. We want to emphasize the strict separation between
the local space, which is a private area exclusively for the local user’s activities with-
out any possibility for other users to access it or change its content, and the common
space, which represents a kind of interface between all users that are free to read and
write objects into it (copy in/out, move in/out). The result is a peer-to-peer network
connection between two devices (fig. 2) creating an InfoSpace consisting of two local
spaces (L1, L2) and a common space C.

L 1

C

L 2

C

L 1
 In f oS p ac e

L 2

 C

Fig. 2. User views (2 users A and B, 2 devices) on 1 InfoSpace

The common space C is symmetric for both devices and users. The information in
the common space can be provided and used by both devices. Any information from a
local space can be transferred (e.g. by drag and drop) to the common space. It is pos-
sible to specify certain attributes (metadata) for the information provided. Examples
of metadata are owner, creation date, type, short description, copy counter, leasing
time, number of consumers, etc. If nothing else is specified, the information is valid
as long as its provider participates in the InfoSpace. If there are more than two de-
vices (fig. 3), an ad hoc network is created with a distributed management of the
InfoSpace.

L 5

C

L 1

C

L 2

C
 C

L 3

L 4
 C

C

L 3

L 4

L 5

L 1

L 2

Fig. 3. User views (5 users, 5 devices) on 1 InfoSpace

There are different ways to move information between a local space (Li) and the
common space (C):
1. Manually by the user: Only a few functions to provide and consume information

have to be made available through a graphical user interface.
2. Automatically: Each device is aware of the context (e.g. location, time and date,

sensor information). Based on these contexts, information can be automatically
provided or consumed. Agents are responsible for these tasks on behalf of the
user.In any case, information is either copied or moved from Li to C. The system
then updates the common space C to make it consistent between all users. In turn,
other users can consume information from C by copy or move operations.

Information Selection

A user has three possibilities to select the information he wishes to see:

1. By accepting one of several offered InfoSpaces he enters a communication rela-
tionship with a certain partner or group. The availability of an InfoSpace is deter-
mined by the existence of a physical communication channel between the two de-
vices. E.g. in the wireless case the two or more devices must be in their mutual
range of radio signals. After he has selected a specific InfoSpace, he sees all the in-
formation that is offered via the common space C corresponding to this InfoSpace.

2. L-space selection: A mapping operation from the local storage area (file system) of
user i to the local view Li selects (e.g. by filtering) objects which are of importance
in a certain communication context. An example for such a selection is the set of
objects belonging to a specific lecture.

3. C-space filtering: In order to avoid a possibly overloaded C space, additional filter-
ing operations can be applied to the common view. Filters use the metadata infor-
mation of the objects. It is important to note that filtering is an operation strictly lo-
cal to the receiving device. This avoids centralized computation on the offering
side on behalf of the receivers.

C (comm on view with all s ym bols)

De
vi

ce
 s

pa
ce

L-space selection:
User defined filter
option s fo r view
generation

C-space filtering: User
defined and context
driven filter options
for view generation

D*

S*

P*

Docum ents

Services

Programs

Prog Ser Doc All

L (local view with all sym bols)

K3 K2 K1 All

D1

S1

P1

D2 D3

S2

P2 P3

D4

S3 S4

P4 P5

InfoS3 InfoS2 InfoS1

private
public

InfoSpace
selection: User
selects one of the
offered Info spaces
InfoS1 - InfoS3

C

Fig. 4. InfoSpace-capable device with the local view L, the common view C, the InfoSpace se-
lection area (top) and the L-space and C-space filter setting areas

Fig. 4 shows the InfoSpace GUI with the local space L and the common space C.

Several symbols representing different objects are shown. A transfer (copy or move,
see below) can be carried out by moving the respective symbol. Crossing the L to C
borderline constitutes also a transition between the private and the public space. It is
guaranteed by the system, that there is no illegal intrusion from a remote device into
the private space. All transfers are visible and explicitly initiated by the user. The

agents with the task to scan e.g. the common space for certain desired objects consti-
tute the only exception to this rule. The policy in general is: Everything is forbidden
unless it is explicitly allowed.

Hence the user has to carry out four types of operations via his GUI:
1. Selection of one of the offered InfoSpaces (top section of the GUI in fig. 4)
2. Selection of information from the local storage to Li.
3. Information transfer between Li and C.
4. Setting filter options for C (lower section of the GUI).

We now have to investigate the actions necessary in the InfoSpace infrastructure in

order to keep the system consistent. In particular, we have to discuss the movement
and visibility of symbols (references) and the corresponding data transfers.

InfoSpace as an Abstract Communication Mechanism

As already stated, the basic idea of an InfoSpace is to visualize the paradigm of a
common globally shared but physically distributed memory on the GUI level and to
provide a small number of intuitively simple graphical commands to manipulate in-
formation objects in order to make them available to other users or to withdraw them
from the common view. In the preceding section we have shown some transfers of ob-
jects as seen from the user point of view. At the same time, the InfoSpace can be per-
ceived also as an abstract communication mechanism between applications. The
mechanism is then accessed not via (graphical) user commands but through an API.
The abstract InfoSpace comes close to the usage other projects like TSPACES and
JavaSpaces have made of the tuple space paradigm.

In a strict sense, we have to discriminate between two levels: the abstract
InfoSpace and its visualization on the GUI level. The abstract InfoSpace is not visible
to the user other than through a GUI. The InfoSpace GUI is a 1:1 visualization of the
abstract InfoSpace. Hence, the (human) user is enabled to directly manipulate
InfoSpace objects with the help of the GUI. Alternatively, the InfoSpace can also be
manipulated (via its API) by application programs. A possible application program
can be an agent equipped with a filter or search mask which continually scans the
common space C for objects matching its search pattern. In this sense, the InfoSpace
GUI resembles the shell of an operating system which allows the human user to ac-
cess the OS services. The shell also co-exists with other programs which use the oper-
ating system via system calls.

Operations and Protocols on InfoSpaces

When two “InfoSpace-capable” devices meet (i.e. a physical connection is estab-
lished) they will tell their users that an information partner is present and that an
InfoSpace can be used if wanted. When both users agree to participate, the InfoSpace
consisting of local spaces (L1, L2) and common space C is established (compare fig.
5). Now exactly four basic operations are possible: copy out, move out, copy in, move

in. These operations allow the users to share information and services easily by ma-
nipulating symbols on the GUI level.

The following copy and move operations are possible if local information from de-
vice 1 is to be made accessible for device 2:

Local View Control

L1 (view 1 , local space 1)

C (common space)

Local View Control

L2 (view 1, local space 2)

C (common space)

copy out

Device 1
(Server)

Device 2
(Client)

LS1 LS2

Infospace
with 2 users

De
vi

ce
 s

pa
ce

 1

De
vi

ce
 s

pa
ce

 2

synchronisation

private
public

private
public

move out

copy in
move in

A

B

CA

B
copy in / move in

Fig. 5. User views (2 users, 2 devices, 2 device spaces) on 1 InfoSpace, information transfer
from LS1 to LS2

− Copy to common (copy out): Symbol A is copied from L1 to C. After the copy out
operation, symbol A is visible in the common space on both devices. The reference
A points to object A in LS1 (Local Storage 1).

− Move to common (move out): Symbol A is moved from L1 to C. After the move
out operation, symbol A is visible in the common space on both devices. Symbol A
is deleted from L1. A symbol A* (grayed out) remains in L1 pointing to a backup
copy A* in LS1. The reference A points to object A in LS1.

− Copy from common (copy in): Symbol A is copied from C to L2, a copy of object
A in LS1 is transferred to LS2 (Local Storage 2). The reference from the copied
symbol A points to object A in LS2.

− Move from common (move in): Symbol A is moved from C to L2, object A is
transferred from LS1 to LS2, symbol A is removed from C. After the “move in”
operation, symbol A is only visible on device 2, the reference from symbol A in L2
points to object A in LS2. The “move in” operation is potentially dangerous since
it results in the deletion of object A in the local storage of device 1. Therefore a
user who moves out an object from his local area to C is warned and a backup copy
is generated. Despite its dangerous nature we felt that a consequent move operation
including the deletion of the source object is necessary to allow for a mutually ex-
clusive update of objects if this is desired by the user.

Since this tuple space based approach is symmetric, local information on device
2 can be made accessible for device 1 in the same way.

The four primitives described above are - as already mentioned - basic (i.e. atomic,
not resolvable), so that concurrent access to objects of a common space is impossible.
Moreover we do not privilege any device by restricting the execution of a certain
primitive to certain devices. I.e. every device in the common space has potentially the
right to read or write objects from and into the common space (s. also above:
Interaction Matrix). Such “device-discrimination” could be very useful for realizing
certain application scenarios like the interactive lecture. Such security issues will be
subject of future work.

Usage Scenarios and Interaction Patterns

After introducing the i-patterns and the InfoSpace paradigm in the last two chap-
ters, we would like to illustrate how these i-patterns could be matched to concrete us-
age scenarios we are currently working on.

Usage Scenario 1: Data Exchange over the common space

Add Delete Rename

Properties

Add

Delete

Properties

Create

LocalSpace A
DocumentA
DocumentB

DocumentA

Default CommonSpace

Add Delete Rename

Properties

Add

Delete

Properties

CreateCSs

LocalSpace B

LSs

DocumentB
DocumentA

Default CommonSpace

User A User B

1) copy out
DocumentA 3) copy out

DocumentB

LocalSpace A

LocalSpace B

Default
CommonSpace

CSs

LSs

Objects in LS:

Objects in CS:

Objects in LS:

Objects in CS:

DocumentB
DocumentA
DocumentB

4) copy in
DocumentB

2) copy in
DocumentA

Fig. 6. Object exchange via default common space

This scenario represents the simplest application of the InfoSpaces and in the same
time the basis for any other usage. It shows how the InfoSpaces could be used for the
spontaneous, intuitive and uncomplicated data (object) exchange between two or
more devices in an ad-hoc manner. Suppose two devices running the InfoSpace meet
so that the fundamental condition about locality is fulfilled. Without any “extra-
effort” (e.g. manual configuration, search...) of the users a (default) common space
that comprehends both devices emerges, allowing any user to publish his objects and
the others to pick them up. Fig. 6 shows how this could look at the GUI-level.

As - per default - there is no privileged or discriminated entity, we are dealing in
this scenario obviously with I-pattern A, where any user can read and write in the
common space.

Usage Scenario 2: The Infokiosk

As introduced above, the infokiosk is a sort of electronic information board. One
can make use of infokiosks to realize a dynamic calendar of events of a city or a
schedule in a train station or provide students on a campus with information about
current lectures and the possibility to access their own examination results. The in-
fokiosk scenario in its simplest form can be realized with the help of an InfoSpace ap-
plication running permanently. The infokiosk offers a specific common space filled
with objects that can be consumed by any user. The user is in this case merely a “si-
lent” participant. He has access to the common space and its objects but cannot
change its content (i.e. add or remove objects from it). The infokiosk agent, which is a
kind of daemon process, will be the only entity that writes into the common space.
This corresponds to I-pattern B.

Usage Scenario 3: Match-Maker

The idea behind the match-maker scenario is to allow users in a foreign environ-
ment to search for adequate fellows or buddies. For that purpose the InfoSpace is sup-
plied with an additional component (agent) which will be responsible for automating
certain operations. Users who have joined a dedicated (not the default) common
space, let’s call it the buddy-search common space, publish (copy out) their profile
into the buddy-search common space. An activated agent on a certain user’s device
will collect all profiles (copy in) and examine according to some (predefined) criteria
which one is relevant. If an interesting profile is found, then the match is successful
and other actions are triggered. The latter user and the corresponding profile owner
can for instance be brought together in a separate common space where they can ex-
change private data. In this scenario we have obviously the I-pattern G, where many
users write their objects (profiles) in the buddy-search common space and one user –
with the help of an agent – collects and evaluates them.

An InfoSpace Architecture

An architecture to realize InfoSpaces is shown in fig. 7. The InfoSpace Middleware
controls the InfoSpaces between the devices. It can be addressed via APIs by applica-
tions and through GUIs. To be able to connect a variety of devices it is assumed that
communication between devices is possible using the TCP/IP protocol transparently
regardless of the physical implementation of the communication channel.

The InfoSpace Middleware consists of the following modules (compare fig. 7):

View Manager (VM), Connection Scanner (CS), Space Director (SD), Profile man-

ager (PM) and Space Manager (SM). The single modules are briefly characterized in
the following.

View Manager VM
The View Manager administrates user defined profiles to set up different views to

the local device space (L and C). The default profile shows all symbols available for
the basic operations (copy in/out, move in/out). To make it more comfortable the user
can define local view profiles to filter symbols. The trigger for the filters can be con-
text driven (location, time, etc.) and/or object driven (to differentiate between docu-
ments, programs, services).

Connection Scanner CS
The Connection Scanner is necessary for devices with radio links or optical links

such as infrared connections. The CS permanently scans for radio/light signals and
checks the signal quality. If the transmission quality is adequate a dialog with the de-
vice partner is entered to find out whether the device partner is “InfoSpace compati-
ble”. If so, an ID-exchange is carried out automatically and the connection to the
InfoSpace is established. The CS is also responsible to disconnect devices from the
InfoSpaces if the signal quality is poor or to disconnect devices upon explicit user
command.

Space Director SD
The Space Director is informed by the CS about the availability of connections.

The SD is responsible for the construction and destruction of common spaces between
devices. The SD gets active upon request by the CS. Depending on the context and
user demands, the SD initiates the construction of one or more common spaces. If
only one communication partner is available, the choice is reduced to one common
space. If a group of devices meets it is possible to construct one common space for all
devices or to construct bilateral common spaces or to construct groups of common
spaces. This decision depends on the needed communication and interaction patterns.
To be able to make this decision information has to be exchanged. The SDs of the de-
vices offer their local common spaces to all partners. Depending on profiles from the
Profile Manager a decision for the construction of the common spaces can be made.
This decision can be automatically (context driven) or user driven. If the user has to
decide all offered common spaces are displayed. The SD accepts the user’s selection.

The SD also negotiates server/client roles with the partner SD. If new connections
are available the SD automatically informs the Space Manager. The SD also deletes
users from the common space on explicit demand or upon request from the Connec-
tion Scanner.

Profile Manager PM
The Profile Manager administrates local profiles of InfoSpaces. These profiles con-

tain acceptance requirements for establishing InfoSpaces. Thus, the SD is enabled to
compare local profiles with offered profiles. Profiles for active partner search or pas-
sive acceptance can be set by the user.

Space Manager SM
The Space Manager is responsible for the management of objects in the local de-

vice space. It can play a server or client role. There is one SM per device space. The
SM can access the local space L and the common space C to copy or delete objects.
Thus, the control of the basic operations (copy in/out, move in/out) is carried out by

the SM. To correctly perform the basic operations the SM has to communicate with
the partner SMs.

The different components described above are realized on the basis of existing
class libraries, such as JXTA.

View
Manager

VM (L1*,C1*)

View
Manager

VM (L1*,C1*)

TCP/IP

Space
Director SD

 GUI Application

PM

CS

Space
Manager

SM

Space
Manager

SM

Space
Manager

SM

TCP/IP

Space
Director SD

 GUI Application

PM

CS

Space
Manager

SM

Space
Manager

SM

Space
Manager

SM
Common Space

C

View
Manager

VM (L1*,C1*)

Local Storage
LS1

View
Manager

VM (L1*,C1*)

View
Manager

VM (L1*,C1*)

View
Manager

VM (L2*,C2*)

Local Storage
LS2

InfoSpace
Service
Architecture
(ISSA)

Network

Application

Fig. 7. InfoSpace architecture (CS = Connection Scanner, PM = Profile Manager)

Pilot Implementation using JXTA

Since the release of JXTA, we have been watching the development of the project.
Furthermore we have gained some experience by using the platform and its Java ref-
erence implementation for developing a demo InfoSpace application. We do not use
JXTA as a whole with the complexity of its architecture and its API involved. We
rather use specific aspects which serve in particular the ad-hoc and local nature of our
InfoSpace Service Architecture (short ISSA). Fig. 8 illustrates the logical architecture
of our InfoSpace software. The thickness of every box indicates the importance of the
corresponding technology in the model. Notice in particular where JXTA was inte-
grated, namely - apart from the network layer which could be considered as an “ex-
ternal part” of JXTA - at the very bottom level.

Fig. 8. Architecture of the InfoSpace demo application

Let us describe the architecture bottom-up. The bottom layer depicts the network
layer. We have developed the architecture in an Ethernet LAN environment. This is
justified by the nature of ISSA, since InfoSpaces will be exclusively deployed be-
tween devices that are spatially “close” to each other. This has also a further advan-
tage as far as JXTA is concerned, since JXTA uses different mechanisms for publishing
and discovering in LAN and non-LAN (i.e. wide area) environments. Of course those
mechanisms designed for LAN are simpler and more reliable. Besides, for this first
implementation we have made no assumptions on resources such as computing, stor-
age or network bandwidth in order to concentrate on the JXTA platform and provide a
comfortable user interface.

JXTA provides many features which coincide with the ISSA specification. Maybe
the most important one is the peer group service. A peer group in JXTA represents a
gathering of peers with a common interest. For instance if several peers are interested
in a particular service (e.g. content sharing) or in a particular topic (e.g. astronomy) a
peer group – given a significant name - is initiated by a peer. Any other peer that can
discover this peer group and fulfil its membership policy can apply for membership
and enter the group. The idea of membership service represents furthermore an inter-
esting mechanism for building private (password-protected) groups. Due to those
properties, it was obvious that the JXTA peer group – in conjunction with other ser-
vices - could be used to realize the common space. In particular, the fact that peer
groups are dynamic and their membership is not stringent is in harmony with our
InfoSpace specification. Peer groups can arise ad hoc (default peer group) and vanish
autonomously (without a central managing entity) as the last peer leaves the group.
Also peers can join and leave a group, without affecting the existence of the group.
All these qualities of peer groups are conceived very cleverly by means of advertise-
ments which describe the peer group and which are propagated among peers without
the necessity of a coordinating broker service.

Beside the peer group service, we have used extensively the peer discovery service
and the corresponding peer discovery protocol (PDP). Both represent the mechanism
in JXTA for discovering and publishing resources including peer groups, peers or any
other resource “registered” in a JXTA advertisement.

While peer groups merely represent a framework (context) for any kind of activi-
ties, other services are responsible for filling the common space with content. Here we
have made use of the content management service (CMS). CMS is a JXTA peer group
service used for publishing and sharing content on a local peer, demanding a list of
shared content from remote peers of the group and retrieving content [7]. Important is

 Ethernet TCP/IP

Application

JXTA

ISSA

GUI

that contents are first advertised to the peer group members in form of content adver-
tisements before any actual data transfer takes place. The content advertisement, a
kind of identity of the remote peer content, will be collected by every peer in the
group (or InfoSpace) and corresponds therefore to the reference to a remote object in
our ISSA architecture (compare fig. 5).

Since ISSA has already been described above in this paper, we will confine our de-

scription of the third layer in fig. 8 on trying to map JXTA components to certain
blocks of our ISSA architecture as shown in fig 7. As already illustrated, the common
space which is a part of the InfoSpace is realized through the JXTA peer group service.
The functionality of the space manager, particularly with regard to accessing the local
storage, managing objects of the local space and publishing them in the common
space is covered by the CMS. The role of the space director responsible for the con-
struction of new InfoSpaces is taken by the JXTA platform itself, which constitutes the
infrastructure for invoking any other core or middle layer services.

The last two upper layers: Application and GUI realize some other functionalities
of the ISSA like the local space and its object references and the defined four primi-
tives copy in/out and move/in out as defined above.

To sum up, JXTA has proved to be appropriate for implementing our demo applica-
tion, since it specifies useful mechanisms, services and protocols that deal with some
of the fundamental aspects that we have standardized. On the other hand, – as result
of studying the JXTA standard2 and its current implementation - we are not planning to
deploy JXTA in its “raw” form as delivered from the open source community for the
future work. We rather intend to customize certain protocol and service implementa-
tions which on the one hand will suit better our ISSA and on the other hand may lead
to saving precious resources (bandwidth, compute power, storage) for an optimal and
“really” ubiquitous (anywhere, anytime) use of our InfoSpace.

Summary and Outlook

We have introduced the concept of InfoSpaces as a new and simple interaction
paradigm with ubiquitous devices. InfoSpaces consequently follow the original idea
of tuple spaces but raise the scheme to the user level. The very simple interaction via
drag-and-drop based on copy and move operations makes InfoSpaces an ideal candi-
date for small footprint ubiquitous devices.

Analyzing a university application environment as an example we have found a
small number of basic interaction patterns between two or more users. Typical appli-
cations like an interactive lecture can be mapped to sequences of these basic I-
patterns. We have also shown that the InfoSpace paradigm quite naturally lends itself
to the implementation of these basic patterns.

The InfoSpace project is building on existing technologies. We have analyzed and
compared possible candidates for the implementation of InfoSpaces and decided to
use JXTA due to its small footprint and adequate functionality.

2 JXTA is to be understood as both: a standard and an implementation.

The paper has introduced an architecture to realize the InfoSpaces middleware and
has shown in some detail the protocols to handle the information transfer.

As a result we think that a JXTA-based realization of InfoSpaces is quite promising.
First implementation work resulted in a pilot application.

While the InfoSpace paradigm is already applicable for realizing some scenarios
based on locality and context-awareness, there is, however, still space for improve-
ment in terms of security and the use of the common space for collaborative work
(e.g. collaborative editing of objects).

We plan to use the InfoSpace technology in the UbiCampus project which aims to
provide all our computer science students with notebooks or other mobile devices. We
feel that the broad supply of more or less naked notebooks to the students is rather
useless unless they are integrated into an easy-to-use infrastructure with a rich set of
services. InfoSpaces has been designed to provide exactly this infrastructure which is
missing so far.

Finally we want to point out that the envisaged university environment is just one
out of many possible application scenarios. Today’s more or less complicated and
chaotic interactions between wirelessly connected devices during project meetings,
conferences or fairs clearly demonstrate the necessity of generally accepted and sim-
ple ad hoc peer-to-peer communication mechanisms.

References

1. J. Hightower, G. Borriello: Location Systems for Ubiquitous Computing, IEEE Computer,
August 2001, pp. 57 - 66

2. C. Müller-Schloer, P. Mähönen: The UbiCampus Project: Applying Ubiquitous Comput-
ing Technologies in a University Environment, Proc. IDMS 2000, October 2000, Univer-
sity of Twente, Springer, pp. 297-303

3. 7DS: Peer-to-Peer Information Dissemination and Resource Sharing,
http://www.cs.unc.edu/~maria/7ds/

4. http://paul.rutgers.edu/~gsamir/dataspace/
5. David Gelernter: Parallel Programming in LINDA, Technical Report 359, Yale University

Department of Computer Science, Jan. 1985
6. http://www.jini.org
7. http://www.jxta.org
8. W. Keith Edwards: Core Jini, Prentice Hall, Dezember 2000, 2nd Edition
9. Early Adopter JXTA: Peer-to-peer Computing with Java, Sing Li, Wrox Press

Ltd.,Dezember 2001
10. K Beck: „Extreme Programming Explained“, Addison-Wesley 2000
11. http://www.almaden.ibm.com/cs/TSpaces/

http://www.cs.unc.edu/~maria/7ds/
http://www.jini.org/
http://www.jxta.org/

