Performance Analysis of

Single- and Multiprocessor Computing Systems

Dem Fachbereich Elektrotechnik und I nfor mationstechnik
der Universitat Hannover

zur Erlangung des Grades

Dr.-Ing. habil.

vorgelegt von

Dr.-Ing. Jurgen Brehm

Hannover - 1999

Contents

R o o [T f o o 1
11. Basic Classification of Performance Analysis ...
12. Refined Classification of Performance Analysis

1.3, Organization of thiISBOOKcccceiiiiiiiiiccrcccee s 6
2. Basic Notation and Definitionscccccooeieveieeiecneeeeseee e 9
225 T N[= 1o o [OO o SO PSR SR 9
211, Genera Termsin the Context Of thiSWOIKcccocvvvrriiiniisssissssse 9
212, Program Task Graphis ...ttt 12
2.2. Performance AnalySiS DEfINITIONSccocviviriniriiiniiininnisrsee s 13
2200 THMING coitiieiieiitieere ettt bbbt 13
222, PerfOrmanCeMEESUIEScovuruiiririeiiririeseese et sb e sbe e snenene 15
223, Relative Performance MEBSUIES ...t 16
224, SySteMUNCEr TESE ..ot 21
225, EvaUation THaNGgIEcccoiviriniriiriiriinit ittt 22
3.

3L BenChmarkingccocciciiiiiiicre s 23
311 SynthetiC WOrKIOBAS ..ot 23
3120 KEMELS oo 29
313, Application SUILES (SPEC) ..ottt 31
3.14. Comparison of Benchmark RESUILSccooeiiiiiciiicicrcneseeeseneas 37
320 MOUEING ..oviiiiieie bbb 38
321, QUEUEING NEIWOTKSc.cocviiiiiiiiiciieiieietei e 40
322, BasicBirth-Death MOUEIS ..o 41
3.2.3. Birth-Death Models with Infinite Number of Statesccccoeeeeicicicrcice 45
3.24. Generalized Birth-Death MOGELSccoccuiiiiiiiiicccccereeeeeas 49

TG T 1 42101 = 1 o o OSSOSO 51

i Contents

4. Benchmarking of MUltiprOCESSOrSccovreeirerireserese e 55
4.1. Architecture of MUItIPIOCESSOMSccccuiieuiieriiemiieiiieirierrerrere e 55
4.11. Shared Memory versus Message Passing ... 55
412, SySteM EXAMPIES ...c.occuiiiiiiiiiiiicicee e 58
4121 NCUBE/2.....oiiicieceettee ettt 58
4122 INTEL Paragon......ccceieueiniieerierieseteeniscieesestesis sttt esessssesssesnens 60
4123 Cray T3D .ottt 62
4.2. Workloads for MUItIPrOCESSOI'Scceuiieriiemiicriieiiieiieeiense e 64
421. Kernel and Application BENChMarks ..o 64
4211 LINPACK ..ottt 64
4212 NASParalel BenChmarks..........cocociiiiiiniiiceceee s 66
4213 PERFECT Club Benchmarks..........ccoeviieiininiiicinnitienneserieneeneseeeseseeecesens 68
4214 PARKBENCH ..ottt 73
4215 GENESISBeNChMarks........ccccciriiuiiniiiciniisienteissesese e 76
4216 SPLASH-2 ..ottt s 77
4217 SLALOM ..ottt 79
4.21.8 The SPEC High-Performance Group...........cccoeueeueiemeiemenmeieeeeeere s 81
422, LOOP PrOQIraIMSocuieiritieieriestieseestssiessestsesessestsesessesessssssesssssssssssisssssssssessssseesssees 84
4223 PICL @nd ParaGraph.......c.ccoceeeriiriieeineiecieininiesis sttt esessssssssesnens 93
4224 Predefined BenChmarks..........ccocociiiieiciniiinccceee e 93
4225 RESUIES....uiiiiticiritcte et 99
43. Summary Benchmarking ... 102
5. Performance Modeling for Multiprocessorscoeeeveincenneennee 103
51, QUEUEING NEIWOIKScoevieriiiiiiiniiesisisisi s 106
511 Queueing Network EXamPIecccovriiriiiniiiinsnssssss s 106
51.2. Extended QUeUEING NEIWOIKSccoeiriririeiinirinieirerieieeses et 121
5.1.3. Hierarchical Approach for Complex SyStemsc.covvvvviniininissssssisne 123
5.14. Application Areasfor Queueing NEtWOIKScocvvririrrinniieniinssesessssssne 126
5.2, Petri NEt MOUEIS ..o
521, GSPN EXAMPIE ...ccviirieiriiecieirieicie sttt
5211 DEfINITIONS ..ot s
5212 Example: QUEUBING SITAtEJIES.......cccvvieriierirerisrisisisi st
5213 Queueing Networks versus GSPNs

522, DSPN EXGMPIE ...ccviiirieiriieiieiriticisi sttt
52.3. Application Areasfor Petri NEtS ...

5.3. Quantitative Performance Evaluation ..
54. Summary Performance MOOEliNgccooevieriiiriiiinnsss s

Contents iii

6. Analytical Performance Modeling for Massively Parallel Systems ..155

6.1. SysStemM DESCIIPLION ...covvvriiriirisirsss s 158
6.1.1. CommuniCation MOTElccevveriiiriiiiir 158
6.1.2. Computation MOTELcoviiriiiriiirrsrr 159
6.1.3. System EXAMPIES ..o 160
6.2. Application DESCIIPLIONcoiriririririsirisirisris s 161
6.2.1. Programming MOGE!ccovririiiiinn s 161
6.2.2. WOrKIOad MOGE!ccoiviiiiiiirnrs s 161
6.3. Application EXaMPIES ..o 163
6.3.1. MatriX MUItIPHCEIION ..cocvevviriiiirieie s 163
6.3.1.1 PerPreT Application Description of MM ... 163
6.3.1.2 Variation of Problem SiZe.........cccovviiininininiciniie s 167
6.3.1.3 Variation of NUMDEr of PrOCESSOIScvvieriieriierisirisrsrsisissse s 168
6.3.1.4 Validation of the PerPreT FOrmuUIaE. ..ottt 169
6.3.2. Conjugate Gradient Methodcccovvviiiiiiisss s 171
6.3.2.1 PerPreT Application Description of CG.........covvrvrvnnnnirisseseeeceeeees 171
6.3.2.2 Variation of NUMDEr Of PrOCESSOISc.cuvvviriiiriiiriirisrsrssisese s 173
6.3.23 Variation of Problem Size.........cccoviiciiiiiiciicc s 175
6.3.24 ValidaliON.......coiiiieiicirir s 176
6.3.3. Shallow Water Code (PSTSWM)cevriririiiiiiiessissssssss s 178
6.3.3.1 PerPreT Application Description of PSTSWM ..o 180
6.3.3.2 Variation of Problem Size and ProCeSSOrs..........cccvverivirinininininininineiececeeenes 184
6.3.3.3 ValidaliON.......ciiiieiiers s 187
6.4. SUMMArY PEPIET ..o 193
7. ThePerPreT SOftWare ... 195
7.1 Application DESCIPLIONcoiiririririsirisirisrises s 197
7.1.1. Computation Description (Without phases)ccevvvrvninisircscrsse 197
7.1.2. Computation Description (With phases) ... 198
7.1.3. CommuniCation DESCIIPLIONcvevveriieriiiriiirieiriisss s 199
7.2, Application EXaMPIES ..o 202
7.3, SyStEM DESCIIPLION ..o 203
7.3.1. Computation Description (Without phases)c.ccvvvvnvninincssssrse 203
7.3.2. Computation Description (With phases) ... 204
7.3.3. CommuniCation DESCIIPLIONcvevveriieriierisirieisis s 205
T4, EXPEIMENLS ..oviiiieiieriinisis sttt 207
7.4.1. Experimentswith Varying Processor NUMDESccccovvviiiniieninesnssssiiene 207
7.4.2. Experimentswith Varying Problem Size ... 212
7.5, VaAlIAON ..o 214

7.5.1. Compare Model and Experimental Datalc.cocvvevererinenineniseniiesssesesesesssisens 214

iv Contents

7.5.2. Compare Model and Experimental Phasescocovvrvnnninsncnsnsessssne 216
7.6. SUmMMary PerPreT SOftWEIEccccccvieiiiiriiriisre s 218
8. Open Problemsin Performance Analysisccccoevnernenecncineene 219
8.1. Paralel Applicationswith Irregular TOPOIOGIESccevviviiriiiriiirisiricrcssae 219
8.2, WOrKStation CIUSIENScruiuiiiiriciiiciiicieee e 220
8.3. Performance Analysis Of SOftWErEcccceeueieieieriiniiiisinse s 220
8.4. Embedded CoNntrol SYSLEMSccceereieieieieinieieiie e 221
85. Summary Open Problems ... 221
9. REFEIENCES ...t 223

0T 1 o [T 229

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig
Fig

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

11.
1.2.
13.
1.4.
15.
1.6.
2.1
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
. 3.1
. 3.2.
. 3.3.
. 3.4.
. 3.5.
. 3.6.
. 3.7.
. 3.8.
. 3.9.
3.10.
311
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21
3.22.
3.23.
3.24.

Classification of performance analysiSteChniquescoovvrvrcninicnsnice 2
Performance MEASUrEMENTccviiiiiiiieneeee bbb s 3
Performance MOTEINGcccccieuiieiiiiie s 3
Performance SIMUIBLION ..o s 3
Refined classification of performance analysistechniques ... 5
Performance analysis techniques covered by thisbooK ... 6
Program Task Graph (PTG) ...t .12
Mapping of a parallel workload described by a PTG onto 6 processors .. .12
Possible process states during the execution of a parallel programco.cc.... 13
Parallel program eXECULIONccvveriririieriiiniisisssss s 13
BaSIC SYStEM MOUE! ..ottt 15
Speedup functions for various seq using Amdahl’ S1aw.c.ccvvrvririsrinenne 17
Efficiency functions for various numbers of processors Pccccoevernrinenine 18
Speedup (Amdahl) and scaled speedup (GUSLEFSON)c.ccvrerveerirerieierereeereriene 19
SUT depending on the level of @bstraction ... 21
Evaluation triangle ... 22
Dhrystone (version 2.1) distribution of statements ... w24
Dhrystone (version 2.1) distribution of OpPeratorsc.coevvrvrisrinenene 24
Dhrystone (version 2.1) distribution of operands with respect to types25
Dhrystone (version 2.1) distribution of operands with respect to locdlity 25
Dhrystone (version 2.1) results for SUN MiCroprocessorsocouvveerinerenerenenens 26
Dhrystone results for WOrkStationsc.ovvvvnnnnnnsssssssessesssssiseas 26
Whetstone results for SUN MiCroproCeSSOrSccceeveeeueiemererersmeiereienerererenenenens 28
LIiNPACK FESUIESveieiiciriciticictctc ettt 30
SPEC CINT95 (integer) benchmarks (reference timesin seconds)ccocveuene 33
SPEC CFP95 (float. point) benchmarks (reference timesin seconds) 33
SPECFPI5 and SPECINTI5 FESUITSc.cueveeeieerierieretserecreeseeieieenesss s sessenes 34
SPECOS FAESoviieiiiteieiteiesie sttt ettt 35
SUT depending on the level of @bstraction ... 38
Performance modelingccccoeeveiereverciinnns ...39

Service Center ...

State diagram ... A1
Baseline/prediction modeling paradigm ... 44
System model (unlimited queue 1ength)cccovvvrvriiice 45
SEEE AIBOIAM ..ot 45
System model for ageneraized birth-death modelcccovveiiicinnnciriens 48
SEALE DIBOIAM ..ot 48
Generalized birth death state-space diagramccccvvvvnvnincnccc 49
Performance SIMUIBLTIONcoovviviririniinnns s 51

Multi domain design process and position of the ClearSim software/hardware co-
SHTUIBEOT ..ttt ettt 53

Vi

List of Figures

Fig. 3.25.
Fig. 4.1.
Fig. 4.2.
Fig. 4.3.
Fig. 4.4.
Fig. 4.5.
Fig. 4.6.
Fig. 4.7.
Fig. 4.8.
Fig. 4.9.
Fig. 4.10.
Fig. 4.11.
Fig. 4.12.
Fig. 4.13.
Fig. 4.14.
Fig. 4.15.
Fig. 4.16.
Fig. 4.17.
Fig. 4.18.
Fig. 4.19.
Fig. 4.20.
Fig. 4.21.
Fig. 4.22.
Fig.5.1.
Fig.5.2.
Fig.5.3.
Fig. 5.4.
Fig. 5.5.
Fig. 5.6.
Fig.5.7.
Fig. 5.8.
Fig. 5.9.
Fig. 5.10.
Fig. 5.11.
Fig. 5.12.
Fig. 5.13.
Fig. 5.14.
Fig. 5.15.
Fig. 5.16.
Fig. 5.17.
Fig. 5.18.
Fig. 5.19.
Fig. 5.20.

Combination of application and physical ProCESSESc.cccvvrvriveririsrissiienens 54
MIMD-systems with global shared MEMOrYcccovvvrvrvninrsrcrsrse 56
Message passing MIMD-SYSIEMcocovvrrnininsss s 56
HYPErcube toPOIOGYc.eviveieiririeiiisieiee et 58
Logical configuration of the NCUBE/2 ... 59
Physical configuration of the NCUBE/2 ... 59
Logical configuration of INTEL Paragon MP/150cccccveinnneiinneienneeenns 60
Physical configuration of INTEL Paragon MP/150 ... 61
Physical configuration of CRAY T3D ..o 62
Logica configuration of CRAY T3Dcccvvrvrininiinssssisesisessesssssese s 63
Results from PARKBENCH' s Graphical Benchmark Information Service 75
The SPEC High-Performance Group ... 83
Workload generation with the LOOP approachccevvrienseissisneeneenens 86
Complete LOOP program for aparallel matrix multiplicationc.coceceevvenne 88
Structure of aparallel matrix MultipliCationccoevvrvnsnircrcrsrsre 89
Parallel red-black relaxation ... 90
LOOP program for parallel red-black relaxationccvveenveiennneiensceenn 91
LOOP source code for Fingerprintc.c.coeeee .94
Space time diagram for atypical 16 processor Fingerprint execution95
Space-time diagram of 16 processor Fingerprint on MEIKO and nCUBE96
Space-time diagram of 16 processor Fingerprint on NCUBEccccoviiniienne 97
Deterministic performance evaluationccceeeeeieeiinieneiensnsssesssseeas 102
Performance MEBSUreMENTcviirrieiririeiecririee e 102
Basic monoprocessor System MOlc..ovceirrieeninireenreeeseseeee e 104
Basic multiprocessor System MOE!oveerreiinnieereeee e 105
System model (MUIIPrOCESSON)cvcirerieeeirerieererieieeseseeiee e 106

RaNAOM QUEUE SEFELEJYcucvruviiiiiiiricieicieieieieieieisieieie e 106
COMMON QUEUE SIFEEJY ..vvvueererresteteeseeerseeieresseese e seseae e sesssseesensen 106
ShOrtest QUEUE SIFELEQYcovuerieririeiiririeieerreeiee e 107
NEXE QUEUE SLTALEJY ...c.vviviiiiiiic s 107
State diagram of random QUEUEccvueueiririeinririeenseeee s 108

State diagram Of COMMON QUEUEc.couvueueriririeinerieieisesie et 111

State diagram Of SNOMESt QUEUEc.coevveueiriiieierrieeeeeeee s 113
State diagram Of NEXE QUEUEccuceviveriiericrcrcersss s 116
Extended queueing network of multiprocessor SyStemcoccccveeeeeenenenens 121
Hierarchical modeling using aflow equivalent service centerc.cococeeevevene. 123
Complement and aggregate using aFESC ... 124
Model decomposition in ahierarchical approachccccceeeecicesceenenen 125
SIMPIE PELIT INEL ..o 127
Petri Net for FCES SIralegyccoeuerereiereinieieieieieieieee e senes 128
GSPN for random QUEUE SIFALEJYc.cvvvveriirriiiriieieiesisise s 130
Generation of reachalility SEt ... 130
Tangible reachability graph from Petri Net ... 131

List of Figures vii

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

521
5.22.
5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.20.
5.30.
531
5.32.
5.33.
5.34.
5.35.
5.36.
5.37.
5.38.
5.30.
5.40.
541.
5.42.
5.43.
5.44.
5.45.
5.46.
5.47.
5.48.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

6.10.
6.11.
6.12.
6.13.

6.14.

GSPN for COmmon QUEUE SITAEEJYc.ceveuerevereiereiereieieisseissesssssssssssss s 131
NO toKen firiNg traNSItIONccceiuiieriire s 132
GSPN for shortest QUEUE SITALEJYcevureririieriieiriesissi s 132
GSPN for Next QUEUE SLIEEEJYcovverireriririrericirisirise s 133
GSPN for atime-out Synchronization ... 133
GSPN for examplein Fig. 5.12. (multiprocessor system)ccceveevvveriieniienens 134
DSPN for areadersS/Writer SYSIEM ... s 135
Generation of reachability set (K=2) ..o 136
Reachability graph (K=2) ..o 136
Tangible reachability graph (K=2) ... 137
Parallel profiles from algorithm to program executioncccceeeeeeenenenen. 140
Matrix multiplication of A @nd Bcccccceieiiiiiece s 140
Algorithmic profile for parallel matrix multiply with N =16ccccccoeeivnennnee. 141
Parallel algorithm for matrix multiplication (Part 1)cccoecevveeeeeeeeenenen 141
Parallel algorithm for matrix multiplication (Part 2)ccceceevevveeeeeeenenen. 142
Execution profile for parallel matrix multiply with N = 16 and nprocs =38 143
Execution profile for matrix multiply with nprocs =1cccccevveiienenncnenen 144
Distribution of paralleliSm ... s 145
From algorithmic profile to execution profile with latency (L=1)ccccevueee. 146
JY S L bbbttt 147
Execution profile with latency hiding ... 148
Distribution functions D1 and D2cccceoeeiiinieieeeeeeeeee s 149
D1 and D2 With PMax £ YNccciiiiiiiiiiee s 150
DL With PMEX STYN ..ot ssssss s sssnsssens 150
D2 @0 PMEX STYN coocivrciiiiiieeee sttt sss st ssns 151
SPEEAUDP-KNEL ...t 151
Support of system design by modeling (from [Lin98])ccccovvvvviisiniiinene 153
The MOdEliNG CYCIE ... 154
The PerPreT MOUUIES ... 156
All times plot of CG-Tree with psize 1024 on INTEL Paragon.ccccceveeeee. 157
All times plot of CG-Tree with nprocs 512 on INTEL Paragon.ccceueeeeee. 157
Die PerPreT MOUIEc.cviiiiiiiricececeee e 157
Communication model for message passing SyStemsc.cccvvrvrvrsrisninenens 158
Communication phases Using MEeSSage PASSINGc.cvrreererererreeresenseereseseesenenes 159
SPMD Program Task Graphccceveiniiiissssssessesssssessss s 161
Mapping of an SPMD program 0Onto 6 ProCESSOI'Scceeeereerreeerererererenerenenens 162
Mapping of an SPMD program Ont0 5 ProCESSOI'Sceveeereinreeerererersrenerenenens 162
Version 1 of parallel matrix multipliCation ..o 164
Version 2 of parallel matrix multipliCationcocovvrvnnnnnnnseeeecs 165
Version 2 of parallel matrix multiplication (Steps 2 to NProcs-1)ccceeeveeenee. 166
Predicted time for Version 2 of parallel MM on INTEL Paragon

WIth VAIYING PSIZE ...oviiiiiiiie bbb 167
Predicted time for Version 2 of parallel MM on INTEL Paragoncc........ 168

viii List of Figures
Fig. 6.15. Comparison of actual and predicted execution times of paralel MM

for psize = 256 ON NCUBE/2 ..o s 170
Fig. 6.16. Comparison of actual and predicted execution times of paralel MM

for psize = 256 0N INTEL Paragonccccccreieieicicieneeeee s 170
Fig. 6.17. PTG for paralel CG Methodccccccieiciiieiciieeecee s 171
Fig. 6.18. Datadistribution for parallel CG Methodccccceueieiieicceeeceeecees 172
Fig. 6.19. All timesplot of CG-Tree with psize 1024 on INTEL Paragon.ccccceueeenee. 175
Fig. 6.20. All times plot of CG-Tree with psize 4096 on INTEL Paragon.ccccceeveee. 175
Fig. 6.21. All timesplot of CG-Tree (512 processors, varying psize)

ONINTEL Paragoncccocvciiiiiiiniicii s 175
Fig. 6.22. Comparison of actual and predicted execution times of CG-Methods for

psize=1024 on an NCUBE/2 ... 177
Fig. 6.23. Comparison of actual and predicted execution times of CG-Methods for

psize =512 0N an INTEL Paragoncccceeeiieiiininsiisisessssesssssssssssesnens 177
Fig. 6.24. Worst speedups for PSTSWM implementationsccccceeeeneneereenenenens 186
Fig. 6.25. Performance MOGEiNgcccoeeiieieiiiiinieieiieee s 193
Fig. 7.1. PerPreT Main WiNQOWccccciiiiiieiiiiiiiiei s 195
Fig. 7.2. PerPreT application computation description Windowcccccceceerereerenenen 197
Fig. 7.3. Extract of PSTSWM computation desCriptioncccccoeeeeeeeerereereeenenens 199
Fig. 7.4. PerPreT application communication description Windowccccceveeevenenee. 201
Fig. 7.5. PerPreT application eXamples ... s 202
Fig. 7.6. Load user defined eXamples ... s 202
Fig. 7.7. PerPreT system computation description WindOWccccoeeeeeererererererenenens 203
Fig. 7.8. PerPreT system computation description window (phase oriented) 205
Fig. 7.9. PerPreT system communication description Windowcceeeeeeereennenenens 206
Fig. 7.10. PerPreT experiment window (varying number of processors)cccceeeenee. 207
Fig. 7.11. PerPreT experiment table window (varying number of processors) 208
Fig. 7.12. PerPreT gnuplot window (varying number of processors)cccceeeveeeneeenen 209
Fig. 7.13. PerPreT-PSTSWM experiment window (varying number of processors) 210
Fig. 7.14. PerPreT-PSTSWM experiment table (varying number of processors) 210
Fig. 7.15. PerPreT-PSTSWM gnuplot window (varying number of processors) 211
Fig. 7.16. PerPreT-PSTSWM gnuplot window (varying number of processors) 211
Fig. 7.17. PerPreT experiment window (varying problem Size)coccevevnecrcicncinen 212
Fig. 7.18. PerPreT experiment table window (varying problem Size)cccccoeevcienennnee 213
Fig. 7.19. PerPreT experiment gnuplot (varying problem Size)cccceeeeceeerenenenenens 213
Fig. 7.20. PerPreT validation WiNAOWcccceieieieiniiiiieieee s 214
Fig. 7.21. PerPreT validation tahlecccciiuiciiciicicc s 215
Fig. 7.22. PerPreT input MEasUreMENt atalccccevevereiereieieieieereeeee s 215
Fig. 7.23. PerPreT experimental datafile Selection ... 216
Fig. 7.24. PerPreT model datafile SElection ... 216
Fig. 7.25. PerPreT phase validation WiNAOW ... 217
Fig. 7.26. PerPreT phasevalidation tableccccoeeiiiiiiiiiccc e 217
Fig. 7.27. PerPreT contact iNnfOrmationccccceeueieieieerieineeeee s 218

List of Tables

Tab. 2.1.
Tab. 3.1
Tab. 3.2.
Tab. 3.3.
Tab. 3.4.
Tab. 3.5.
Tab. 3.6.
Tab. 3.7.
Tab. 3.8.
Tab. 3.9.
Tab. 4.10.
Tab. 4.11.
Tab. 4.12.
Tab. 4.13.
Tab. 4.14.
Tab. 4.15.
Tab. 4.16.
Tab. 4.17.
Tab. 4.18.
Tab. 4.19.
Tab. 4.20.
Tab. 4.21.
Tab. 5.1.
Tab. 5.2
Tab. 5.3.
Tab. 5.4.
Tab. 5.5.
Tab. 5.6.
Tab. 5.7.
Tab. 6.1.
Tab. 6.2.
Tab. 6.3.
Tab. 6.4.
Tab. 6.5.
Tab. 6.6.
Tab. 6.7.
Tab. 6.8.
Tab. 6.9.
Tab. 6.10.
Tab. 6.11.

SPEC CPU benchmarks (REIEESE 1)coveeeerieriereiniicicineicieeneseesise e 20
Dhrystone results for WOrkStationsc.cvvvrnnnnnsnssssssesssss s 27
Linpack results for WOrKStationscovvvrerennininsssssissesesessssessssssesseseeas 29
SPEC CINT95 (integer) benchmarksccoceveeeieiiienissessssssssssse 31
SPEC CFP95 (floating point) benchmarksc.cocovvvvnnnnnssrcsssssse 32
SPEC 95 results published by SPEC34
SPEC 95 rates published by SPECccccooerinnee. .35
Comparison of benchmark results for workstations . 37
Comparison of SySteMS A N Bccciiiiiiiiie s 43
Comparison of systems A and B with new arrival ratescccovvverniinnienns 43
Linpack results for massively parallel machingscccocvenvnnnnnnnisninnne 65
NAS Parallel Benchmarks problem Sizescccocvvvvninnnnnncncsssssne 67
NAS Parallel Benchmarks results for one node of CRAY Y-MPccccccovvivene 67
PERFECT Benchmark baseline results (in MFLOP/S)ccocovnvncncninniienne 71
PERFECT Benchmark optimized results (in MFLOPYS)cccovvnnnnninininenens 72
Characteristics of SPLASH-2 applications and Kernelsc.ccovvvnvninninenene 78
SLALOM benchmark results for single processor SGI 4D/380S80
SLALOM benchmarkS reSUlLScovvrrerinirnnininssissssssesessesisae .81
Comparison of MEIKO and nCUBE using a 16 processor Fingerprint98
Comparison of MEIKO and nCUBE using a 32 processor Fingerprint 98
Execution times for the LOOP benchmarks ..o 99
Slowdown against Paragoncccceereiereiereieiieiisssssessss s 100
State probabilities for random QUEUEccccueveviiiieieiiicsae 109
Results for COMMON QUELIEccciiiiiiiircecrceeee s 112
ReSUltS fOr SHOMESE QUELIEecuiiiiiciiciceccc e 114
RESUIS FOr NEXE QUEUE ...ttt s 119
Comparison of the four queueing strategies (absolute values)cccevvevenne 120
Comparison of the four queueing strategies (relative values)c.cccvvveeenne 120
Loss of parallelism caused by problem formulationccccoeeveeceicencnnen. 139
PerPreT result table for parallel MM on INTEL Paragon (varying psize) 167
PerPreT result table for parallel MM on INTEL Paragon (varying nprocs) 169
Validation of parallel MM using 1 to 128 processors on nCUBE/2 169
Validation of parallel MM using 1 to 64 processors on INTEL Paragon 170
PerPreT result table for modeling aparallel CG Method on Paragon 174
Output Table for CG-Tree (varying psize, 512 processors) on Paragon 176
Validation of paralel CG-Simple on nCUBE/2 (psize = 1024)cccceveeveennee 176
Validation of paralel CG-Tree on nNCUBE/2 (psize = 1024)ccccceveeveeevcenee. 177
Validation of paralel CG-Simple on INTEL Paragon (psize = 1024) 177
Validation of paralel CG-Treeon INTEL Paragon (psize = 1024) 177

Candidate PSTSWM parallel algorithmscoccvvrvnininnnnsnsssssssns 180

X List of Tables
Tab. 6.12. Computational models and MFLOP/s or MByte/srates for algorithm TH 182
Tab. 6.13. Communication models for forward and inverse transformsc.cccvvevveene 183
Tab. 6.14. PerPreT result table for modeling PSTSWM on Paragonccccceevnieninenne 185
Tab. 6.15. Problem size parameters for PSTSWM ... 187
Tab. 6.16. Error in choosing optimal ratio from model resultsc.cooeoevvveeinneeninnieene 188
Tab. 6.17. Validation of PSTSWM (TR-T85) USING 8 ProCESSONScvcvevivreieriieriieriieriieens 188
Tab. 6.18. Validation of PSTSWM (TR-T85) USING 64 ProCESSOLSccovverirerirerisereserineens 188
Tab. 6.19. Validation of PSTSWM (TR-T85) using 128 ProCessorsccvvvvervieriierennnens 188
Tab. 6.20. Error in choosing optimal alg. from model results instead of experimentally ...189
Tab. 6.21. Error in predicting runtimes (SECONAS)ccevvvriiieriiniiiniiieisiss s 190
Tab. 6.22. Error in choosing optimal agorithm from complexity

analysis instead of experimentally ...
Tab. 6.23. Error in predicting runtime (seconds) using complexity based model ..
Tab. 6.24. Error in predicting runtime (seconds) using single phase modelcocveuene

Abbreviations

- ALU
Arithmetic - logic unit
- BLAS
Basic Linear Algebra Subprograms
- CFD
Computational Fluid Dynamics
- CG
Conjugate Gradient
- CMi
Communication phase i
- CPi
Computation phasei
- CPU
Central Processing Unit
- DEC
Digital Equipment Corporation
- DMA
Direct Memory Access
- d_n_procs
PerPreT variable for number of processors
-dp sze
PerPreT variable for problem size
- DSPN
Deterministic and Stochastic Petri Net
- FCFS
First Come First Serve
- FESC
Flow Equivalent Service Center
- FFT
Fast Fourier Transform
- GAMESS
General Atomic and Molecular Electronic
Structure System
- GBIS
Graphical Benchmark Information Service

- GSPN
Generalized Stochastic Petri Net

HP

Hewlett Packard

HPG

High Performance Group
HPF

High Performance Fortran
IS

Integer Sort

|

Arrival rate

LAN

Local Area Network

Iflop
PerPreT variable for node performance

LT

Legendre Transform
m

Departure rate

mflop(][]
PerPreT variable for node performance

MFLOPS

Mega Floating Point Operations per Sec-
ond

MG

Multigrid

MIMD

Multiple Instruction Multiple Data
MM

Matrix Multiplication

MIPS

Millions of Instructions per Second
MPI

Message Passing Interface

MVA

Mean Value Analysis

N
Problem size

Xii

Abbreviations

- NAS
Numerical Aerodynamic Simulation
- NPB
NAS Pardlel Benchmarks
- nprocs
Number of processors
- psize
Problem size
-P
Number of processors
PARKBENCH
PARallel Kernels and BENCHmarks
- PERFECT
Performance Evaluation for Cost-effective
Transformations
- PerPreT
Performance Prediction Tool
- PICL
Portable Instrumented Communication Li-
brary
- PIP
Parallel Instrumented Program
- PSTSWM
Parallel Spectral Transform Shallow Water
Model
- PTG
Program Task Graph
- PVM
Parallel Virtua Machine
- SIMD
Single Instruction Multiple Data
SLALOM
Scalable, Language-independent, Ames
Laboratory, One-minute Measurement
- SPMD
Single Program Multiple Data
- SPEC
System Performance Evaluation Group
- s
PerPreT variable for number of statements
- SUT
System under test

- tcomm o .
Communication time

- texec . .
Execution time

- tover .
Overhead time

- TPS
Transactions per second

1. Introduction

1.1. Basic Classification of Performance Analysis

The growing number of different parallel
computer architectures demands methods for
acomparison of these systemsrelative to per-
formance issues. To increase reliability and
performance of computing systemsis an im-
portant motivation for the development of
new processors and computer architectures.

Two basic techniques to achieve higher per-
formance can be observed, either improve-
ments in chip technology are made and/or ar-
chitectural improvements, especialy para-
lelism, are used. The chips are getting larger,
the transistors on chip are getting smaller as
are the connections on chip. Higher frequen-
cies are used. Thus, the performance up-
grades of the last decades were possible. It is
difficult to predict, when the chip technology
will reach its physical restraints that can no
longer be overcome (speed of light for fre-
quency, connections that are less than one
atom wide). If the physical limits of chip
technology are reached, paralelism is the
only aternative to further upgrade perfor-

mance. Parallelismisalready usedin all com-
puting systems on levels ranging from regis-
ter width to number of concurrently running
Processors.

Existing parallel systems can roughly beclas-
sified in two categories, namely, SIMD- (sin-
gle instruction, multiple data) and MIMD-
(multiple instruction, multiple data) architec-
tures. Asthe classification indicates, the per-
formance of SIMD-architectures is mainly
based on data parallelism. Many processors
or ALUs (arithmetic |l ogical units) are execut-
ing the same instruction synchronously on
different data. Such systems were very suc-
cessful at the beginning of the development
of parallel systems. Later they were replaced
by more flexible and more powerful MIMD-
architectures. The methods presented in this
book mainly describe approaches for the per-
formance analysis of MIMD-systems.

Performance analysis of computing systems
iscarried out by:

Introduction

- computer architects

- computer vendors and buyers
- system software developers

- application developers.

The results of the performance analysis are
used to:

- improve the architecture
- detect and eliminate bottlenecks
- compare systems.

The performance of asystemisvitally impor-
tant to the vendor and buyer. Looking at fig-
ures like MIPS (mega instructions per sec-
ond), or MFLOPS (mega floating point oper-
ations per second), or TPS (transactions per
second) in order to describe the performance
of asystem in a vendor*s catalogue does not
necessarily inform the potential buyer of the
true performance. First of all, these numbers
are aways pesk performances, meaning
these numbers are true (if at all) only for a
very limited selection of applications. They

arelessuseful if auser isinterested in the per-
formance of the target system for specific ap-
plications. This problem is well known from
single processor architectures, however, it is
more important and more complex for multi-
processor systems. The total performance of
such a system is not only determined by the
processor performance but aso by the mem-
ory management strategy (in case of shared
memory systems), network architecture, sys-
tem throughput, communication, and syn-
chronization management strategies.

The approaches for performance analysis of
computer systems can be divided into three
categories:

- performance measurement,
- performance modeling,
- and performance simulation.

In [Lin98] a basic classification of these per-
formance evauation techniques is given
(compare Fig. 1.1.).

Performance Analysis

Fig. 1.1. Classification of performance analysis techniques

\ Performance M odeling

Stochastic Modeling

ps \
Discrete-event Analytical/Numerical
Simulation Solution Methods
‘ Prototyping ‘
4
Trace-driven Execution-driven
Simulation Simulation

Per formance Simulation

Basic Classification of Performance Andysis

Performance M easur ement

The main goa for deterministic evaluation
techniques based on performance measure-
ment of real systemsis to find performance
bottlenecks and, if possible, to minimize
them. Normally it is not possible to change
the hardware of existing systems, but the re-
sults can be used to improve the design of
successor systems. Another possibility is to
add hardware to reduce system bottlenecks if
the systemisscalable. A tuning of the system
software is also often possible.

Fig. 1.2. Performance measurement

The load used for the performance measure-
ment can be a suite of real applications or a
workload model can be used (compare Fig.
1.2)). The results of performance measure-
ment techniques compared with performance
modeling techniques are more dependable
and accurate, since no losses of accuracy
through mode! abstraction can occur.

Performance M odeling

For performance modeling techniques, the
system load or the system architecture, or
both, are represented through a model (com-
pareFig. 1.3).

Deterministic and stochastic models are easi-
er and more efficient to analyze the perfor-
mance of future systems than performance
measurement, because hardware prototypes
are expensive to realize. Any representation
of reality through models is an abstraction of
reality and, thus, suffers from aloss of accu-
racy. The more detailed and complex amodel

is, the better the accuracy islikely to be. Itis
important to make reasonable assumptions
regarding the structure and detail of the mod-
els. The art of modeling is to find a good
trade-off between needed accuracy and de-
gree of abstraction. Performance modeling
using deterministic and stochastic models be-
comes very complex and difficult if the dy-
namic behavior of parallel applications on
MIMD-systems has to be examined in detail.

Workload System
Model | P Model
A y
/ \/

Real Real
Workload System

Fig. 1.3. Performance modeling

Performance Simulation

Performance simulation techniques use asys-
tem simulator to execute amodel of thework-
load or thereal workload (compare Fig. 1.4.).
Performance simulation is well suited for
complex architectures which are difficult to
model (especially dynamic behavior). The
problems in performance simulation are ex-
tremely long runtimes which alow only
small workload models or small real work-
loads.

Workload
Model
A System

v Simulator
Real

Workload

Fig. 1.4. Performance simulation

Introduction

1.2. Refined Classification of Performance Analysis

This text includes a survey of methods from
two categories (performance measurement
and performance modeling) and a short sum-
mary on performance simulation. An answer
to the question which method should be used
for which problem will be given. Possible
problems are:

- purchase decision
- architectural improvements
- optimization of applications

Purchase Decision

One use of models is to help determine the
computer with the best price/performance ra-
tio for auser’ s needs. Two scenarios are pos-
sible: the best machine for a given amount of
money has to be found, or the cheapest ma-
chine to fulfill given requirements has to be
found.

Architectural |mprovements

A main god of the system designer isto im-
prove the architecture of the system. These
improvements cannot always be realized in
hardware because it is too expensive or too
time consuming. Using performance analysis
techniques (measurement, modeling, simula-
tion) can help to dramatically reduce the cost
and time in computer development.

Optimization of Applications

In addition to buyers and system designers,
application devel opers use performance anal-
ysistechniques. Themain god is, inthiscase,
improvement of the user’s applications. Par-
allel applications especially offer a high po-
tential of optimization which is often not ful-
ly realized. Performance analysis allows the
comparison of different versions of parallel

applicationsin terms of runtime and efficien-
cy without the need to implement them on a
real machine. Furthermore, analysis can save
time and money compared to real implemen-
tations. Thiseffect is especially important for
multiprocessor systems, because the imple-
mentation and testing of different versions of
an algorithm is much more complex than do-
ing the same on a monoprocessor.

Additionally, since implementations are not
always portable among different multipro-
cessor systems, a new workload program for
every system is necessary. Only a few ap-
proaches for common paralel languages
([PICL90], [MPI95], [Lin85]) exist, but none
of them is accepted as a standard language.
The systems do not only differ in program-
ming language but aso in the programming
model used which often is areflection of the
system architecture (message passing, shared
memory). This is one of the reasons for the
low acceptance of multiprocessor systems
which often show a better performance/price
ratio than comparable vector processor sys-
tems.

A survey of existing and important perfor-
mance analysis techniques is given in this
text. Two new approaches for the perfor-
mance evaluation of multiprocessor systems
are presented, a benchmark generator and a
modeling technique for massively parallel
systems. The latter techniques is used for a
complete performance eval uation and predic-
tion tool which is presented in the last part of
this text.

The basic classification of performance eval-
uation techniques (compare Fig. 1.1.) is now
refined to be better be able to show the reader
of this text the context of the described tech-
niques. As shown in Fig. 1.5. performance
evaluation can be carried out on real systems,
on prototypes, or on models of real systems.

Refined Classification of Performance Analysis

If areal system and its workload is available
benchmarking is used to determine the per-
formance. The prototype of area system al-
lows profiling techniques, low level test of
the hardware and elapsed time benchmark-
ing. If the real system is not built yet or not

applied. they are divided into stochastic
methods using queueing theory, Petri Nets or
analyticall models. The deterministic ap-
proaches are either simulation based or the
system and workload are described by analyt-
ical models.

available, model based techniques have to be

Performance Analysis

‘ Model based ‘
a \
‘ Stochastic ‘ ‘ Deterministic
Y 45N\
Queueing Theory Simulation Analyt. System
(analyt. solutions) based Modeling
\ \
Petri Nets Y Y
(analyt. solutions) | [screte event berPreT ‘
Petri Nets simulation
A (smulation) Execution-driven A
Analytical Model || Simulation
(stochastic work- -
load models) Trace-driven
A simulation
: A Interpretation
emulation
Structured model
based simulation

A

Eval. technique:
simulation
modeling

Eval. technique:
modeling

Eval. technique:
modeling

Eval. technique:
measurement
simulation

Eval. technique:
measurement

Fig. 1.5. Refined classification of performance analysis techniques

Introduction

1.3. Organization of this Book

Thefirst part of this book introduces and de-
fines the basic notation in connection with

sures used and their meaning for computer ar-
chitects are explained.

performance analysis. The performance mea-

Performance Analysis

‘ Model based ‘
P \
‘ Stochastic ‘ ‘ Deterministic
s N\
. Queueing Theory Simulation Analyt. System
SeCtions 3,5 | analyt. solutions) based Modeling
section 5 (analpetmsgliisons) ton? !
yt ‘ PerPreT ‘
. Petri Nets
section 5 (simulation) sections 6, 7
] Analytical Model
section 6 | (stochastic work-
sections 3, 4 |oad models)

Fig. 1.6. Performance analysis techniques covered by this book

The next two sections describe the state of the
art of performance measurement techniques
based on deterministic evaluation for mono-
and multiprocessor systems. A new approach
for multiprocessor performance evaluation,
the LOOP Language, is presented. Especially
for multiprocessors, performance modeling
techniques seem to be important. The differ-
ent approaches for stochastic performance

modeling are presented in the next part of the
book. Stochastic modeling using Markov
Chains or Petri Netsis discussed in section 5.
A new approach for performance prediction
using analytical parameterized modelsis pre-
sented in section 6. A case study shows the
accuracy and usability of this approach. The
last part of the book describes the resulting
software tool of this performance evaluation

Organization of this Book

and prediction approach called PerPreT (Per-
formance Prediction Tool).

The classification scheme shown in Fig. 1.6.
is used throughout the rest of the book as an
orientation help. It is displayed at the begin-
ning of each chapter and the topics covered
by the chapter are highlighted through bold
boxes and names. Performance simulation is
not subject of this book. However, some gen-
eral information on this topic and some links
to literature are given in section 3.3.

Performance Analysis

Benchmarking

Low level (hw)
Kernels

Applications
Suitess

i Simulation || Analyt. System
Queueing Theory ‘ Al H M%desl}/ng ‘
Petri Nets 17
SRt
wor I?Icoaijfljst rlnodel REARC

2. Basic Notation and Definitions

2.1. Notation

Computer scientists and researchers in per-
formance analysis use many abbreviations
and notations which are not always precise or
sometimes used in different interpretations.
Because of this disparity and for the better

understanding, all relevant notation is de-
fined and briefly explained in this section. If
the meaning of aterm is not unique it is ex-
plained how it is used in the context of this
text.

2.1.1. General Termsin the Context of thisWork

Benchmark Program

A benchmark program is a specific software
with the goal to analyze the performance of a
target system to be able to compare it with
other systems. A benchmark program can be
areal application or asynthetic program with
the characteristics of a real application. De-
pending on the application, the benchmark
program can stress single resources as mem-
ory access, arithmetic units, logical units, in-
put/output devices or it can stress the system

as a whole. In order to use the benchmark
program to compare various target systems it
should be portable to a wide variety of ma-
chines.

Benchmark Test

A benchmark test isthe execution of abench-
mark program on atarget system. To keep re-
sults comparable, some rules (e.g., compiler
options, no manual optimizations, system

10

Basic Notation and Definitions

configuration) apply, or the system and
benchmark properties are written down in a
protocol. The results of a benchmark test are
typically performance figures like MIPS
(mega instructions per second), MFLOPS
(mega floating point operations per second),
TPS (transactions per second), or predefined
performance characteristics like SPECints
and SPECrates (compare section 3.1.3. and
[SPEC95]).

Workload

The workload of a system consists of a set of
operations which are executed on the system.
Using different levels of abstraction, a work-
load can be an algorithm, akernel of an appli-
cation, a synthetic program, or area applica-
tion. The operations can be arithmetic opera-
tions, instructions, database operations, or
other operations to stress specific parts of the
system.

Kerne

A kernel isthe computationally intensive part
of an application. It often consists of a small
number of code lines or of some loop cas-
cades. For simplicity, kernels are extracted
from complex applications and used as
benchmark programs. As in synthetic work-
loads, operating system issuessuch asl/O are
often neglected in kernels.

Application

An application is a program to solve a prob-
lem on a computer. In contrast to kernels or
synthetic programs, real problems are solved.

Parallel Application

A parallel application is aprogram to solve a
problem on a multiprocessor. The program
includes programming constructs which al-
lows the problem to be solved concurrently
using more than one processor. Besides con-

structs for the concurrent execution it nor-
mally also provides constructs for the com-
munication and synchronization of subtasks.
The goal isto reduce the application’s execu-
tion time when allocated an increasing num-
ber of processors.

Processor, Node

In this text, processor, node, processor node,
processing element, and node processor are
used synonymously in connection with mul-
tiprocessors. A node consists of a CPU (cen-
tral processing unit) and a link to a main
memory module. The CPU can be directly
connected (exclusive access) to amain mem-
ory module or it can be connected viaainter-
connection network with the main memory
module (multiple CPUs have access).

M onopr ocessor

A monoprocessor is a computer that consists
of one processor to execute programs. In the
literature a monoprocessor system is aso
called single processor system or uniproces-
sor system. These terms are used synony-
mously throughout this text.

M ultipr ocessor

A multiprocessor consists of several proces-
sors configured to execute programs concur-
rently. In contrast to a workstation cluster or
computers loosely coupled viaa LAN (large
area network), the processors are tightly cou-
pled, operate under the same operating sys-
tem, and include a programming environ-
ment or language with programming con-
structs or routines for synchronization and
communication. In the context of this book,
the terms multiprocessor, parallel processing
system, multicomputer, and MIMD system
are equivalent.

Notation

11

Massively Parallel System

A multiprocessor is called massively parallel
if it consists of more than 100 processors.
This number is arbitrarily chosen to distin-
guish between paralel and massively paral-
lel. It reflects today’ s systems. Systems con-
sisting of up to several thousands of proces-
sors are commercially available.

Performance Prediction

The results of performance modeling or sim-
ulation allow performance predictions for a
system. The predictions can be for workload
models, for application kernels, for applica-
tions, or more general systems. For example,
the peak performance of a computing system
can be predicted. Examples for performance
measures are execution time, speedup, and
efficiency (for definition of performance
measures, see section 2.2.2.).

Performance Evaluation / Analysis

The results of benchmark tests are used for
the performance evaluation of a system. The
performance of the system is measured in
terms of operations per time unit. The opera-
tions can be basic instructions, arithmetic op-
erations (floating point or integer), or transac-
tions in case of data base systems. Methods
for performance evaluation use measure-
ment, modeling, and simulation. The terms
performance evaluation and performance
analysis are used synonymously in this book.

Peak Performance

The maximum performance of a system is
called peak performance. There are two dif-
ferent ways to find the peak performance of a
system:

- Perform several benchmark tests and use
the results as the sustained peak perfor-
mance for these tests.

- Cdculate the peak performance using the
architectural parameters. For example, the

peak performance can be found by taking
the performance of the execution unit, mul-
tiply it by the number of execution units per
processor and multiply it by the number of
processors in case of a multiprocessor sys-
tems. Theresult is the theoretical peak per-
formance, an unrealistic number often used
by computer vendors.
Sincethe theoretical peak performanceiscal-
culated without a workload, performance
losses by memory access, system software
(compiler, operating system, etc.), and possi-
bly synchronization and communication in
case of multiprocessors, the theoretical peak
performance is, in general, much higher than
the sustained peak performance.

Communication Bandwidth

Parallel applications running concurrently on
multiprocessors require mechanisms for
communication and synchronization. The
maximum amount of data that can be trans-
ferred during a time unit between a pair of
processors is defined as communication
bandwidth. The communication can be real-
ized by links connecting processors in the
case of distributed memory systems or by ac-
cess to common data in the case of shared
memory systems. The different multiproces-
sor architectures are explained in section 4.1.
The peak communication bandwidth of adis-
tributed memory multiprocessor isthe sum of
the concurrent link bandwidths. The pesk
communication bandwidth of a shared mem-
ory multiprocessor is determined by the
bandwidth between processors and memory.
As discussed for computational pesk perfor-
mance, the communication peak performance
can be calculated using the architectural pa-
rameters (theoretical communication peak
performance) or it can be determined by com-
munication benchmarks (sustained commu-
nication peak performance).

12

Basic Notation and Definitions

2.1.2. Program Task Graphs

Performance analysis often use Program
Task Graphs (PTGs) to formaly describe
workloads [Kat96]. A PTG isdefined asadi-
rected acyclic graph. The nodes represent
tasks and the edges represent communication
relations between the tasks. The edges and
the nodes can have attributes to describe the
timings of the tasks and communications.

O Taxk

Fig. 2.1. Program Task Graph (PTG)

In Fig. 2.1. a simple example for a PTG is
given. The workload is divided into small
units (subtasks). Each subtask is represented
by a PTG node. The nodes can carry
attributes to represent the weight of the sub-
task. Possible attributes are: number of
instructions, time units, number of arithmetic
operations, number of transactions when
dealing with a data base, number of memory
accesses, and others. The edges (arrows)
between the subtasks show the data depen-
dencies. In the case of multiprocessor work-
loads, data dependencies are solved by syn-
chronization and communication between the

subtasks. Like the nodes, the edges can carry
attributes with weight functions, such astim-
ings for a message transfer, or synchroniza-
tion timings, or message lengths. The
description of a parallel (multiprocessor)
workload asa PTG makesit easy to distribute
the subtasks onto the processors.

As an example, the PTG of Fig. 2.1. is
mapped onto six processors in Fig. 2.2. The
data dependencies (edges) represent the com-
munications between the processors. A limi-
tation of the PTG representation is that com-
munication arrows have to be deterministic.

® @ 6@ 6@ 6 6@
O

O 00000
Q

O
O
O

OO0 OO0 00

O

Fig. 2.2. Mapping of a parallel workload de-
scribed by a PTG onto 6 processors

If the execution times of the subtasks and the
timing of the communication are known, an
optimization of the mapping of the PTG onto
the processors can be carried out. The goal of
the optimization is to minimize the total exe-
cution time [Kat96].

Performance Analysis Definitions

13

2.2. Performance Analysis Definitions

221 Timing

Execution Time

The execution time of a program teye. in the
scope of this text is the time from the execu-
tion of the first program instruction until the
last program instruction. Program loading
times are not considered here. For paralel
programs that are executed by one or more
processors the same definition is used.

texec = Tstop _Tstart (Eq.21)

The execution time of aparallel program nor-
mally consists of three portions, namely pro-
gram execution time (instructions and opera-
tions), communication time, and waiting
time.

of

Processi

P = Program execution
W = Waiting

Fig. 2.3. Possible process states during the
execution of aparallel program

The portions result from the times the pro-
cesses are in the different states "Program ex-

ecution (P)", "Communication (C)", or
"Waiting (W)" (compare Fig. 2.3. and Fig.
24).

awiL

[Program execution

1 waiting

Fig. 2.4. Parallel program execution

Communication Time

The communication time of a paralel pro-
gram tegmm is the sum of the times for the
communication between the processors:

14

Basic Notation and Definitions

o

teomm = A, t;nsg (Eq.2.2)

withi = 1, 2,..., number of messages.

The time for one communication between a
pair of processors in a message passing sys-
tem ty is divided into three portions: setup
time for the sending of amessage t, transfer
time t; and receive time t, .

tisg = test b+ treg (Eq.2.3)

Synchronization Time

The synchronization time tyyc is the time
spend for synchronization operations. A typ-
ical synchronization operationisaglobal bar-
rier, i.e. al concurrently running processes
wait at a global synchronization point speci-
fied in the parallel program until the |ast pro-
cess arrives at this point (called barrier). This
arrival releases all processes and they may
continue.

Waiting Time

The difference between synchronization time
tsync and waiting time t,; is that the time
twait 1S caused by waiting for communication,
i.e. one process would like to receive a mes-
sage that is not available yet. Since the oper-
ation receive message is normally blocking,
the process has to wait until the message has
arrived.

Overhead Time

The sum of times used for synchronization
tsync added to the sum of waiting times t4;
resultsin atime called overhead time tg, -

o .k o m

tover = A ktsync +a mtWait (Eq.2.4)

with k = 1,2,..., number of synchronizations
and withm= 1,2,..., number of waits.

Computation Time

The computation time teony, is the sum of all
times during which the processes are in the
program execution state.

Total Execution Time

The total execution time tyyy Of a parallel
program is defined asteyq. in the beginning of
this section. Using its portions, the total exe-
cution time can be rewritten as the sum of
computation, communication, and overhead
time, divided by the number of processors:

tCOm + tcomm +1

— over
tiotal = 5 Al (Eq.2.5)

with P = number of processors.

Since the portions teomm, teomp: aNd toyer are
always sums of times for al processors, the
division by P (number of processors) has to
be carried out. Minimizing the total execution
time of a paralel program is achieved by
minimizing all portions of the sum. Commu-
nication, synchronization, and overhead
times expressed by t oym and toyer. CaN bere-
duced by intelligent mapping of subtasks
onto the processors. Computation time can be
reduced by more efficient algorithms. Unfor-
tunately, more efficient algorithms often lead
to a more demanding communication struc-
ture in the parallel program, thus creating a
trade-off between minimizing teomm and
teomp- Thistrade-off is also system dependent
leading to different implementations for dif-
ferent systems. One goal of performance
modeling techniques is to help the user to
minimize the total execution time of a paral-
lel program.

Performance Analysis Definitions

15

2.2.2. Performance M easures

The basic definition of performance is work
divided by time which is also valid for com-

puters.

Queue

ﬁ\
7‘

Fig. 2.5. Basic system model

3

Throughput

Throughput matches the basic definition of
performance best. This performance measure
describes in general the number of requests
that are completed per time unit. Request is
another word for workload, arequest canbea
transaction in terms of data base systems, it
can beajob in terms of batch systems, it can
simply be a user request in terms of interac-
tive systems, or it can be the execution of an
instruction or operation.The resulting perfor-
mance measures are MIPS (millions of in-
structions per second), MFLOPS (millions of
floating point operations per second), and
TPS (transactions per second), or simply jobs
per second. Other performance measures de-
pending on the definition of work units are
possible.

Performance measures are system and appli-
cation specific. To determine the perfor-
mance of an application for asystem, thetotal
execution time teq. has to be calculated or

measured. The work (characterized by its
units) divided by te,e. (and if needed by 10°

for "Mega") results in the corresponding per-
formance measure.

Unfortunately, marketing reasons have led to
a widespread misuse of performance mea-
sures. A hardware provider isinterested in of -
fering a "high" performance system. Often,
performance measures are calculated using
the hardware description of the system with-
out taking the compiler and operating sys-
tems into account. These theoretical "peak"
performances are normally much higher than
the performances for real applications.

Utilization

Utilization is a measure of how busy the re-
source system is when used by a specific
workload. In terms of paralel systems, the
utilization is also called efficiency (as de-
fined later in this section).

Response Time

Asoutlined in Fig. 2.5., some users can share
an interactive system, wait for the results,
and, based on the results, initiate new jobs to
the queue. The time ajob spends in the sys-
tem (from entering the queue until comple-
tion) isthe job’s response time.

Queue Length

The queuelength directly relatesto thetimea
job must wait until it is executed by the sys-
tem.The queue length is the average number
of jobs in the queue or receiving service.

16

Basic Notation and Definitions

2.2.3. Relative Performance Measures

Since absolute performance measures such as
MIPS, MFLOPS, or TPS for a computer ar-
chitecture are theoretically calculated num-
bersthat are not reached for real applications,
it is often better to work with relative perfor-
mance measures. By which factor the execu-
tion of an application can be accelerated us-
ing a multiprocessor is avery common ques-
tion. System designers think about by which
factor anew architectureisfaster thanitspre-
decessor. These and similar questions can be
answered using relative performance mea-
sures such as speedup, scaleup, efficiency,
and reference numbers such as performance
ratios.

Speedup

The goal of the application parallelization is
the minimization of the total execution time
texec through the concurrent execution of the
application on several processors. Gene Am-
dahl [Amd67] was one of the first who con-
sidered the problem of the maximum possible
speedup. The definition of speedup isthe re-
lation of total execution timete; on one pro-
cessor to total execution time tgp on P pro-
cessors. In Amdahl’s approach, an applica-
tionisdivided into asequential and aparallel
fraction. The execution time of the sequential
fraction is constant no matter how many pro-
cessors are involved. The execution time of
the parallel fraction decreases proportionally
to the number of allocated processors.

Amdahl’s law describes the speedup behav-
ior of parallel applications. It is derived from
the following approach:

The execution time of an application t ; is:

te1 = lest tep, 1 (Eg.2.6)

wheretg isthe execution timefor the sequen-
tial fraction and tg, 1 is the execution time of
the parallel fraction on one processor. The se-
quential fraction seg and the parallel fraction
par are defined as:

tes
PR (Eq.2.7)
tep, 1t tes

seq

par = —1 (Eq.2.8)
tep,l"'tes
andthus, par = 1-seq (Eq.2.9)

The total execution timet,p for P processors
is:

4+ lepa

top = tos* -2 (Eq.2.10)

Using P processorsresultsin the speedup fac-

tor 33:

(Eq.2.12)

Using (Eq.2.7), the expression from

(Eq.2.11) can be transformed to:

Performance Analysis Definitions

17

_ 1
> = t
e 4 _ep1 1
tes"‘tep,l tes"‘tep,l P

which is equivalent to:

SP:._______:J'__.__.__.E

seq + par x=
q -+ parxg

(Eq.2.12)

This last equation is called Amdahl’s law. It
shows the heavy impact of the sequential
fraction seq of aparallel program that is exe-
cuted on P processors. If seq isonly one per-
cent (seq = 0.01) the maximum speedup S is
less than 100 (even for an unlimited number
of processors P).

Since seq and par are constant, the §, func-
tion approaches 1/seq as the number of pro-
cessors increases. Fig. 2.6. shows speedup
functions for different values of seq. For
seg=0 (and, thus, par=1), the idea speedup
function S, = P is derived from (Eq.2.11):

(Eq.2.13)

Fig. 2.6. aso shows speedup functions for
seq=0.01, seg=0.02 and seq=0.03. For exam-
ple, 1000 processors result in a speedup of
lessthan 33 if the sequential fraction of apar-
alel application seq is 3 percent.

One of the consequences of Amdahl’s law is
that there are few applications that offer
enough parallelism (i.e., seqisvery smal) to
result in close to linear speedup functions on
massively parallel systems.

Thisisaso demonstrated by the efficiency of
parallel applications.

10 * - j— — — — — — — — — ~
linear
speedup (seq = 0)

90

100 500 1000

Number of processors

Fig. 2.6. Speedup functions for various seq
using Amdahl’s law.

Efficiency

The efficiency of a parallel application run-
ning on P processors is defined as:

(Eq.2.14)

ol

Speedup is defined in (Eq.2.12). If par isre-
placed in this equation by (1-seq) using
(Eq.2.9), e can be written as:

e=— 1
1+seqx(P-1)

Examples of efficiency functions over seq for
various numbers of processorsP are shownin
Fig. 2.7. Considering the steep descent for a
sequential fraction seq of 10% even for small
numbers of processors, it becomes clear that

18

Basic Notation and Definitions

reasonabl e efficiency of parallel applications
running on massively parallel systemsisonly
possiblefor very small values of seq, i.e., seq
<< 0.0L.

o)
k5
Q
i
10 A P=1
0.8 f-\
T\ ~_ P=2
0.6 + \\\ o
04 +
+ P=10
02 + \
(Vi TR ——"
0 02 04 06 08 10
sequential fraction seq
Fig. 2.7. Efficiency functions for various
numbers of processors P

Scaleup

One reaction to Amdahl’s law is the assump-
tion that only few applications exist that offer
enough parallelism for efficient implementa-
tions on multiprocessors with large numbers
of processors. A resulting question iswhether
it is worth investing much money and effort
in building these machines. Despite that pes-
simistic outlook, several multiprocessors
with up to thousands of processors have been
built (hnCUBE Hypercube, Connection Ma-
chine, INTEL Paragon, CRAY T3D, com-
pare section 6.1.3.) and many applications
with reasonable efficiency have been imple-
mented on these machines.

Gustafson explains this seeming contradic-
tion to Amdahl’slaw in his article "Reevalu-
ating Amdahl’s Law" [Gus88]. The deriva
tion of Amdahl’slaw (Eq.2.6) to (Eq.2.13) is

mathematically correct. The only problems
are the pessimistic assumptions which are not
necessarily truein real life. Amdahl assumes
that the sequential fraction seq isconstant and
he does not examine the behavior of the se-
quential fraction for different problem sizes.
These assumptions are different in
Gustafson’s approach. Gustafson points out
that the sequential fraction does not necessar-
ily grow linearly with the problem size. For
many parallel applications seq grows slower
or iseven constant. Thisleads to the assump-
tion observed in parallel applications that the
total execution time of a parallel program re-
mains constant for larger problem sizes if
processors are added to execute it.

Fig. 2.8. shows the difference in the ap-
proaches of Amdahl and Gustafson. In the
latter approach, the total execution time on a
multiprocessor is the sum of the execution
time for the sequential fraction seq and the
execution time for the parallel fraction par. If
only one processor is used to execute the pro-
gram, the runtime of the parallel fraction par
is multiplied by the number of processors P.

Gustafson defines the execution of a program
0N ONe Processor as:

tp = tog+ gy XP (Eq.2.15)
Thus, the execution time on P processorsis:
t = tes*lep (Eq.2.16)
and the resulting scaled speedup is:
t
-p
ty tes* p
SS, === (Eq.2.17)
tp tes* tep
Using (Eq.2.7):

Performance Analysis Definitions

19

_ seq+par xP EQ.2.18
SS, seq + par (Eq.2.18)
Using (Eq.2.9):

SS, = P+ (1-P) xseq (Eq.2.19)

In contradiction to Amdahl, the scaled speed-
up function is linear. For small sequential
fractions seq, thefunctioniscloseto theideal
speedup curve. Gustafson’ sintention isnot to
disprove Amdahl’slaw but to show that there
are real applications that offer enough paral-
lelism for large problem sizesto run efficient-
ly on massively parallel systems. It aso
showsthat it does not make good senseto use
large multiprocessor systems for the solution
of small problems.

Amdahl (Speedup):
4— Time=1—

Execution time
seq

on 1 processor
‘ seq Execution time
on P processors
——p

Time = seq+ par/P Hypothetic execution

time on 1 processor

Fig. 2.8. Speedup (Amdahl) and scaled speedup (Gustafson)

Gustafson (Scaled Speedup):
— Time=1—7>
seq

ES
——Time=seq+par*P ———»

Reference M easures

In the late 1980’'s severa major hardware
providers (IBM, SUN, HP, SIEMENS, and
others) founded an institution with the goal of
devising a fair performance evaluation of
computer systems. To reach itsgoal they col-
lected real applications and used them for the
performance evaluation. The consortium was
caled SPEC (System Performance Evalua-
tion Cooperative). A list with the 10 applica-
tions of therelease 1 of the SPEC consortium
isshownin Tab. 2.1.

These applications are execution time inten-
sive and the influence of operating system
calls during execution is negligible. The cal-

culation of the so called SPECmark for atar-
get system takes four steps:

- Determination of total execution time for
every program i on target system zresultsin
ti2

- Determination of total execution time for
every program i on reference system r
(VAX 11/780) resultsin t;;.

- The relation of t;, to t;, is called SPECratio
Rizr:

20

Basic Notation and Definitions

- Calculation of geometric mean Ry - for the
10 test programs. Ry is called SPECmark.

Speedup and scaleup are important relative
measures for multiprocessor system whereas

SPECmarks are mainly used to compare
monoprocessor systems. A more detailed de-
scription of the SPEC Benchmarks can be
found in section 3.1.

Abbreviation | Workload Program | Data
gce GNU C-Compiler C int
espresso PLA-Simulator C int
spice2g6 Analog circuit simulation Fortran float
doduc Monte Carlo Simulation Fortran float
nasa’ Collection of numerical "kernels' Fortran float
li LISP Interpreter C int
egntott Minimization of boolean functions C int
matrix300 Several matrix multiplications Fortran float
fpppp Solution of the Maxwell Equations Fortran float
tomcatv Network computations, strongly vectorized Fortran float
Tab. 2.1. SPEC CPU benchmarks (Release 1)

Performance Analysis Definitions

21

2.2.4. System Under Test

There are severa approaches to the evalua-
tion of systems, depending on the chosen lev-
¢l of abstraction. Although there isacontinu-
um of possibleviews, two examplesof differ-
ent abstraction levels are illustrated in Fig.
2.9.

For the programmer of a high level applica-
tion, the system under test (SUT) includes
several components such as the compiler, the
operating system, and the underlying hard-
ware. In a multiprocessor environment, the
interconnection network is aso part of the
SUT. The programmer might be interested in
several performance features including:

- responsetime,

- elapsedtime,

- resource utilization,

- communication patterns,
- concurrency profile, and
- space-time-diagram.

A different view of the same computer sys-
temisshowninFig. 2.9.b. A hardware devel -
oper isnormally less interested in the perfor-
mance of the compiler or the operating sys-
tem.Thus, the benchmarks of most use are
specifically designed for the evaluation of
certain hardware components of interest. The
features of most interest to the hardware de-
veloper include:

- native MIPS,

- cache hit rate,

- busuutilization, and

- memory access times.

The system under test considered throughout
thistext isthe one of the application program-
mer, Fig. 2.9.a The compiler, the operating
system, and the underlying hardware will be
regarded as a black box. The instrumentation

results in data for the single node perfor-
mance, the communication behavior, and the
overall performance. Looking at the amount
and speed of communication at the nodes, po-
tential and existing bottlenecks in the inter-
connection network are identified.

Applicatiol

Compiler
(O]

System under Test

a SUT for application programmer

Application
Compiler
(O]

|]
System under Test

b. SUT for hardware devel oper

Fig.2.9. SUT depending on the level of ab-
straction

The methods for performance evaluation of
monoprocessor systems and the methods for
performance evaluation of multiprocessor
systemsmainly differ in the way to determine
or define the workload for the performance
tests and in the way the tests are realized on
the target system. Three different approaches
are used:

22

Basic Notation and Definitions

- The target system is a real system and the
workload is executed on the system. This
method is called benchmarking.

The properties of the target system are cap-
tured by asimulator. The SUT is defined as
inFig. 2.9., where the hardware is replaced
by asimulator in this figure. Since modern
microprocessors are very complex, thesim-
ulator runs are very time consuming. De-
pending on the complexity of the hardware
and the simulators, slowdowns with a fac-
tor from 100 to 108 or more are possible.
This means that to simulate one second of

2.25. Evaluation Triangle

Generally speaking, any kind of evaluation
can be described by the evaluation triangle as
shownin Fig. 2.10. An evaluation requires an
experiment which runs a workload on a spe-
cific platform within a given environment
(SUT). The experiment is subject to an obser-
vation producing results which possibly lead
to aredesign of theworkload and/or thetarget
system. In the next two sections of this text,
the experiment is benchmarking for mono-
processors and multiprocessors. The work-
loads are synthetic (low level, kernels) and
real (applications). The SUT is a rea ma-
chine.

execution time, the simulator might need
more than one week.

- This slowdown leads to a third approach
where the simulator is replaced by a model
for the hardware and workload. The accura-
cy, and thus, complexity of the hardware
model depends on the desired accuracy of
the results.

For all three approaches the workload can be
either real applications or models with the
properties of the desired applications.

System

under

Experiment Test
! !
————— Observation ---- - -

Fig. 2.10. Evaluation triangle

Benchmarking

Low level (hw)
Kernels

Applications
Suitess

Performance Ana

Model based

N
Analyt. System ‘

; Simulation
‘ Queueing Theory \&H Modeling
Petri Nets Y
Stochastical PerPreT
workload model ‘ o ‘

3. Performance Analysis of M onoprocessor s

The first part of this section describes the
generation and definition of workloads for
performance tests and some examples for
benchmarking with synthetic workloads and
applications. The second part of this section
presents an important approach for perfor-
mance modeling of monoprocessor systems,
namely, queueing networks. Thisgeneral sto-
chastic modeling technique, its graphical sys-
tem and workload representation, the deriva-
tion of the steady-state diagram, and the solu-
tion of the linear system of equations for
birth-death modelsis explained.

Benchmarking consists of two steps. First a
workload is selected. The user has the choice
of predefined standard workloads as present-

3.1. Benchmarking

3.1.1. Synthetic Workloads

The goals of benchmarking using synthetic

ed in the next section or the workload is spe-
cifically designed to meet the user’s needs or
stress the system’s bottlenecks. The defini-
tion of the workload & so includes its param-
eters (e.g., problem size, compiler options,
operating system, etc.). The second step of
benchmarking is the implementation and ex-
ecution of the workload on the target system.
Theexecutiontimeis used to calculate there-
sults of the benchmark. These results are ei-
ther performance measures like MFLOPS
(mega floating point operations per second),
MIPS (mega instructions per second), TPS
(transactions per second) or relative perfor-
mance measures compared to areference sys-
tem.

proach to derive an appropriate synthetic

workloads are to simulate the system load workload isto determine the program behav-

caused by real applications. One possible ap-

ior in terms of memory access, memory traf-

24

Performance Analysis of Monoprocessors

fic, memory volume, number of instructions,
input/output requirements, and similar pa-
rameters. The result is a test program which

Dhrystone:

Possibly the best known synthetic workload
is the Dhrystone program written by R.
Weicker [Wei88]. This program was devel-
oped using the programming language ADA
and later implemented in C by R. Richardson.
Themain focus of Dhrystoneisan evaluation
of the CPU performance. The quality of the
compiler, and in particular, the code genera-
tion and optimization also plays an important
role.

] Assignments
B control Statements
[Procedure Calls

Fig. 3.1. Dhrystone (version 2.1) distribution
of statements

The Dhrystone benchmark program contains
103 dynamically executed statements of a
high level program in a distribution consid-
ered representative (compare Fig. 3.1.):

- assignments 52 (51.0%)
- control statements 33 (32.4%)
- procedures, function calls 17 (16.7%)

reflects a profile for the workload. This test
program is used as the desired synthetic
workload.

The program triesto be balanced with respect
to the three aspects:

- statement type,
- operand type, and
- operand locality.

The average number of parameters in proce-
dure or function calls is 1.82 (not counting
function values as implicit parameters).

W Arithmetic Operators
[] Gompare Operators
D Logic Operators

Fig. 3.2. Dhrystone (version 2.1) distribution
of operators

The distribution of the 63 executed opera-
tions per dhrystone loop is (compare Fig.
3.3):

- Arithmetic operators, total 32 (50.8%):

+ 21 (33.3%)
- 7 (11.1%)
* 3 (4.8%)
/ 1 (16%)

Benchmarking

25

- Compareoperators, total 27 (42.8%):

== 9 (14.3%)
1= 4 (6.3%)
> 1 (L6%)
< 3 (48%)
>= 1 (L6%)
<= 9 (14.3%)

- Logic operators, total 4 (6.3%):

&& 1 (16%)
I 1 (L6%)
! 2 (32%)

O Pointer
M sting3o

M Anay
B Record

. Integer
W character

Fig. 3.3. Dhrystone (version 2.1) distribution
of operands with respect to types

- Function Result
I constant

. Logal Variable
M Giobal Variable
[Parameter

Fig. 3.4. Dhrystone (version 2.1) distribution
of operands with respect to locality

The distribution of the 242 operands (counted
once per operand reference) with respect to
their type is (compare Fig. 3.3.):

Integer 175 (72.3%)
Character 45 (18.6%)
Pointer 12 (5.0%)
String30 6 (2.5%)
Array 2 (0.8%)

The distribution of the 242 operands (counted
once per operand reference) with respect to
their locality is (compare Fig. 3.4.):

Loca Variable 114 (47.1%)
Global Variable 22 (9.1%)
Parameter 45 (18.6%)
Function Result 6 (2.5%)
Constant 55 (22.7%)

The resulting synthetic workload intends to
mimic typical program behavior of applica-
tions running on MONOProcessor systems.
The result of the benchmark test is the num-
ber of dhrystones per second. Since most of
the operands are integer and 60% to 80% (de-
pending on system and compiler) of the exe-
cution timeis spend on integer operations, the
dhrystones per second can a so be interpreted
as measure for the integer performance of a
CPU. One problem of Dhrystoneisthe small
size of the code which fits into caches of
modern computers. Another problem ap-
peared with the popularity and acceptance of
Dhrystone. The hardware and compiler ven-
dorsinstalled special optionsin their compil-
ersto "optimize" the performance results for
a system executing Dhrystone.

The program does not compute anything
meaningful, but it is syntactically and seman-
tically correct. Semantically correct means
that all variables have a vaue assigned to
them before they are used as a source oper-
and. As a result, the Dhrystone benchmark
program outputs the microseconds for one
run through Dhrystone and the corresponding
Dhrystones per second.

26

Performance Analysis of Monoprocessors

Dhrystone Results:

The Dhrystone C Programs (dhry.shar), and
the latest table of results (dhry.tbl) are avail-
able via anonymous ftp from ftp.nosc.mil in
directory pub/aburto. Using the GNU C-
Compiler (gcc, g++ - GNU project C and
C++ Compiler v2.7) with optimization turned
off, the following results for SUN systems
(running SOLARIS 2.5) were obtained for
the Sun Workstations of the Institut fir Rech-
nerstrukturen und Betriebssysteme of the
University of Hannover (compare Fig. 3.5.):

SUN SPARC 11, 40 MHz

One run through Dhrystone: ~ 78.6 s
Dhrystones per Second: 12717.8
SUN SPARC 10, 33 MHz

Onerun through Dhrystone: 37.6 s
Dhrystones per Second: 26574.5
SUN ULTRA 1, 143 MHz

Onerun through Dhrystone: 14.6 s
Dhrystones per Second: 68642.0
SUN ULTRA 2, 168 MHz

Onerun through Dhrystone: 12.4 s
Dhrystones per Second: 80829.9

KD hrystonestaco nds

20000
15000 3
10000 3

I Tf nll

om _'_-j

M. O, oz

Wsrarcn O uolTrad

B srercio EulTraz

Fig. 3.5. Dhrystone (version 2.1) results for
SUN microprocessors

To show the significant impact of the quality
of the generated code, the compiler optimiza-
tion (02) was used (compare Fig. 3.5.):

SUN SPARC I, 40 MHz

One run through Dhrystone: 34.6 s
Dhrystones per Second: 28861.4
Factor to no optimization 227
SUN SPARC 10, 33 MHz
One run through Dhrystone: 21.3 s
Dhrystones per Second: 46915.3
Factor to no optimization 1.77
SUN ULTRA 1, 143 MHz
One run through Dhrystone: 6.2 s
Dhrystones per Second: 160599.6
Factor to no optimization 234
SUN ULTRA 2, 168 MHz
One run through Dhrystone: 5.3 s
Dhrystones per Second: 188798.0
Factor to no optimization 234
60000
5000
40000
30000
2000
10000 — ~I:

00

Dhry (¥1.4) Dhry [¥2.4)

M HP comi7as O sal moieo2

Bl 0Eceq00 50 M sum uLTRA

[1B Rewe0m0-5aH

Fig. 3.6. Dhrystone results for workstations

Dhrystone Results for different architec-
tures:

Fig. 3.6. and Tab. 3.1. show results of thetwo
Dhrystone workloads (version 1.1 and ver-

Benchmarking

27

sion 2.1) for some well known workstation
architectures. The initial Dhrystone was pro-
grammed using ADA. The C and PASCAL
versions helped to make it portableto al sys-
tems. Theinitial version 1.1 allowed compil -
ers with good optimization to do some "ille-
gd" optimizations. Since the code does not
compute anything useful and some branches
in the program are never executed, good opti-
mizers simply deleted these branches. In ver-
sion 2.1 of Dhrystone some code is added to
these branches and prevents them from being
eliminated. Furthermore, the overhead neces-
sary for the measurement loop was hard to
determine. To improve accuracy the loop

1. The results can be found on the Internet at the URL:
http: //performance.netlib.or g/performance
/htmi/PDSop.html

check of the measurement loop became part
of the benchmark itself. In summary, version
2.1 of Dhrystone is more redlistic which re-
sults in slightly worse performance numbers
compared with version 1.1.

The selection of the systems is not meant to
show which company offers the best system.
The selection criterion is simply the avail-
ability of results for different workloads.
Throughout the rest of the section, the bench-
marking results for the five systems of Fig.
3.6. are used. The results are taken from the
Performance Data Base of the University of

Tennessee at Knoxvillel.

CPU Dhry Dhry
Computer Operating System CPU MHz V11 V21
HP 9000/735 HP-UX 9.01 PA-RISC7150 99 147
DECB8400 5/300 UNIX V4.0 DEC21164 300 550 465
IBM RS/6000-59H | AIX 3.2.5 POWER-RISC 66 140 128
SGI INDIGO-2 IRIX 6.2 MIPS R10000 195 200 188
SUNULTRA 1 Solaris 2.5 Ultra SPARC 167 190 179
Tab. 3.1. Dhrystone results for workstations
Prosand Cons
The example above indicates the advantages - Disadvantages:

and disadvantages of using a method like
Dhrystone.

- Advantages:
« It offersafast, portable evaluation
program,

e itiseasy touse and
¢ theresults are easy to compare.

¢ Resultscan only be used as reference,
illegal optimizations are possible,

e astatic workload without user specif-
ic parametersis used, and

e itisunsuitablefor multiprocessor sys-
tems.

28

Performance Analysis of Monoprocessors

Whetstone:

The Dhrystone workload was first published
in 1984. It was designed to evaluate the inte-
ger performance of a system. Especialy for
scientific applications the floating point per-
formance is of equal or greater value. The
predecessor of Dhrystone, the Whetstone,
was published in 1976 evaluates the floating
point units besides the integer units. A run of
the Whetstone workload is a set of loops re-
quiring integer, boolean, and floating point
arithmetic. Iterative calls to subroutines and
inlinetranscendental functions are also made.
With the benchmark coded in C, multiple
Whetstone runs were performed on the same
SUN workstations with SPARC micropro-
cessors as in the previous section. The GNU
C++ compiler (version 2.7) was used to com-
pile the Whetstone program. Because the
code does not support cooperative multitask-
ing and requires|essthan 200 KB RAM (ran-
dom access memory), even on RISC proces-
sors, benchmark results tend to be insensitive
to system bus bottlenecks. The first series of
experiments was run without optimization
settings offered by the compiler (compare
Fig. 3.5.):

SUN SPARC I, 40 MHz

One run through Whetstone: 108350 s
(1 Million Whetstone instructions)
MWhetstones per Second: 92.3

SUN SPARC 10, 33 MHz

One run through Whetstone: 69580 s
MWhetstones per Second: 143.7
SUN ULTRA 1, 143 MHz

One run through Whetstone: 36110 ns
MWhetstones per Second: 276.9
SUN ULTRA 2,168 MHz

One run through Whetstone: 17740 s
MWhetstones per Second: 563.7

The second series of experiments was run
with the optimization parameter O2 turned on
(compare Fig. 3.5.):

SUN SPARC 11, 40 MHz

Onerun through Whetstone: 72620 ns
(1 Million Whetstone instructions)
MWhetstones per Second: 137.7
Factor to no optimization 1.49
SUN SPARC 10, 33 MHz

One run through Whetstone: 49230 s
MWhetstones per Second: 203.1
Factor to no optimization 141
SUN ULTRA 1, 143 MHz

One run through Whetstone: 25240 s
MWhetstones per Second: 396.2
Factor to no optimization 143
SUN ULTRA 2, 168 MHz

One run through Whetstone: 12430 s
MWhetstones per Second: 804.5
Factor to no optimization 143

W-irhetstonesf=zconds

100000]
500.00]
T 10 | mm H
Mo, Ot oz
B =parcn [0 UTRAA
W sparcio Hutraz

Fig. 3.7. Whetstone results for SUN micro-
processors

Benchmarking

29

The Pros and Cons for the Whetstone work-
load are the same as those for the Dhrystone
workload.

3.1.2. Kernes

In contrast to synthetic workloads which do
not compute anything useful but stress the
hardware, kernels are the time consuming
portions of real applications. In general, an
application consists of four steps:

- input data,

- initiaize,

- cdculate, and
- output results.

The second (initialization) and the third (cal-
culation) steps are used to extract kernel
codes. Depending on the goals of perfor-
mance evaluation, these kernels can be used
directly. If needed, smaller fractions (e.g.,

some time consuming loops) can aso be ex-
tracted.

LINPACK:

The collection of LINPACK application ker-
nels collected by Jack Dongarra [Don79] is
probably the best known benchmark work-
load. LINPACK consists of numerical sub-
routines for the solution of problems from
linear algebra. In contrast to other more gen-
eral workloads, these subroutines specifically
show how well a system performs the solu-
tion of dense matrix problems. A linear sys-
tem of equations Ax=b is called denseif only
few of the matrix coefficients of A are zero.

CPU|LINP.|LINP.| Theore-
Computer Operating System, Compiler MHz| 100 |1000 | tical
HP 900/0735 +OP3 -WI -aarchive -WP -nv -w ConvexMlibl.2 99 |41 120 198
DEC8400 5/300 -inline=daxpy -ur=3 -fast -O5 -tune ev5 300 (140 |[411 600
IBM RS/6000-59H | v3.1.1xIf -Pv -Wii -me -ew -O3 -garch=pwrx 66 |132 |230 264

-gtune=pwrx- ghot -ghsflt -qnosave

ORIGIN 2000

SGI -n32 -mips4 -Ofast=ip27 -TENV:X=4 195 |114 |344 390
-LNO:blocking=off:ou_max=6:pf2=0

SUNULTRA 1

Tab. 3.2. Linpack results for workstations

-V -fast -native -dalign -libmil -xO4 167 |70 237 333
-Qoption cg=20 -Qms_pipe+float_|loop_|d=3D16
-onetrip -crossfile -xsafe=3Dmem

The LINPACK subroutines cause a high load
for the floating point units compared to other
operations (integer operations, memory ac-
cess). Most of the floating point operations
are executed by the so-called Basic Linear

Algebra Subprograms (BLAS). The data
structures for the BLAS routines are mainly
onedimensional arrays. Thisresultsin an ex-
cellent test for vectorization units which typ-
ically speedup the computation.

30

Performance Analysis of Monoprocessors

The LINPACK workload is scalablewith two
standard workloads defined for matrix size
(100 by 100) and matrix size (1000 by 1000).
In principle, every other matrix size is possi-
ble (matrix size is a parameter), but mainly
two different matrix sizes are used to make
the results easier comparable.

Tab. 3.2. shows an example table of how the
LINPACK results are listed in the Perfor-
mance Data Base of the University of Ten-

nessee at Knoxvillel. Each row of the table
contains the results for one system. The first
column contains the name of the system, the
second column the parameters that were used
to execute the benchmark, the third column
the frequency used for the microprocessor,
the fourth column the results for LINPACK
100, the fifth column the results for LIN-
PACK 1000, and the last column the theoret-
icaly possible performance.

0000
40000
S000
oo Lalllla]
LINF.A00 ' LINF. 4000 Theamtzal
B HP som0i73s O 531 oriGIN 200
W DEce400 S5m0 W =un uLTRAA
(] IEM RS/000-55H
Fig. 3.8. Linpack results

Fig. 3.8. shows LINPACK results for the
workstations. The execution time of the LIN-
PACK workload is used to caculate the
MFLOPS performance of the target system.
The first part of the figure shows the results
for matrix size (100 by 100), the second part

1. The results can be found on the Internet at the URL:
http://performance.netlib.or g/performance
/htmi/PDSop.html

shows the results for matrix size (1000 by
1000) and the third part shows the theoreti-
cally possible MFLOPS performance of the
system. Since LINPACK is especialy de-
signed to stress the floating point units, the
resultsfor LINPACK 1000 should be closeto
the theoretically possible maximum perfor-
mance of the system.

Besides the LINPACK kernels, there are a
several other kernels used as benchmark
workloads. Examples of kernels from the
Performance Data Base of the University of
Tennessee are MM (Matrix Multiplication),
FFT (Fast Fourier Transforms with single
and double precision), Queens (find all ways
that 14 queens can be placed on a 14 by 14
chessboard), FIB (Fibonacci test), and others.

Prosand Cons

The example above indicate the advantages
and disadvantages of using a kernel based
workload like LINPACK for benchmarking:

- Advantages:
« Itoffersafast, portable evaluation
program,

e itiseasy to use,
e itisscalable and
« theresults are easy to compare.

- Disadvantages:

¢ Resultscan only be used as reference,
illegal optimizations are possible,

e astatic workload without user specif-
ic parametersis used, and

e operating system and compiler code
generation have significant impact on
the results.

Benchmarking

31

3.1.3. Application Suites (SPEC)

The System Performance Evaluation Group
(SPEC) was founded in 1988 by a small
group of workstation vendors to overcome
the lack of redlistic standard workloads for
benchmarking workstations.

Many of the major computer producers are
represented in the SPEC organization. The
main goal of the SPEC consortium is to col-
lect programs based on real world applica-
tions in order to use them as benchmark

mark suite is a mixture of applications with
floating point intensive (compare Tab. 3.4.)
and integer intensive computations (compare
Tab. 3.3.). SPEC used the SUN SPARC sta-
tion 10/40 (40MHz SuperSPARC with no L2
cache) as a reference machine to normalize
the performance metrics used in the SPEC95
suites. Each benchmark is run and measured
on this machine to establish a reference time
for that benchmark. Thesetimes are then used

workloads, Thus, the resulting SPEC Bench- " the SPEC calculations.
Benchmark Ref. Application Task
time(s) area

099.go 4600 Games, Al An internationally ranked go-playing program

124.m88ksim 1900 Simulation Simulates the M otorola 88100 processor running
Dhrystone and a memory test

126.gcc 1700 Compiler Compiles source code to an optimized
SPARC assembler code

129.compress 1800 Data compression Compresses large text file (approx. 16 MB)
using adaptive Level-Ziv coding

130.1i 1900 Language interpreter Xlisp Interpreter

32.ijpeg 12400 Image processing jpeg image compression with different parameters

134.perl 1900 Shell interpreter Perl Interpreter

147.vortex 2700 Database Object oriented data base

Tab. 3.3. SPEC CINT95 (integer) benchmarks

Criteriafor SPEC Benchmarks

In the process of selecting applications to be
used as benchmarks, SPEC considered the
following criteria

- Portability to all SPEC hardware archi-
tectures (32- and 64-bit including Alpha,

32

Performance Analysis of Monoprocessors

Intel Architecture, PA-RISC, Rxx00,
Sparc, etc.)

- Portability to various operating systems,
particularly UNIX, NT and VMS.

- Benchmarks should not include measur-
ablel/O.

- Benchmarks should not include network-
ing or graphics.

- Benchmarks should run in 64MB RAM
without swapping. (SPEC is assuming
this will be a minimal memory require-
ment for the life of SPEC95; and the em-
phasis is on compute-intensive perfor-
mance and not disk activity).

- Benchmarks should run at least five min-
utes on a DEC 200MHz Alpha system.
Benchmarks should not spend more than
five percent of timein non-SPEC provid-
ed code.

The user of the SPEC suite receives the
source code to compile it for the target sys-
tem. The user is alowed to tune the target
systems to obtain the best possible results.
The workload generated by the code is useful
in evaluating the processor, the memory hier-
archy, and the compiler of the target system.
Unfortunately, all components are evaluated
as awhole and the result is a single number.
Thus, it isimpossible to evaluate the individ-
ual components using the SPEC benchmark
suite. Using source code |eads to comparable
results for the systems. One problem known
from previous benchmarks is the danger of
special compiler options in order to improve
results for SPEC benchmark tests. The more
important a benchmark gets, the bigger the
danger for manipulationsis. Since all results
have to be published with details of the com-
piler and operating system used, the test re-
sults should be reproducible and the danger
of such manipulationsis minimized.

Benchmark Ref. Application Task

time(s) area
101.tomcatv 3700 Fluid dynamics Vectorized mesh generation
102.swim 8600 Weather prediction Shallow water equations
103.su2cor 1400 Quantum physics Monte-Carlo method
104.hydro2d 2400 Fluid dynamics Navier Stokes equations
107.mgrid 2500 Electromagnetism 3D potential field
110.applu 2200 Fluid dynamics Partial differential equations
125.turb3d 4100 Simulation Turbulence modeling
141.apsi 2100 Weather prediction Weather and climate modeling
145.fpppp 9600 Chemistry Gaussian series of quantum chemistry

benchmarks

146.wav 3000 Electromagnetism Maxwell equations

Tab. 3.4. SPEC CFP95 (floating point) benchmarks

33

Benchmarking

1500000

000,00

£o0000

om0 El YSTSTeIareT

’ refers noe time
[Jol==1 W 1z0.
W 1 24 mesleim O =ijpeg
[EE [1z4perl
|:| 129 compress . 147 wores

Fig. 3.9. SPEC CINT95 (integer) benchmarks
(reference times in seconds)

10000.00

L0000

=)
=

=k mnce tine

W it toresty 44 0=0pl
B 102 5vim O 125 mtad
Oimgagar W44 =i
O 1tydmed 14500
B i7moid A4

Fig. 3.10. SPEC CFP95 (float. point) bench-
marks (reference times in seconds)

The SPEC organization provides workloads
inform of C programsto evaluate the floating
point performance and the integer perfor-
mance of computer systems. Using these
workloads results for the speed and through-
put of several target systems are produced.
The metric for speed is formed SPECint95
(integer tests) or SPECfp95 (floating point
tests). The CINT95 and CFP95 suites can be
used to measure and calculate the following
metrics:

CINTOS:

SPECIint95: The geometric mean of eight
normalized ratios (one for each integer
benchmark) when compiled with aggres-
sive optimization for each benchmark.

SPECint_base95: The geometric mean of
eight normalized ratios (onefor eachinte-
ger benchmark) when compiled with con-
servative optimization for each bench-
mark.

SPECint_rate95: The geometric mean of
eight normalized throughput ratios (one
for each integer benchmark) when com-
piled with aggressive optimization for
each benchmark.

SPECint_rate base95: The geometric
mean of eight normalized throughput ra-
tios (one for each integer benchmark)
when compiled with conservative optimi-
zation for each benchmark.

CFP95:

SPECfp95: The geometric mean of 10
normalized ratios (one for each floating
point benchmark) when compiled with
aggressive optimization for each bench-
mark.

SPECfp_base95: The geometric mean of
10 normalized ratios (one for each float-
ing point benchmark) when compiled
with conservative optimization for each
benchmark.

SPECfp_rate95: The geometric mean of
10 normalized throughput ratios (one for
each floating point benchmark) when
compiled with aggressive optimization
for each benchmark.

SPECfp_rate base95: The geometric
mean of 10 normalized throughput ratios
(one for each floating point benchmark)
when compiled with conservative optimi-
zation for each benchmark.

34

Performance Analysis of Monoprocessors

The difference between a"base" metric and a
"non-base" metric is caused by compiler op-
tions. In order to provide comparisons across
different computer hardware, SPEC had to
provide the benchmarks as source code.
Thus, in order to run the benchmarks, they
must be compiled. There was agreement that
the benchmarks should be compiled the way
users compile programs. But how do users
compile programs? On one side, people may
experiment with many different compilers
and compiler flags to achieve the best perfor-
mance. On the other side, people may just
compile with the basic options suggested by
the compiler vendor. SPEC recognizes that

1. The results can be viewed using the internet URL :
http: //mww.specbench.org

they can not exactly match how everyone
uses compilers, but two reference points are
possible. The base metrics (i.e,
"SPECint_base95") are required for al re-
ported results and have set guidelines for
compilation (i.e., the same flags must be used
in the same order for al benchmarks). The
non-base metrics (i.e., "SPECint95") are op-
tional and have less strict requirement (i.e.,
different compiler options may be used on
each benchmark.

A full description of the distinctions can be
found in the SPEC95 Run and Reporting

rules available with SPEC95L.

Computer Operating System CPU CPU | SPEC SPEC
MHz fp95 int95
HP 9000/735 HP-UX 9.01 PA-RISC7150 99 3.98 327
DEC8400 5/300 UNIX V4.0 DEC21164 300 | 11.70 7.43
IBM RS/6000-59H | AIX 3.25 POWER-RISC 66 8.75 3.10
SGI INDIGO-2 IRIX 6.2 MIPS R10000 195 | 10.20 8.50
SUN ULTRA 1 Solaris 2.5 Ultra SPARC 167 8.45 558
Tab. 3.5. SPEC 95 results published by SPEC
15.00 Theratio for each of the benchmarks are cal-
3 culated using a SPEC-determined reference
10,00
] time and the run time of the benchmark. A
500 metric to determine the throughput of a sys-
] tem is the SPECint rate95 or the
- SPECfp_rate95.
SPEG a5 SPEC it
Thefollowing steps are necessary to produce
the SPECint95 and SPECfp95 numbers:
W 4P ooo0irEs O sal Wi 2 .
[— Bl 0 ULTR 1. Implementation of the benchmarks from
[|EM Risf000-5oH Tab. 3.3. or Tab. 3.4. on the target system
and measurement of the execution times.
Fig. 3.11. SPECfp5 and SPECInt95 results 2. Calculation of the SPECratio for the sin-
gleworkloads:

Benchmarking

35

SPECratio for workload x =
x.reference.time/x.execution.time,

i.e,, the metric SPECratio is a relative
number for the execution time of the
workload compared to a reference time
for the workload.

3. After the SPECratio is determined for all
workloads, the geometric meansis calcu-
lated for the SPECratios of the integer
workloads (=SPECint95) and the geo-
metric means is calculated for the SPEC-
ratios of the floating point workloads
(=SPECfp95).

Tab. 3.5. and Fig. 3.11. show SPECfp95 and

SPECIint95 results for the workstations pub-

lished by SPEC™.

Thefollowing steps are necessary to produce

the SPECint95 and SPECfp95 rates:

1. For each workload, a so called SPECrate
iscalculated. The SPECrateis afunction

- of the number of copies of the pro- B DEGaH00 5E00
gram that were executed,

- of thet! methat was needed to execute Fig. 3.12. SPECOS rates
al copies, and

- of areference factorZ.

1. The results can be viewed using the internet URL :
http: //mww.specbench.org

2. After the SPECrate is determined for all
workloads, the geometric means s calcu-
lated for the integer benchmarks
(=SPECint_rate95), and the geometric
means is calculated for the floating point
benchmarks (=SPECfp_rate95).

Fig. 3.12. and Tab. 3.6. show SPECfp_rated5
and SPECint_rate95 results for the worksta-

tions published by SPECS.

18000

10000

Lo

SPECSSfp_rete SPECOLIn_me

B HF 7S [eler

2. Theformulafor the exact determination of the SPEC-
rates can be found using the internet URL:
http://mmw.specbench.org.

3. Theresults can be viewed using the internet URL:
http: //mww.specbench.org

Computer Operating System CPU CPU SPEC95| SPEC95
MHz fp_rate | int_rate
HP 9000/735 HP-UX 9.01 PA-RISC7150 99 358 294
DECB8400 5/300 UNIX V4.0 DEC21164 300 104 64,2
SGI INDIGO-2 IRIX 6.2 MIPS R10000 195 102 68
Tab. 3.6. SPEC 95 rates published by SPEC

36

Performance Analysis of Monoprocessors

Prosand Cons

The examples above indicate the advantages
and disadvantages of using an application
based workload for benchmarking:

- Advantages:
« It offersfast, portable evaluation pro-
grams,

e itiseasytouse,
e theresultsare easy to compare.

- Disadvantages:

¢ Resultscan only be used asreference,
illegal optimizations are possible,

e astatic workload without user specif-
ic parametersis used,

e itisnot scalable, and

e operating system and compiler code
generation have significant impact on
theresults.

¢ Thereisno obvious relation between
SPEC results and architectural pa-
rameters.

Benchmarking

37

3.1.4. Comparison of Benchmark Results

Tab. 3.7. illustrates that the benchmark re-
sults roughly describe the performance po-
tentia of thetarget systems. In genera, asin-
gle number is not enough for a detailed per-
formance description of atarget system. The
table contains the ranks of the workstations
for the different benchmarks. Since none of
the systemsisthebest for all benchmarks, the
question which isthe best system for apartic-
ular need may be asked. Even if all systems
were equally priced, a user would not auto-
matically buy the DEC system, if the applica-
tion is run with a more integer oriented pro-
file.

Most benchmark tests are useful tools to
compare different computing systems. Since
the result often is a single number, it is only
useful for comparison. Question like "Do |

really need this system?' or "Does my appli-
cation run sufficiently fast on this system?"
are generally not answered using "standard"
benchmarks.

In summary, benchmarks are of minor impor-
tance for system designers and application
devel operswith respect to the optimization of
systems or applications. They evaluate exist-
ing systems, but they do not provide specific
information to find, for example, system bot-
tlenecks. The evaluation of a system under
test as defined in Fig. 2.9.a (SUT includes
compiler, operating system and hardware)
makesit impossible to trace any performance
problems. Nevertheless, benchmarking isim-
portant for purchasing decisions and for com-
paring and ranking computer systems.

Ranking
Computer Operating | CPU CPU | N-MIPS| SPEC SPEC LINP.
System MHz | V21 int95 fp95 1000
HP 9000/735 HP-UX 9.01 | PA-RISC7150 99 4 4 5 5
DECB8400 5/300 UNIX V4.0 | DEC21164 300 1 2 1 1
IBM RS/6000-59H | AIX 3.2.5 POWER-RISC 66 5 5 3 4
SGI INDIGO-2 IRIX 6.2 MIPSR10000 195 2 1 2 2
SUN ULTRA 1 Solaris2.5 |UltraSPARC 167 3 3 4 3
Tab. 3.7. Comparison of benchmark results for workstations

38 Performance Analysis of Monoprocessors
Perfor mance Evaluation
A
‘ Real System based ‘ Model based
‘ Benchmarking ‘ ‘ Deterministic ‘
, P <
1 Simulation Analyt, System
‘Lowle\/el (hw) Queueing Theory ‘ Dulati H Ms(/)de%lyng ‘
‘ Kernels Petri Nets v
‘ Applications W()Srtﬁctpa%gr%%atljel ‘ PerPreT ‘
‘ Suitess
3.2. Modeling

In the previous section, real workloads are
implemented on real machines to determine
the performance of the target system in terms
of executed instructions or operations per
time unit. These benchmarks are necessary
because the complexity of the hardware and
the quality of the compiler generated codes
make it impossible to predict the perfor-
mance of a system by simply looking at the
hardware. It is possible to predict peak per-
formances (numbers selected by the ven-
dors), but as the tests in the previous section
show, the pesk performance is generally
quite different from that measured by real ap-
plications.

For system designers the task of performance
evaluationiscrucial, but in genera the target
system is still under design and measure-
ments are not possible. In this case, the target
system and the workload which isintended to
run on that system have to be modeled. The
system under test to be optimized is outlined
inFig. 3.13,, it consists of hardware and some

functionality of the operating system (such as
scheduling, 1/0).

- ™

Application

= R

\ /

NG System under Test //

SUT for hardware devel oper

Fig. 3.13. SUT depending on the level of ab-
straction

In [Men94] amode is defined as a represen-
tation of a system. Applied to computer sys-
tems, modeling is used for at least two pur-
poses:

Modeling

39

- functiona modeling to evaluate the oper-
ation of the system, and

- performance modeling to predict perfor-
mance measures of a system.

Basic
Software
Parameters

Workload
Parameters

Hardware
Parameters

A / A

Performance M odel

i

Performance M easures
(response time, throughput, utilization)

Fig. 3.14. Performance modeling

Functional models to represent the opera-
tion of the system:

As an example of functional modeling, Petri
Nets can be used to prove the absence of
deadlocks or starvation in concurrent systems
[Pet81]. Thus, the focus of functional models
ison the study of certain properties of the be-
havior of asystem. A brief overview on mod-
eling multiprocessors using Petri Net models
isgiven in section 5.2. of this book.

Performance models to predict perfor-
mance measur es of a system:

As shown in Fig. 3.14., the workload, basic
software, and hardware are represented
through parameters. The performance model
uses the parameters to predict performance
measures such as response time, throughput,
and utilization of the system. Workload pa-
rameters describe the load imposed on the
target systems. They include the arrival rates
of jobs and their demands on the target sys-
tem resources such as execution time, memo-
ry requirements, and |/O behavior. The basic

software parameters such as maximum de-
gree of multiprogramming and CPU dis-
patching priority reflect the effect of the op-
erating system on the system performance.
Hardware parameters describe the expected
performance of the hardware and include the
for example processor speed, memory access
time, disk latency and transfer rates, and local
area network latency and transfer rates.

40

Performance Analysis of Monoprocessors

3.21. Queueing Networks

In computer systemsthe cooperation between
hardware and operating system consists of
jobs sharing system resources such as CPU,
disks and other devices. Since generally one
job can use the resource at any time, all other
jobs wanting to use that resource wait in
queues. Asdescribed in [Jai91] queueing the-
ory helps in determining the time that jobs
spend in various queues in the system.

To demonstrate the application of perfor-
mance modeling techniques based on queue-
ing networks an example is given. Suppose
the manager of a computer center has the
choice of two systems. The operating costs
for system A are five cents per second. Sys-
tem A completes the average job in two sec-
onds. For every completed job the computer
center gets 25 cents. System B istwice asfast
as system A completing the average job in
one second, but it aso costs more money to
operate system B, which is eight cents per
second. In average every five seconds a new
job arrives at the queue, thejob arrival timeis
assumed to be exponentialy distributed, the
job arrival rate| is 0.2 (onejob every 5 sec-
onds) for both systems. The queue can hold
up to 4 jobs. Fig. 3.15. shows the two system
dternatives. The service rate of system A m
is0.5 (A needs 2 seconds to finish ajob), the
service rate m is 1 (B needs one second to
finish a job). This figure shows the basic
building blocks of queueing networks, the so
called station. A service center consists of a
queue, a service station, and a queueing dis-
cipline. The service center is visited by cus-
tomers. Modeling a computer system, a cus-
tomer can represent different entities, such as
memory requests, computer programs, indi-
vidual processes, communication messages,
jobs in an interactive or batch system. The
service stations have associated the parame-

tersof aservicetime distribution. The queue-
ing discipline describes the sequence to pro-
cess customers in the queue. Throughout the
examples considered in this book, the queues
have the FCFS (first comefirst serve) queue-
ing discipline. Other examples for queueing
disciplines would be round robin, processor
sharing and disciplines based on priority
schemes. The graphical representation of a
service station in aqueueing network isacir-
cle, the graphical representation of aqueueis
a rectangle with on side missing and some
vertical lines (compare Fig. 3.15.). The cus-
tomers follow the directed arcs connecting
the service stations and queues. |f a customer
has the choice of two arcs to follow next,
routing probabilities have to be associated
with each feasible branch. All examples in
thistext only use queueing networksinwhich
the number of customersisfixed and al cus-
tomers have the same routing probabilities
and service requirements.

Service rates:

Queue

(max. length4) Service station

Fig. 3.15. Service Center

Modeling

41

3.2.2. Basic Birth-Death Models

To answer the question whether the manager
should buy system A or system B, the
throughput, utilization and costs per job are
now calculated using a queueing network.
From the queueing network afinite state dia-
gram can be derived (compare Fig. 3.16.).
The steady state probabilities can be calculat-
ed using markovian analysis.

ojojololo

Fig. 3.16. State diagram

The circles of the steady state diagram con-
tain the number of jobsin the queue, | and m
are arrival and service rates, respectively. To
model the behavior of the system stochastic
processes [Jai91] are used. Such processes
are useful in representing the state of queue-
ing systems. The commonly used types of
stochastic processes are:

- Discrete-State, Continuous-State Pro-
cesses
A process is called a discrete-state pro-
cess if the number of values its state can
take is countable. For example, the num-
ber of jobsasystem can only take discrete
values, therefore the function number of
jobs over time is a discrete-state process
which isalso called a stochastic chain.
A process is called a continuous-state
process if the state can take any real val-
ues. For example, the function of the
waiting time of ajob is a continuous state
process.

- Markov Process

If the future states of a process are inde-
pendent of the past and depend only on
the present, the processis called aMarkov
Process. The Markov property makes a
process easier to analyze since we do not
have to remember the complete past tra-
jectory. Knowing the present state of the
process is sufficient. The processes are
named after A. A. Markov, who defined
and analyzed thein 1907. A discrete-state
Markov processis called aMarkov chain.
Thediagramin Fig. 3.16. ismore formal-
ly known as a Markov diagram. Its spe-
cia properties arise from the fact that it
usesthe exponential distribution to model
serviceand arriva times. The exponential
distribution has a so-called "memoryless’
property which means that for any state
the system can enter, the next state de-
pends solely on the current state of the
system. States visited previously to the
current state and the amount of time spent
in the current state or previous state have
no bearing on the next transition. Thisal-
lows time to be factored out of the analy-
Sis.

- Birth-Death Processes

The discrete-space Markov processes in
which the transitions are restricted to
neighboring states only are called birth-
death processes. For these processes, it is
possible to represent states by integers
such that a process in state n can change
only to state n+1 or n-1 (compare Fig.
3.16.).

The average number of times an arc of Fig.
3.16. is traversed per standard time unit is
thought of as the amount of flow along that
arc. It is obvious that the amount of flow
aong an arc depends upon being in the state

42

Performance Analysis of Monoprocessors

from which that arc departs. For asteady state
system, theflow along an arc isthe product of
the probability of being in the state from
which the arc departs and the rate associated
with the arc. For steady state diagrams it is
clear that the amount of flow into a state must
be equal to the amount of flow out of that
state. If thethroughput of the system hasto be
calculated the sum of the throughputs of the
individual states has to be calculated. The
throughput of theindividual statesisthe flow
aong the arcs labelled with m

The problem now is to calculate the steady

state probabilities Py, Py,...,P4, with P; = pro-

bability to be in state i. Using the following
facts, it is possible to form a system of linear
equations:

- Flow aong an arc is the product of the
probability of being in the state which the
arc departs and the rate associated with
thearc.

- Thesum of al flowsinto a state is equal
to the sum of al the flows out of that
State.

- Thesumoveral P; (i = 0, 1,...,4) is 1,
since at any time the system must be in
one of the four states.

- | and mare known values.

Theresulting linear system of equationsis:

nP, = | P, (Eq.3.1)
| Py+nP, = | P, +nP; (Eq.3.2)
| Py +1P; = | P,+1P, (Eq.3.3)
I Py+1P, = | Py+ P, (Eq.3.4)
P+ P, = | P, +nP, (Eq.3.5)

These are the global balance equations which
yield the steady state solution. Since the sum
of al probabilitiesis one, an additional equa-
tionisavailable:

Po+P +P,+Ps+P, = 1 (Eq.3.6)
For five unknowns (Py,...,P,), Six equations
are available ((Eq.3.1).,..., (Eq.3.6)), but one
of the equations is redundant. By using sub-

stitution of variables, the system can be
solved in terms of Py

(Eq.3.1) =>

P, = =P, (Eq.3.7)

3

(E9:3.2), (Eq.3.7)=>

2

_ |
P, = =Py (Eq.3.8)
m
(Eq.3.3), (Eq.3.7), (Eq.3.8)=>
| 3
Py = =Po (Eq.3.9)
m
(Eq.3.4), (Eq.3.8), (Eq.3.9)=>
I 4
P, = =P (Eq.3.10)
m

Using (Eq.3.7)....,(EqQ.3.10) the equation
(Eq.3.6) can be rewritten as:

T e
P0+—§P0+—ZPO =1
m m

[
P+ —Po+ =
m

(Eq.3.12)

Modeling

43

Now, the solution to Py is given:

1
2 3
| | |
=t —+—
2 3 4
m m m

P, =
1

2 (Eq.3.12)

+L
m

With the input values| and mall answers to
the performance questions can be given. Un-
der the given circumstances (arrival rate, ser-
vice rate, system costs per second), the man-
ager should not buy any of the two systems,
because they both result in negative opera-
tional costs. Given the results of Tab. 3.8. the
operational costs of system A should be less
than 4.9212 cents per second and the opera-
tional costs for system B should be less than
4.9936 cents per second to make money for
the given workload.

Input System A System B
| (arrival rate) 1/5 1/5
m(servicerate) 1/2 1
Results
Steady State Prob:
P 625/1031 625/781
Py 250/1031 125/781
P, 100/1031 25/781
Py 40/1031 5/781
P, 16/1031 1781
Utilization 1-Py 1-Py
U =406/1031 =156/781
Throughput Urm U*m
X =203/1031 =156/781
Revenue per sec. X*0.25 X*0.25
=0.049212 | =0.049936
Cost per sec. 0.05 0.08
Profit per sec. -0.000778 -0.030064
Tab. 3.8. Comparison of systems A and B

What happensif ahigher load is expected for
both systems. Assumethearrival rate goesup
from 1/5 (one job every five seconds) to 1
(one job every second). Since system B is
faster than system A, one would intuitively
expect that B would outperform A in terms of
profit. Tab. 3.9. shows the results for the new
workload, which makes both systems more
profitable. Now, System B clearly outper-
forms A in terms of profit per second.

But thisis only half the truth, the additional
problem with system A is that the average
number of jobs in the queue is much higher
than the average number of jobsin the queue
for system B, thus the waiting time for each
job and the response time of system A is
much higher than the corresponding times for
system B.

Input System A System B
| (arrival rate) 1 1
m(servicerate) 1/2 1
Results
Steady State Prob:
Py 131 1/5
P 2/31 1/5
P, 4/31 1/5
P3 8/31 1/5
Py 16/31 1/5
Utilization 1Py 1-Py
U =30/31 =4/5
Throughput U*rm U*m
X =15/31 =4/5
Revenue per sec. X*0.25 X*0.25
=0.120968 =0.2
Cost per sec. 0.05 0.08
Profit per sec. 0.070968 0.12
Tab. 3.9. Comparison of systems A and B
with new arrival rates

Performance Analysis of Monoprocessors

The average number of jobsin the system can
be calculated as:

AEJobs = P1><1+2><P2+3><P3+4><P4

(Eq.3.13)

For system A (I = 1, m= 1/2) the average
number of jobsin the systemis:
2/31 + 8/31 + 24/31 + 48/31 = 2.645

for system B (I = 1/3, m= 1) the average
number of jobsin the systemis:
1/5+2/5+3/5+4/5=2

Assume, the systems are interactive systems,
then the time for system A is definitely too
high. Thiswill lead to unsatisfied customers,
thus, decrease the arrival rate and profit.

The intentions of this example were:

- To show the basic technique of getting a
markovian model for a system.

- To show how the linear system of equa-
tions can be built using the steady state di-
agram.

- To show which kind of performance
questions can be answered by modeling
techniques.

- To show that the model is very sensitive
with respect to its parameters. Thus, the
determination of the parameters should
be carefully done.

In [Men94] an approach to build a validated
system model is described (compare Fig.
3.17.). The initial step is to construct a suit-
able performance model. Then, the necessary
parameters must be obtained and the neces-
sary assumptions stated. Using the parame-
ters, themodel can be constructed and solved.
By solving it is meant to obtain performance
measures through "manipulation” of the pa-
rameters. For this so called model solution
step, many techniques have been suggested.
Exact solutions of approximate models or ap-
proximate solutions of approximate models
are possible. Since the approximations al-
ways involve assumptions, the results should

be vaidated by experiments. The result of
this validation step is either that the model is
acceptable or unacceptable. If found unac-
ceptable, the critical task is now to locate the
model errors and build a new so called cali-
brated model. The calibrated model hasto be
validated, and if found unacceptable, the
search for model errors begins again. Once a
successfully validated baseline model is
found, it can be used to build the prediction
model. The prediction model is designed to
find answers to the "what if" questions, for
exampleif the baseline model describesade-
vice, it can be used to build the prediction
model of the upgraded device. The question
"what if the device is upgraded?' can now be
answered. Since the baseline model is
changed in order to build the prediction mod-
¢, the validation procedure hasto be repeated
if possible.

Modeling

45

Baseline M odel

Prediction Model

check
validity AUnacceptable

acceptable validated model

Fig. 3.17. Baseline/prediction modeling par-
adigm

46

Performance Analysis of Monoprocessors

3.2.3. Birth-Death Modelswith Infinite Number of States

The queue of example system A is now sup-
posed to be unlimited (compare Fig. 3.18.).
Using thisassumption, isit possibleto gener-
ate formulae to be able to calculate the sys-
tems performance characteristics such aspro-
cessors utilization, response time, through-
put, average queue length?

Service rate:

m=05

Queue

Fig. 3.18. System model (unlimited queue
length)

Fig. 3.19. shows the resulting state space dia-
gram:

ololoJON
/% /) /
m m m m m

Fig. 3.19. State diagram

In this diagram the system "flows' from state
to state depending on the system parameters
| and m Suppose, the queue holdsk jobs (i.e.
thesystemisin state k), thereisonejobin ex-
ecution at rate mand there are (k-1) jobs wait-

ing inthe queue. The statek isonly left, when
ajob isfinished (with rate m), or when anew
job arrives at the queue (with rate |). At any
point in time at maximum one of these events
can happen. Thus, from state kit is only pos-
sibleto go to state (k-1) or (k+1). Such asys
tem is also called birth-death system. As be-
fore, the flow balance equations can now be
formulated (using the basic assumption flow
in = flow out):

P, = 1P, (Eq.3.14)
| Py+nP, = | P, +1P, (Eq:3.15)
[P +mP,, = P +mP . (Eq3.16)

Using these linear equations, the probabilities
P; (i=0,1,2,...) can be determined. P; is the
probability that (i-1) jobs are in the queue,
one job is executed. Py is the probability that

the system isidle (i.e. there are no jobs to be
executed). Asbefore, al P;s can be represent-

ed in terms of Py:
(Eq.3.14) =>

(Eq.3.17)

Modeling

47

(Eq.3.14),(Eq.3.17)=>

N

P, = Po (Eq.3.18)

3
3]

This scheme can be applied to al P;s:

| 2 1
= = = — =1 = —
P = P sz>k_2 /i = =Py
(Eq.3.19)

After all Pjsare expressed in terms of P, the
fact that the sum of all probabilities must be
oneis used to calculate Py

2
| |

Po+=Po+—=Po+¥% =1 (Eq.3.20)
m=
P0x8%+|.+|——2+1/49= 1
e M pf o
2 -1
P0: 1+I-+I——+1/4
m .2
L Q¥ iél}_ = .._.J:_.. :1_!
0 [aizoenﬁ 1_L 1
(Eq.3.21)

Using (Eg.3.19) and (Eq.3.21) the expression
for the steady state probability to bein state k

(Eq.3.22)

Now the probability of each P; (i=0,1,2,...)
can easily be calculated, but more important,
these probabilities can be used for more use-
ful performance measures. The system is
busy (utilized), when at least one job is
present. Thus, the utilization of the systemiis:

utilization = 1-P, = (Eq.3.23)

L
m

For system A (I =1/5, m=1/2) with unlimited
queue from the previous example, the utiliza-
tion would be 0.4, for system B (I =1/5, n¥1)
with unlimited queue the utilization would be
0.2, which isnot surprising since system B is
twice asfast as system A.

Thethroughput is defined asthe rate at which
jobs leave the system after being executed.
Since the flow in = flow out assumption is
aso valid for the total system, it is not sur-
prising that the throughput is identical with
thearrival ratel .

throughput = | (Eq.3.24)

Thus, thethroughput of both systems A and B
is0.2.

The mean queue length (average number of
jobs in the system) is also an important per-
formance measure. Using a state-by-state

48

Performance Analysis of Monoprocessors

enumeration, the mean queue length (mgl)
can be calculated as:

mgl = 0 XP,+ 1xP; + 2 xP, + ¥4 (Eq.3.25)

.k 1 &
mal = 87 kP = é*k‘:lkgéﬁg <@ Lo
L L

g lo, m _ m _ |
€ nP aq_'_(')'z 1_I_ m-|
e np m
(Eq.3.26)
Mean queue length:
mgl = - (Eq.3.27)

m—|

Applied to the systems A and B the mgl, =
0.6 and the mglg = 0.25.

Especially in case of interactive systems, the
average response time is a useful perfor-
mance measure. It is defined as the average
total time (from arrival upon completion) a
job spends in the system. The average re-
sponse time is thus the sum of the waiting
time for ajob and the service time. The wait-
ing time for a job is the product of the mql
with the time to execute one job (1/m). The
servicetime of thejob itself isalso 1/m Thus,
the responsetime (rt) is:

=1

1 1
mm-I m m-I

(Eq.3.28)

Using Little's Law [Lit61] is another way to
calculate the response time rt. Little proofed
that the average number of jobsin the system
isequal tothearrival rate of jobstimesthe av-
erage time each job stays in the system:

mgl = throughput xrt (Eq.3.29)

Using Little's Law, (Eq.3.24) and (Eq.3.26)
the response time rt can be calculated as:

3

- mal -

- - m=| 1
throughput —

m—1

(Eq.3.30)

The response time for system A is then 3.3
seconds, for system B the response time is
1.25 seconds.

The examples in the previous section as-
sumed that the arrival rate and the servicerate
isindependent of the system state. Looking at
an interactive system with four users submit-
ting a job in average every 2 seconds to the
queue (I =0.5), itisclear that the arrival rate
depends on the state the system currently has.
After submitting ajob the user waits until the
job isfinished before he submits anew job at
thesamerate. If nojob isin the queue, the ar-
rival rate | g will be | g = 4*1 = 2.0, if three
jobs are aready submitted to the queue, the
arrival rate will bel 3=1 = 0.5. Assume that
the service request are similar and that the
system can shorten service time by pipeline
and cache effects, if more than one job isin
the queue. If onejobisinthe system, thetime
for the request is 0.5 seconds (m, = 2), if two
jobs are in the system, the time per request is
0.4 seconds (mp = 2.5), if threejobs are in the

Modeling

49

system, the rime per request is 0.3 seconds
(my = 3) and if 4 jobs are in the system, the
time per job is 0.25 seconds (my = 4). Thus,
the service rate also depends on the system

state. Fig. 3.20. shows the resulting system
model

P
:
e
:

Fig. 3.20. System model for a generalized birth-death model

Queue

Servicerates:

m =25
my =4

m =2
m=3

The state diagram for the interactive system
is described in Fig. 3.21. Using the flow bal-
ance eguations (flow-in = flow-out) the fol-
lowing system of equations is generated:

2P1 :2P0
2Py+25P, =2P;+15P;
15P;+3P; =1P,+25P,
1P,+ 4P, =05P;+ 3P,
05P; =4P,

AR

Fig. 3.21. State diagram

Since one of these five equations for five un-
knowns is redundant and can be deleted, the
sum of the probabilitiesis used to replace one
of the equations:

P0+ Pl+ P2+ P3+ P4: 1

Thus the solution of the system of eguations
is:

Py =40/113= 35.4%
P, =40/113= 35.4%
P, =24/113= 21.2%
P; =8113= 7.1%
P, =1113= 0.9%

Now the performance measures utilization,
throughput, queue length and response time
can be recalculated:
utilization = 1- Py
= 64.6%

throughput = 2P;+2.5P,+3P3+4P,

= 1.49 jobs per seconds

50

Performance Analysis of Monoprocessors

queuelength = Pq+2Py+3Pg+4P,
= 1.03jobs

responsetime = queue length / throughput
= 0.69

Modeling

51

3.2.4. Generalized Birth-Death M odels

If asystemisinagiven statek, indicating that
k jobs are in the system, in a birth death sys-
tem only two events can cause the system to
leave state k. Either one job is added to the
system (system proceeds from state k to state
(k+1)), or ajob is completed and leaves the
system (system proceeds from state k to state
(k-2)).

ololok{ol;
/ VA SV /
m m m m M1

Fig. 3.22. Generalized birth death state-space
diagram

The state space diagram of Fig. 3.19. shows
that the arrival rate | and the service rate m
are independent of the current state. To gen-
eralize this model, state dependent birth and
death rates are introduced. Being in a state k,
thearrival rateof new jobsisl |, and the com-
pletion rate of a job is my (compare Fig.
3.22).

This state-space diagram describes aload de-
pendent service center. At a load dependent
service center the service rate varies with the
number of customers present. A practical ex-
amplefor aload dependent service center isa
disk device where accesses are served in an
order that attempts to minimize head move-
ment. The greater the number of requests
queued at such adevice, the smaller the aver-
age time required to satisfy each request,
since the effectiveness of the scheduling pol-
icy increases with queue length.

As shown in the previous example, the flow
balance equations can be generated:

mP, =1,P,

[oPo+mP, = 1 P+ mP,

Fo1Puo1 T M 1Pris = TPt mPy

This can be rewritten as:

|
-
~
1
=~
|
[
X__
=~
|
N
X
~
X__
lo
X
T
=~
[

(Eq.3.31)

Using the conservation of total probability
Po+P;+Py+% =1, substitution and
simplifications, Py can be calculated as:

(Eq.3.32)

52

Performance Analysis of Monoprocessors

Thefirst termin this summation is defined to
be 1. Using (Eq.3.31) and (Eq.3.32), any state
Py can be expressed in terms of | and m

~ ko1 | -1 oq |

p = o ¥ k-1 k:| % K
k |:aizook=on]<+l Ok=0"1<+1
(Eq.3.33)

Now the performance measures utilization,
throughput, queue length and response time
can be recalculated:

Utilization:

utilization = 1-P, (Eq.3.34)
Throughput:

throughput = éi_lw xP, | (Eq.3.35)

Prosand Cons

The examples above indicate the advantages
and disadvantages of using modeling for per-
formance evaluation:

- Advantages:

« applicablewithout real system or pro-
totype of real system

e changesin workloads are easily mod-
eled through changes in the corre-
sponding parameters

e graphical representation of model
helps to understand the modeled sys-
tem

e accurate results for many systems

e very useful for system designersto

Queuelength (mql):

mal = § i: Py (Eq.3.36)
Response time (rt):
_ __mql _ a i: P
throughput éi: 1"1< P,
(Eq.3.37)

The focus of this text is not on markovian
modeling techniques, this section servesasan
overview of the basic modeling technique
with respect to use steady state diagrams,
generateflow balance equations and solve the
equations in order to answer performance
questions (e.g utilization, throughput, aver-
age queue length, or response time of the tar-
get system). More information on markov
modeling techniques can be found in
[Men94], [Sev8l], [Den78], [Laz84] and
many others.

model system changes without the
need to build a prototype

- Disadvantages:

* models become very complex if the
system under test is complex

e theresulting diagrams, flow equa-
tions and systems of linear equations
tend to become very complex

e very sensitive to accurate parameter
values

Simulation

53

Per

A
‘ Real System based ‘

‘ Benchmarkmg ‘

Low | e\/el (hw)

Applications

|
‘ Kernels
|
‘ Suitess

3.3. Simulation

As mentioned in the introduction, this text
will not describe techniques for performance
simulation. Yet, it isimportant to discuss the
basic differences of simulation techniques
compared with other performance evaluation
techniques. Fig. 3.23. shows the basic ap-
proach for performance evauation using a
system simulator. Instead of using a perfor-
mance model asin Fig. 3.14., asimulator for
the hardware is used. This simulator can also
include some of the basic software parame-
ters (such as scheduling or I/O behavior). The
principal strength of simulation isitsflexibil-
ity. There are few restrictions on the behavior
that can be simulated, so a computer system
can be represented at an arbitrary level of de-
tail. The principal weakness of simulation is
itsrelative expense in devel oping asimulator
and executing workloads on the simulator.
The simulator can aso be expensive to pa-
rametrize, because a highly detailed model
implies alarge number of parameters.

ormance Evaluation

Model based
A

r Simulatjon || Analyt. System

ot || i
‘ Petri Nets (7

Stochastical ‘
workload model

S
‘ Stocljast| c ‘

PerPreT ‘

Basic
Workload Software
Parameters| | Parameters
/ Y

Hardwar e Simulator or
Systemsimulator (incl. OS)

y
Tracefile

/

Performance M easures

(response time, throughput,
execution time, utilization)

Fig. 3.23. Performance simulation

54

Performance Analysis of Monoprocessors

Today's high performance microprocessors
are very complex, the simulation of complete
real applications is mostly too time consum-
ing to be executed on a simulator. A slow-

down between 10° and 107 makes it almost
impossible to run complex real applications
using asimulator. Kernels or synthetic work-
loads are used instead of real applications.
The answersto the performance questions are
often not direct results of the hardware simu-
lator, they have to be found analyzing the
tracefile created by the smulator.

The tracefile contains timestamped informa-
tion of the workload behavior on the system.
This information can be memory references
(for trace-driven simulation), references for
the use of arithmetic or logic units (for execu-
tion driven simulation), or references for the
use of communication units in the case of
multiprocessors (for execution driven simu-
lation). Once the tracefile isavailable, the in-
formation can be visualized using tools like
ParaGraph [Parad2]. It can also be used to
caculate performance measures like
throughput, idle time, execution time, and
others. With the detail of the observation
(trace information), the size of the tracefiles
grows very fast and thus, restricts the smula-
tion time.

The development of the hardware simulator
requires considerable programming effort,
even if software packages to support this ef-
fort are available. The benefit of simulation
techniques, if applied properly, are the deri-
vation of the performance measureswith very
high accuracy. Detailed information and ex-
amples for the application of simulation tech-
niques for the performance evaluation of
computing systems can be found in [SPL91]
and in [DNS95]. Thefirst reference describes
the SPLASH (Stanford Parallel Applications
for Shared Memory) approach. Parallel appli-
cations are executed on a simulator for a
shared memory multiprocessor. The
SPLASH package is aso used as a bench-
mark for multiprocessors as described in the
next section. The second reference describes
the simulation of the Power PC (PC620) mi-
croarchitecture.

The System Simulator Clear Sim

Large networks of embedded control systems
are of growing importance. More demanding
applications, greater functionality of hard-
ware and system software and the usage of
distributed subsystems, require an analysisin
each stage of development. In [BMS97] the
system simulator ClearSim to simulate the
behavior of embedded control systemsispre-
sented.

ClearSim has been developed within the ES-
PRIT project OMI/CLEAR. This project
aimed at providing a configurable RTOS to
support the designer of embedded control
systems to build application software of high
complexity inlesstime. To support the devel-
opment of real time applications, a system
simulator was included, because simulation
offers advantages to area experiment.

ClearSim helps to evaluate the system to be
developed in the early design stages. The
simulation environment includes models of
the microcontroller (ARM610 in the CLEAR
project), the RTOS (EOS [Cas95]) and addi-
tiona hardware like e.g. timers, motors etc.
With ClearSim it is possible to simulate and
evaluate systems, even when some parts, e.g
specia hardware or the real target microcon-
troller, are non-existent. For the description
of the models normal C language is used, so
no special simulation language has to be
learned. The simulation not only coversfunc-
tional modeling but also correct timing with a
typical accuracy of £10%. Nevertheless, sim-
ulation speed is very fast, typical slowdowns
range from 5 to 50.

The simulator is based on the event-driven
method which is extended by an execution-
driven agorithm for software simulation
[Gol90], [Spi93], [CMSA3]. The execution-
driven simulation has a high execution speed
on relatively high abstraction levels. Com-
pared to the instruction-driven simulation
where assembler instructions are read and
emulated as an interpreted language, the exe-
cution-driven method is based on the execu-
tion of the target instructions on the host ma-
chine, i.e. the workstation. The observationis

Simulation

55

managed by subroutine calls to control rou-
tines being automatically inserted by an in-
strumenter, before linking the executable.
The simulation speed of the execution driven
algorithm is much higher than that of the in-
struction driven method since it maps most of
the target components on the host system,
such as processor registers, processor status,
memory and the complete instruction set.

Design Validation
gle(;bgi;\rl1 system » global system valida-

partitioning

| ClearSim:
SwW HW software/hardware
de- de- cosimulator
sign sign |™"

.__4 hardware simulator
system integration

real system o-—»’ ICE ‘
] D — o—p| test and measurement
OUol (g |
o monitoring

Fig. 3.24. Multi domain design process and
position of the ClearSim software/
hardware co-simulator

A typical ClearSim simulation dealswith one
or more processes and their interaction over a
communication medium. A process can be an
execution-driven or a physical process. The
actual software is implemented as one or
more execution-driven application process-
es, with special modeling support for the OS
and the real target processor. The rest of the
simulated system, the peripherals and the en-

vironment consisting of timers, devices, sen-
sors etc., is built with physical processes.

Thedescription of softwareisthe source code
itself as it can be used in the final product.
Even the makefile is identical. No simulator
instructions need to be inserted manually al-
though it is possible to influence the observa-
tion behavior if necessary. The instrumenter
aso automatically inserts information of the
correct timing of the application software.

The required hardware to run the application
on is simulated or mapped on the host archi-
tecture. Every system component of the SUC
which interacts with the systemin any kind of
communication (shared memory, signals, in-
terrupts, hardware registers) is defined as a
physical process. The definition of aphysical
process comprises the timing and the interac-
tional behavior with the software or even oth-
er physical processes. It isin the responsibil-
ity of the devel oper to define how detailed the
specification of a process should be.

Every physical process is given through a C
coded program. These programs have to be
written by the user or taken from alibrary be-
causethey are simulation specific in the sense
that they are not needed in "reality“ on the
target system. Contrary to the application
processes, where the source code includes
both, function and timing, the timing for the
physical processes has to be explicitly insert-
ed by the user. The simulation environment
offers library functions to the user handling
thetiming and communication of the process.
These functions are similar to known simula-
tion languages, especiadly SIM++ [Jad89]
and ModSim [Her90]. Examples for such li-
brary functions are event handling routines,
random number generators and statistical
evaluation functions.

The communication between the processesis
performed by the event list manager ELM.
This central manager starts and stops certain
activities according to the central event list
and isresponsible for the bookkeeping of the
simulation time. In case of a smulation of
distributed systems, the ELM has also to syn-

56

Performance Analysis of Monoprocessors

chronize and coordinate the different pro-
cesses involved in the simulation [Mis86].

The observation of program behavior is
based on tracing. Unlike programs running
on the real hardware, tracing of a simulation
run does not distort the monitored results,
since the trace functions can be made invisi-
ble for the time bookkeeping mechanism.

ClearSim offers a wide range of observation
options. Thereisinformation about the corre-

sponding source code, the memory usage, in-
terrupts or timing. In addition the user canin-
sert commands for generating self defined
trace stamps. With several analysis tools rel-
evant data can be extracted from trace files
and visualized in different sights. Moreover,
a source code debugger is available to find
logical errors as well as algorithmic and tim-
ing errors.

Application (SW)

EOS
(RTOS)

n
:

_ Sgnas |

Signds

Physical processes (HW)

C Files (SIM++)

Observation:

e)

other simulator(s)

Trace,
Debugger

Event List Manager (ELM) ‘

(vialOE)

Fig. 3.25. Combination of application and physical processes

Performance Ana

Real System based

Low level (hw)
Kernels

Applications
Suitess

. “

| Model based |
AN
S
‘ Stochastic ‘ ‘ Deterministic ‘
r Simulation Analyt. System

‘ Queueing Theory ‘ D H M%del%/ng ‘
‘ Petri Nets Y

Stochastical PerPreT ‘

‘ workload model ‘

4. Benchmarking of Multiprocessors

The demand for increased performance
forced system designers to exploit paralel-
ism on al computer architectural levels.
Starting with on chip level parallelism (regis-
ter width, memory bus width, instruction bus
width, several execution units) and going up
to system level parallelism (multiprocessor
systems). Except the better performance, the
exploitation of parallelism was transparent to
the user if done under the system level. Smart
compilers handled the often difficult task to
produce machine code which efficiently used
the parallel resources.

Up to today there is neither software that au-
tomatically generates efficient parallel code
for all available multiprocessors, nor exists a
common programming language. Thisiswhy

itisdifficult for auser to write multiprocessor
programs and why the task of performance
evaluation for multiprocessors is much dif-
ferent compared to performance evaluation
of monoprocessors. Looking at the bench-
mark techniques in the previous chapter
where basically some piece of software was
implemented and monitored on a target sys-
tem, this approach hasto be refined to be ap-
plicable to multiprocessors.

This section starts with a short description of
multiprocessor architectures and some exam-
plesfor massively parallel systems. After de-
scribing existing benchmarking approaches
for the performance evaluation of multipro-
cessors a new approach, the LOOP method is
described.

4.1. Architectureof Multiprocessors

4.1.1. Shared Memory versus Message Passing

The state of the art commercially available
MIMD-systems are divided into two archi-

tecture classes, namely, systems with shared
memory and message passing systems.

56

Benchmarking of Multiprocessors

Shared Memory Systems

Shared memory systems (compare Fig. 4.1.)
work with a global address space which can
be used by al processors.The memory mod-
ules are connected to the processorsviaa net-
work or abus system. Each processor can op-
tionally be equipped with a private cache.
Communication and synchronization of the
concurrently executed tasks is realized by
reading and writing shared data.

1
= processor i

XIWVWOSH4mzZ

Fig.4.1. MIMD-systems with global shared
memory

Themain problem of these systemsistheglo-
bal resource memory which is used by all
processors at the same time and thus the most
probable performance bottleneck. Thisis aso
the reason why commercially successful
shared memory systems consist of a rela
tively small number of processors (typically
between 2 and 64 processors).

M essage Passing Systems

All processors in a message passing system
(compare Fig. 4.2.) have access to their own
local memory modules. Communication and
synchronization between the processorsisre-

aized through messages sent through a con-
nection network.

Programming message passing multiproces-
sors showed to be a lot more difficult than
programming monoprocessors. In the begin-
ning these machines did not have a common
programming language or even worse acom-
mon programming paradigm. Most machines
were delivered with a sequential program-
ming language (such as Fortran or C) with ex-
tensions for message passing (send and re-
ceive routines) and program loading. After
realizing that reprogramming for new or dif-
ferent machines becomes too expensive, por-
table communication libraries such as PICL
(Portable Instrumented Communication Li-
brary) [PICL90] or MPI (Message Passing
Interface) [MPI194] were developed. Now the
programs became portable among avariety of
message passing machines, but the develop-
ment of new programsis still complicate and
lacks tools to help the user exploit the poten-
tial performance of the system. Since most of
the applications which run on these machines
have performance demands that can only be
satisfied by these machines, the programmer
has no choice but to spend the effort of writ-
ing message passing programs.

NETWORK

= processor i

Fig. 4.2. Message passing MIMD-system

Architecture of Multiprocessors

57

Massively Parallel Systems

Massively or highly parallel systems consist
of alarge number of processors (usually more
than 1000). They offer very high perfor-
mance which, unfortunately, is not always
easy to use. The nature of highly parallel sys-
tems asks for highly parallel applications. In
scientific computing, these systemsaremain-
ly used to solve special problems (e.g. grand

challenges) or they are used as parallel data
base servers. Massively parallel systems are
typically message passing architectures.
Since some people assume that it is easier to
produce software for shared memory systems
rather than for message passing systems, it is
possible to work with avirtual shared memo-
ry which is automatically mapped onto a
message passing scheme [PVM94].

58

Benchmarking of Multiprocessors

4.1.2. System Examples

Massively parallel message passing systems
are of special interest for performance evalu-
ation and performance prediction techniques
described in the next sections of this text. In
order to get a better understanding of the ar-

4121 nCUBE/2

L ogical Configuration of nNCUBE/2

The nCUBE/2 isamessage passing multipro-
cessor. The nodes are connected via a net-
work with amultidimensional cube topology
which is called hypercube:

(O dim=0
O—O dim=1 /

dim=2
dim=3

dim=4

Fig. 4.3. Hypercube topology

chitectural features of these systems and a
better understanding of the problems which
can arise with the performance evaluation
three example systems are now presented.

The hypercube network is organized so that
connections among processors form cubes.
As more processors are added, the cube
grows to larger dimensions. Two hypercubes
of the same dimension, joined together, form
a hypercube of the next dimension. Fig. 4.3.
starts with a single computing node which is
defined as hypercube with dimension zero.
Adding acomputing node and connecting the
two nodes results in the hypercube of dimen-
sion one. Copying the new hypercube of di-
mension one and connecting the nodes results
in the hypercube of the next dimension two.
This construction scheme can be used to cre-
ate hypercubes of any dimension. Hypercube
networks have some interesting features for
communication:

- The hypercube is built of 2N nodes, with
N = dimension of the hypercube.

- The longest path between any two nodes is
equal to the dimension of the hypercube, N.

- The number of link interfaces per node is
equal to the dimension of the hypercube.

- Other logica configurations like ring, ar-
ray, torus, 3D-array can easily be mapped
onto hypercube topologies.

Architecture of Multiprocessors

59

The nodes of the nCUBE/2 hypercube are
used for computing only, the program devel-
opment can be done on a workstation which
is connected to the hypercube. Input and out-
put operations can be done via the worksta-
tions connection or via I/O channels which
directly connect the hypercube with hard-
drives. Thisleadsto thelogica configuration
for the nCUBE/2 system as outlined in Fig.
4.4,

Physical Configuration of nCUBE/2

The nCUBE/2 system was delivered in the
late eighties. The workstation used as fron-
tend was a SUN SPARC workstation with a
VME board for the connection to the hyper-
cube. The operating system of the frontend
was UNIX, the programming language for
the hypercube was an extension of C with
parallel constructs for loading programs onto
the hypercube, constructs for input and out-
put from the hypercube on the frontend, and
constructsfor synchronization and communi-
cation of the concurrently running node pro-
grams. The hypercube nodes were propri-
etary microprocessors running a severa

MFLOPS. The direct connection of nodes to
disks was realized through communication
with 1/0 nodes which were connected to
harddrives through /O channels. In summa-
ry, the physical configuration of the nCUBE/
2 hypercube is described in Fig. 4.5.

O 1/0 node

Workstation
. (Program devlopment, 1/O)

O Computing node
— Bidirectiona link

Fig.4.4. Logica
nCUBE/2

configuration of the

nCUBE/2

connection

Hostcomputer (frontend): nCUBE/2 Nodes:

-SUN SPARC -Compute Nodes

-VME Board for the connection to thenCUBE/ -1/O Nodes for the connection to local disks
2

-Operating system UNIX
-C-Compiler (for Hostprograms)
-C-Crosscompiler (for Nodeprograms)

-Operating system Vertex

Fig. 4.5. Physica configuration of the nCUBE/2

60

Benchmarking of Multiprocessors

4.1.2.2 INTEL Paragon

Logical Configuration of INTEL MP/150

Except the network topology, thelogical con-
figuration of the INTEL MP/150 multipro-
cessor system looks very similar to the logi-
cal configuration of NCUBE/2. A workstation
frontend is used for program development,
input and output operations, and as user inter-
faceto the node processors. Special 1/0 nodes
provide fast access to local disk drives.

The computing nodes are arranged as a two
dimensional array. Each row of the resulting
matrix is connected to an I/O node for fast
disk 1/0 operations and to a service node as
an interface to other 1/0 services.

@ servicenode

(CJ 1/0-node

Workstation
. (Program development)

O Computing node

— Bus

Fig.4.6. Logica configuration of INTEL
Paragon MP/150

Physical Configuration of INTEL MP/150

The INTEL Paragon MP/150 multiprocessor
was delivered in the mid nineties and is about
10 years younger than the nCUBE/2 system.
Asacomparison of thelogical configurations
of the two systems shows, the way to develop
and run programs on both machines is very
similar. Also theideato use I/O nodesto pro-
vide the computing nodes with fast connec-
tions for disk operations remained the same.
Using PICL it is possibleto run old programs
on the new machine. There are only two real
differences to be observed:

- The hypercube network is replaced by a
two dimensional array. One reason to do
this is the complexity of communication
hardware for the computing nodes. In a
mesh topology each node only needs link
interfaces for four neighbors (north, east,
south, west). A constant number of link in-
terfacesiseasier to handle for hardware de-
signers than a number that varies with the
size of the multiprocessor. Since the links
are bussesfor INTEL MP/150 compared to
point to point connections of the nCUBE/2
there are no drawbacks as to the length of
the longest path between any two proces-
sors. Since severd pairs of processors can
communicate concurrently sharing the
same bus, the bandwidth of the bus has to
be larger than the bandwidth of links for
point to point connections [Smi95].

The second major difference of INTEL
MP/150 compared to nCUBE/2 is the com-
plexity of the computing node. Two CPUs
for computation and one CPU for commu-
nication issues are provided. All CPUs are

Architecture of Multiprocessors 61

based on the INTEL i860xp microproces-
sor.

INTEL Paragon MP/150

Communication Channel (25ns, 175 MB/s)
110 Compute

Ethernet, FDDI, HiPPI

T~ ATM

Application CPUs

) 64 MB memory
50 MHz i860xp 400 MB/Sh
16 KB cache sbus
75 Mflops Mesh interface

Communication CPU

Nodeboard

Fig. 4.7. Physical configuration of INTEL Paragon MP/150

62

Benchmarking of Multiprocessors

4123 Cray T3D

Logical Configuration of Cray T3D

Looking at thelogical configuration of astate
of theart multiprocessor system asthe CRAY
T3D in Fig. 4.9. does not bring up major dif-
ferences compared to the logical configura-
tions of the systems described before. In con-
trast to the INTEL MP/150 a three dimen-
sional torus network is used instead of atwo
dimensional array. As in the two previously

described systems, the nodes are still purely
used for computation, program development
is done in aworkstation environment.

Physical Configuration of Cray T3D

The main difference of the CRAY T3D sys-
tem from the physical aspect of view is the
performance of itsnodes and the performance
of the network (compare Fig. 4.8.).

HISPLOSP
pairs

i B
r_Im lm lns R

L s
“ “‘ N U

I lh WAL

Irl“ 3 S v R '-‘

DIRINIL

. - !‘- !‘- !—;‘h

[l Sl Sl ST
l@“‘lﬂ 13]

10C(s)

WORK STATIONS TAPES

Technology:
- 128 to 256 processing elements (PEs)

- High bandwidth, parallel I/O

dddl.

- Upto 16 GBytes of globally adressable memory

Fig. 4.8. Physical configuration of CRAY T3D

NETWORKS

DISKS

- 19.2-38.4 GFLOP/s peak performance
- High-performance interconnect 3-D Torus

Architecture of Multiprocessors

63

L O —=0—=0

.(
't
\.<f\

L
<
Y
\<f\

T e w

(CJ 1/0-node

Workstation
. (Program development)

O Computing node
— Bus

Fig.4.9. Logical configuration of CRAY
T3D

Benchmarking of Multiprocessors

4.2. Workloadsfor Multiprocessors

The need for high performance systems trig-
gered the development of multiprocessors of
different architecturesin the early eighties. In
the scientific and academic community they
wereimmediately accepted and very success-
ful. They offered chances to run complex ap-
plications in reasonable amounts of time. Of-
ten the hardware devel opment outperformed
the software development in terms of parallel
languages and compilers, tools to monitor
and debug parallel applications, and tools to
evaluate the system performance of the new
architectures. This section describes the de-
velopment of benchmarks for multiproces-

sors (shared memory and message passing)
which up today are collections of parallel ker-
nels and applications. At the end of the sec-
tion a new approach, the LOOP benchmark,
is presented. The main difference to existing
techniquesis:

- Scalability in terms of problem size and
number of processors.

- User defined workloads possible.

- Automatic instrumentation and measure-
ment environment included.

- Graphical result analysis included.

4.2.1. Kernel and Application Benchmarks

4.2.11 LINPACK

The collection of application kernels LIN-
PACK programmed by Jack Dongarra
[Don79] and its use as a MoONOProcessor
benchmark is presented in section 3.1.2.
Sinceitsfirst appearancein the late seventies
it was used to test almost any high perfor-
mance system on the market. The problem
sizewasinitially set to (100x100) matrix siz-
es. After increasing performance of the sys-
tems and advances in memory technology
(larger caches), the problem size was in-
creased to (300x300) matrix sizes. As the
race for performance and large main memory
was and is till going on, the problem size
was recently set to (1000x1000) matrices.
LINPACK is acknowledged as a standard
benchmark test and it is also used for multi-
processor target systems. In [Don97] Jack

Dongarra published new rules for using the
LINPACK benchmark for massively paralel
systems. He redlized that these systems are
sometimes too large to be efficiently used
with a LINPACK problem size of
(1000x1000). The new ground rules are set as
follows:

- Solve systems of linear equations by some
method, alow the size of the problem to
vary, and measure the execution time for
each size problem. In computing the float-
ing point execution rate (MFLOPS), use

operations independent of the actual meth-
od used. If Gaussian Elimination is used,
partia pivoting must be used. Compute and

Workloads for Multiprocessors

65

report a residua for the accuracy of solu-
tion as:

JIAx—bl]
(A1)

Tab. 4.10. shows some LINPACK resultst
for massively parallel systems (more than
1000 processors are used for the execution of
the benchmark). The columns in Tab. 4.10.
are defined as follows:

- Procs is the number of processors used to
execute the LINPACK benchmark.

- Rax isthe performance in GFLOP/s (Giga
floating point operations per second) for the
largest problem run on a machine.

- Npax is the size of the largest problem run
on amachine.

- Ny, isthe size where half the Ry, execu-
tion rateis achieved.

- Roeak isthetheoretical peak performancein
GFLOPS for the machine.

1. Results are taken from PDS (Performance
Data Base Server) at URL:

http: //performance.netlib.org/per formance/
html/

linpack-parallel.data.col 0.html

Summary for LINPACK

In summary, the pros and cons of the LIN-
PACK benchmark are:

Pro:

LINPACK is scalable, by adjusting the ma-
trix size with the performance increase of the
target system, it is still possible to make rea-
sonable measurements.

Con:

Theworkload created by LINPACK was nev-
er meant to evaluate all aspects of the system
performance. Even the author of LINPACK
Jack Dongarra pointed out that LINPACK is
agood test for the arithmetic behavior in case
of matrix operations but that LINPACK
should not be used to evaluate the system as
a whole. By simply increasing the problem
size, the workload created by LINPACK gets
even more "exotic", since there are not too
many real life situations where the multipli-
cation of two dense (1000x1000) matricesis
needed. Usually, real life applications of that
size work with sparse matrices which in-
volves atotally different storage and opera-
tion scheme.

Rmax Nmax N1/ Rpeak
Computer Procs. GFLOPS) |(order) |(order) (GFLOPS)
Intel ASCI Option Red
(200 MHz Pentium Pro) 9152 1338.0 |235000 | 63000 1830
CRAY T3E-900 (450 MHz) 1320 670.0 128832 | 23184 1188
CP-PACS*
(150 MHz PA-RISC based CPU) 2048 368.2 (103680 | 30720 614
Cray T3D 1024 (150 MHz) 1024 1005 | 81920 | 10224 152
Thinking Machines CM-5 1024 59.7 | 52224 | 24064 131
Thinking Machines CM-200 (10 MHz) 2048 9.8 | 29696 | 11264 20
MasPar MP-1216 (80ns) 16384 0.473 | 11264 1280 0.55
Tab. 4.10. Linpack results for massively parallel machines

66

Benchmarking of Multiprocessors

4212 NASParalld Benchmarks

The NAS (Numerical Aerodynamic Simula-
tion) program isagroup at NASA Ames Re-
search Center focused on high performance
computing. Parallel numerical applications
from computational fluid dynamics and relat-
ed aerosciences disciplines are implemented
on high performance systems. To measure
objectively the performance of highly paral-
lel computers and to compare their perfor-
mances with that of conventional supercom-
puters, NAS developed the NAS Pearalel
Benchmarks (NPB) [Bai91].

Since NAS used several massively parallel
systems with different programming models
and parallel languages, the idea of creating a
"pencil and paper" benchmark suite was real-
ized. Thistechniquetellsthe user which algo-
rithm he should useto solve aproblem, but he
has the choice of programming model and
language. Within the framework of Fortran
77, Fortran 90, C and HPF (High Perfor-
mance Fortran), implementors are free to use
language constructs, data structures, data par-
titioning and algorithmic details that maxi-
mize performance on a target system. Some
rules for theimplementation of the NAS Par-
allel Benchmarks must however be observed:

- All floating point operations must be per-
formed using 64-bit floating point arith-
metic.

- All benchmarks must be coded in either
Fortran or C, with certain approved exten-
sions for parallel processing.

- Implementations of the benchmarks may
not include a mix of Fortran and C code,
one or the other must be used.

- HPF extensions are allowed.

- Any language extension or library routine
that is employed in any of the benchmarks

must be supported by thetarget system ven-
dor and available to all users.

All rules apply equally to subroutine calls.
language extensions and compiler direc-
tives(i.e., special comments).

Subprograms and library routines not writ-
ten in Fortran or C may only perform the
following functions:

« Indicate code that can be executed in par-
dlel or loops that can be distributed
among different computational nodes.

Specify the allocation and organization of
data among or within computational
nodes.

Communicate data between processing
nodes.

Communicate data between the computa-
tional nodes and service nodes.

Rearrange data stored in multiple compu-
tational nodes, including constructs to
perform indirect addressing and array
transpositions.

Synchronize the action of different com-
putational nodes.

Initialize for a data communication or
synchronization operation that will be
performed or completed later.

Perform high speed input or output oper-
ations between main memory and the
mass storage system.

Perform any of the following array reduc-
tion operations on an array either residing
within a single computational node or
distributed among multiple nodes:

+* MAX,MIN, AND, OR, XOR.
Combine communication between nodes
with one of the operations listed in the
previous item.

Workloads for Multiprocessors

67

« Perform any of the following computa-
tional operations on arrays either residing
within a single computational node or
distributed among multiple nodes: dense
or sparse matrix multiplication, dense or
sparse matrix-vector multiplication, 1D,
2D, or 3D FFTs, sorting, block tri-diago-
nal system solution and block penta-diag-
onal system solution. Such routines must
be callable with general array dimen-
sions.

The NPBs consist of three kernels and five
applications. The kernels are EP (embarrass-
ingly paralel), MG (Multigrid), and CG
(Conjugate Gradient). The applications are
FT (3 dimensional FFT for solving partia
differential equations), IS (Integer sort), LU
(LU solver), SP (pentadiagona solver), and
BT (tridiagonal solver). Since the NPBs are
intended to beimplemented on awide variety
of systemswith substantially different perfor-
mances, three classes of NPBswith respect to
the problem sizes are defined.

Benchmark code ClassA ClassB ClassC
Kernels:

Embarrassingly parallel (EP) 228 230 232
Multigrid (MG) 256° 256° 5128
Conjugate Gradient (CG) 14000 75000 150000
Applications:

3-D FFT PDE (FT) 256°x128 256°x512 5123
Integer sort (I1S) 2% 2% 27
LU solver (LU) 64° 1023 1623
Pentadiagonal solver (SP) 64° 1023 1623
Block tridiagonal solver (BT) 643 1028 1628

Tab. 4.11. NAS Parallel Benchmarks problem sizes

Tab. 4.12. givesan example for aresult table.
It uses NAS sample codes implemented on
one node of a CRAY-MP. Problem sizes,

(Mega word)), run times (in seconds) and
Performance rates (measured in MFLOP/s)
for each of the eight benchmarks are given.

memory requirements (measured in Mw

ClassA | Mem | Time Rate ClassB |Mem Time Rate

Mw | secs [MFLOP/s Mw secs |MFLOP/s

EP 228 1| 151 147 230 18 512 197
MG 256° 57 54 154 256° 59 114 165
CcG 14000 10 22 70 75000 97 998 55
FT |256%128 59 39 192 256°x512 | 162 366 195

IS 223 26 21 37 225 | 114 126 25
LU 643 30 | 344 189 1028 | 122 | 1973 162
SP 643 6| 806 175 1028 22 | 2160 207
BT 643 24| 923 192 1028 96 | 3554 203

Tab. 4.12. NAS Parallel Benchmarks results for one node of CRAY Y-MP

68

Benchmarking of Multiprocessors

After the message passing library MPI
[MP194] was published and implemented on
most existing message passing multiproces-
sors, NAS offered source codes using Fortran
77 and MPI for their eight benchmarks
[Bai95]. Moreinformation onthe NAS Paral-
lel Benchmarks can be found in [Bai94] and
[B&i95] or on the WWW under:

http: ///science.nas.nasa.gov/Softwar e/NPB/

The result page of that URL is kept updated
and currently contains results for multipro-
cessors such as IBM SP2, IBM SP2-160tn,
Cray T3D, SGI Power Challenge Array, IN-
TEL Paragon, Cray J90, Cray C90, Cray
T3D. Cray T3E-900. Cray T3E-1200. UC
Berkeley-NOW. The results were obtained
by NAS (not submitted by vendors). In addi-
tion, vendor submitted results are published
for the following machines: IBM SP (P2SC
120MHz nodes), SGI Origin 2000, HP/Con-
vex Exemplar SPP2000.

4.2.1.3 PERFECT Club Benchmarks

Similar to the NAS parallel benchmarks the
PERFECT (Performance Evaluation for
Cost-effective Transformations) Club bench-
marks [PCB94] consist of a suite of 13 paral-
lel applications which run on high-perfor-
mance computers has been collectedin ajoint
effort of several US research and develop-
ment organizations. The codes are being used
for benchmarking computer systems as well
asfor the purpose of evaluating new concepts
and developments in high-performance com-
puting. The applications are computationally
extensive at afixed problem size. Thus, they
are not scalable. The I/O problem is left out,
i.e. no time spent for 1/O operations is mea-
sured. In characterizing the applications, par-
ticular emphasis is placed on understanding
the underlying algorithms in the hope that

Summary for NAS Benchmarks

In summary, the pros and cons of the NAS
idea of "paper and pencil" benchmarks are:

Pros:

It is very useful when no common parallel
programming model exists. Looking at dif-
ferent architectures (shared memory versus
message passing) it is still an interesting ap-
proach. The NPB is scalable with respect to
different problem sizes and thus, it is applica-
ble to awide range of computing systems.

Cons:

The problem of the NAS Paralel Bench-
marks is its focus on only eight workloads
that are probably not important for every us-
er. In that case the NPBs can still be used to
simply compare different machines.

there is greater generdity at the algorithmic
level. The PERFECT Club benchmark suite
consists of the following applications:

- ADM

A complete three-dimensional system of
hydrodynamic equations is solved which
simulates pollutant concentration and depo-
sition patterns in lakeshore environments
[Chr86], [Chr87]. The advection-diffusion
equation for the transport, diffusion, and
deposition of pollutants is also included in
the model. The advection term is treated by
a Fourier pseudospectral method in the x
and y directions. Convection-diffusion pro-
cesses in the vertical direction are treated
using a semi-implicit Crank-Nicolson
method.

Workloads for Multiprocessors

69

- ARC3D

The Euler and Navier Stokes equations for
analyzing three-dimensional fluid flow
problems are solved using an implicit finite
difference code [Pul85]. The equations are
discretized onto a curve linear mesh, and a
Beam-Warming [Bea76] method is used to
cast the equations in implicit form. Three-
point central difference approximations are
used, leading to a pentadiagonal system of
equations.

- BDNA

The BDNA code performs molecular dy-
namics simulations of biomoleculesin wa-
ter [Saw87]. BDNA is a simulation of the
hydration structure of potassum counter
ions and water in B-DNA. There are 1500
water molecules and 20 counter ions placed
in a parallelepiped box of dimension 33.8
R x44.0 R x44.0 A . One complete heli-
cal turn of B-DNA consisting of ten pairsis
considered.

DYFESM

A two-dimensional, dynamic, finite ele-
ment code for the analysis of symmetric
anisotrophic structures[Noo85]. An explic-
it leap-frog temporal method with substruc-
turing is used to solve for the displacement
and stresses, along with velocities and ac-
celerations at each time step. The accelera-
tions are computed via a preconditioned
Conjugate Gradient method at each time

step.

FLO52Q

The unsteady Euler equations are solved to
analyze the transonic inviscid flow past an
airfoil [Jam83]. The two-dimensional do-
main is discretized into quadrilateral cells.
In the case considered there were 128 inter-
valsaround the profile, and 32 radially. Ap-
plication of the Euler equations to these
cellsyields aset of coupled ordinary differ-
ential equations, to each of which adissipa-
tive term is added to suppress non-physical
oscillations near regions of steep gradients,
such as shock waves. The set of differential

equations is solved by incorporating asim-
ple saw tooth multigrid strategy into the
multistage time stepping scheme. This
scheme is good at modeling shock waves,
and the algorithm can be vectorized with a
vector length equal to agrid dimension.

MDG

A molecular dynamics calculation of 343
water molecules in the liquid state at room
temperature and pressure is performed by
MDG [Lie86]. The Newtonian equations of
motion are solved for 343 water molecules
in a cubical box. The total potentia is the
sum of theintra- and intermolecular poten-
tias.

MG3D

Seismic migration code [Res89] to investi-
gate the geologica structure of the Earth.
Signals of different frequencies are emitted
at the Earth’s surface, and after interacting
with the geological strata, are received at
another point on the surface. The data col-
lected at the surface by this technique can
then be used to extrapolate backwards in
timeto get athree-dimensional image of the
structure below the surface. This data is
Fourier transformed in time, and the depth
extrapolation in the z-direction can proceed
independently (in paralel) for each fre-
quency. The sample code uses an X-Y grid
of 125x120 points, respectively, and on step
(downward in the earth) in z-direction.

OCEAN

The dynamical equations of a two-dimen-
siona Boussinesq fluid layer are solved us-
ing a spectra method [Cur84]. The
nonlinear terms are evaluated by fast trans-
form methods with aliasing terms removed.
Timestepping is done by aleapfrog scheme
for the non linear terms, and an implicit
scheme for the viscous terms. The pressure
term is computed in Fourier representation
by local algebraic manipulation of the in-
compressibility constraint. The flow is as-
sumed to occur in a box region with

70

Benchmarking of Multiprocessors

periodic and free-slip (no-stress) imperme-
able boundary conditions applied.

QCD

Quantum Chromodynamics (QCD) is the
gauge theory of the strong interaction
which binds quarks and gluons into had-
rons, which in turn make up the constitu-
ents of nuclear matter. Computer
simulations are necessary to study long
term effects in QCD theory [Ott87]. In
these | attice gauge simul ations the quantum
field is discretized onto a periodic, four di-
mensional, space-time lattice. Quarks are
located at the lattice sites, and the gluons
that bind them are associated with the lat-
tice links. The gluons are represented by
SU(3) matrices, which are a particular type
of 3x3 complex matrix. A mgor compo-
nent of the QCD code involves updating
these matrices. The PERFECT sample code
uses a Monte Carlo technique to perform
the matrix update. The lattice size for the
sample codeis 8*.

SPEC77

The atmospheric flow is simulated using a
global spectral method [Sel80], [Sel82].
The formulation of the model is based on
the unknown functions in terms of their
spherical harmonic expansions in the hori-
zontal direction. In the vertical direction, a
quadratic conserving finite difference for-
mula is used. A semi-implicit backward
time integration schemeis applied, and ini-
tia conditions are obtain from a spectral
Hough operational analysis. The ocean in-
teracts with the atmosphere by means of
evaporation and sensible heating. The
moisture cycle consists of large-scale pre-
cipitation and convection.

SPICE

This code is a general-purpose circuit sim-
ulation program for non-linear DC, non-lin-
ear transient and linear AC
analysisiNag75]. Problems are formulated
astiff differential-algebraic equations. The

numerica methods of solution include
stiffy stable numerical integration ago-
rithms, the Newton-Raphson method for
solving the non-linear agebraic equations,
and sparse linear system solvers [New83].

TRACK

This code [Got88] determines the course of
an unknown number of targets, such as
rocket boosters, from observations of the
target staken by sensors at regular time in-
tervals. The targets may be launched from a
number of different sites. If the target’s ac-
celeration is assumed to be known, then the
path of anindividual object isdescribed ful-
ly by a4-component launch vector made up
of the latitude and longitude of the launch
site, the time of the launch, and the initial
launch azimuth relative to due north. At
each time step a kinematical model with a
stochastic acceleration component is used
to estimate the position, velocity, and accel -
eration of the targets. The output from this
phaseisthen passed to the precision param-
eter estimation module which uses New-
ton-Raphson iteration to solve an equation
giving amore precise estimate of thelaunch
parameter vector.

TRFD

Thiscodeisakernel simulating the compu-
tational aspects of a two-electron integral
transformation. It is part of the HONDO
quantum mechanical package [Dup88].
The evauation of these types of integra
transformations is a necessary first step in
computing correlated wavefunctions
[Dup87], and is used in determinations of
molecular electronic structure. The evalua-
tion of the integral transformations is for-
mulated as a series of matrix
multiplications.

For the benchmark test the codes are imple-
mented on the target system and the runtime
of the programs are measured. From this
measure the MFLOPYs rate is calculated as
usual:

Workloads for Multiprocessors

71

MFLOPIS = # of floating point operati or;s
CPU timein seconds x10

The MFLOP/s rate is compressed for each
machine using the harmonic mean, which is
defined as:

n

o n
i=

MEAN =

1
1Xi

where each x; is the performance measure of
interest and n isthe number of such measures.

Hitachi Cray Cray NEC Cray ETA
Program S-820/80 | Y-MP/832 25/4128 SX-2 | X-MP/416 10G
Fluid Flow
ADM 223 18.7 131 16.1 14.8 7.3
ARC2D 499.2 448.2 100.3 - 183.8 -
ARC3D - 2331 58.5 71.4 130.7 333
FLO52 229.7 328.7 61.7 177.1 194.0 62.2
OCEAN - 355 227 16.9 251 9.6
SEPC77 37.9 51.5 175 41.2 30.1 9.8
MEAN (51.6) 54.2 272 (30.3) 37.7 12.9
Chemical & Physical
BDNA 1235 121.5 81.3 170.2 83.0 58.4
MDG 15.2 16.6 14.0 14.1 134 6.0
QCD 9.3 12.6 79 9.6 10.1 54
TRFD - 56.4 25.8 57.9 44.8 24.7
MEAN (16.5) 241 16.1 20.2 19.2 9.7
Engineering Desigh
DYFESM 69.8 59.4 32.0 66.6 411 36.0
SPICE 5.7 57 3.9 4.7 3.9 21
MEAN 10.5 10.5 6.9 8.7 7.2 4.0
Signal Processing
MG3D - 271 194 35.0 212 6.5
SPICE 7.4 7.9 51 6.2 6.5 3.7
MEAN (7.4) 12.3 8.1 10.5 9.9 4.7
All Codes
MEAN G 222 139 | (16.6) | 165 | (7.5
Tab. 4.13. PERFECT Benchmark baseline results (in MFLOP/s)

Tab. 4.13. is published in [Poi93]. It shows
PERFECT Benchmark results for some com-
puting systems. In this table the codes are
simply compiled and executed. The bold
numbers in Tab. 4.14. represent measured
performances for hand optimized codes. Es-
pecially for the Cray systems, the baselinere-
sults and the optimized results are signifi-
cantly different.

The Perfect Benchmarks codes are available
free of charge for non-commercial use. They
can be ordered in hardcopy from:
librarian@csrd.uiuc.edu.

Further information is available via ftp from
ftp.csrd.uiuc.edu:/pub/

CSRD_ Software/Perfect/versionl.

72

Benchmarking of Multiprocessors

Hitachi Cray Cray NEC Cray ETA
Program S-820/80 | Y-MP/832 25/4128 SX-2 | X-MP/416 10G
Fluid Flow
ADM 223 90.6 19.3 16.1 61.1 7.3
ARC2D 499.2 682.3 118.5 - 261.7 -
ARC3D - 792.6 58.5 129.5 310.9 50.0
FLO52 229.7 347.4 75.6 177.1 218.7 63.2
OCEAN - 2754 78.8 16.9 136.7 9.6
SEPC77 37.9 543.3 278 52.7 220.0 10.8
MEAN (51.6) 2713 431 (32.5) 150.7 13.6
Chemical & Physical
BDNA 1235 2884 835 170.2 156.4 58.4
MDG 15.2 594.9 285 138.6 195.9 6.0
QCD 9.3 249.6 15.8 9.6 814 54
TRFD - 444.2 52.2 57.9 206.2 24.7
MEAN (16.5) 350.7 30.9 29.7 139.7 9.7
Engineering Design
DYFESM 69.8 295.2 74.3 69.3 191.7 64.6
SPICE 5.7 18.9 6.7 4.7 14.7 21
MEAN 10.5 35.6 12.3 8.7 27.3 4.1
Signal Processing
MG3D - 1146.2 149.5 35.0 4533 6.5
SPICE 7.4 38.7 54 6.2 24.7 3.7
MEAN (7.4) 74.8 10.5 10.5 46.8 4.7
All Codes
MEAN G 120.2 225 | (184) | 759 | (7.7)
Tab. 4.14. PERFECT Benchmark optimized results (in MFLOP/s)

Summary for PERFECT Benchmarks

In summary, the pros and cons of the PER-
FECT benchmarks are:

Pros:

A wide area of scientific computation is cov-
ered by the 13 applications which can beim-
plemented on paralel systems. They reflect
real workloads for high performance sys-
tems.

Cons:

The problem of the PERFECT Benchmarks
isthat they are not scalable in terms of prob-
lem size. Tab. 4.13. and Tab. 4.14. show that
the codes are very sensitive for optimizations
which have to be done manually.

Workloads for Multiprocessors

73

4.2.1.4 PARKBENCH

The PARKBENCH (PARallel Kernels and
BENCHmarks) committee, originally called
the Parallel Benchmark Working Group (PB-
WG) was founded at Supercomputing '92 in
Minneapolis, when a group of about 50 peo-
ple interested in computer benchmarking
met. The objectives of the PARKBENCH
group are:

- To establish a comprehensive set of paral-
lel benchmarks that is generally accepted
by both users and vendors of parallel sys-
tems.

- To provide afocus for parallel benchmark
activities and avoid unnecessary duplica-
tion of effort and proliferation of bench-
marks.

- To set standards for benchmarking meth-
odology and result-reporting together with
a control database/repository for both the
benchmarks and the resullts.

- To make the benchmarks and results freely
available in the public domain.

Theinitia focus of the parallel benchmarksis
on the new generation of scalable distributed
memory message passing architectures for
which there is a notable lack of existing
benchmarks. For thisreason theinitial bench-
mark release concentrates on Fortran77 mes-
sage passing codes using the widely available
PVM message-passing interface [PVM94]
for portability.

The releases 2.0 of the benchmark suite
adopted the MPI [MPI194] interface, Future
releases will include Fortran90 and High Per-
formance Fortran (HPF) versions of the
benchmark codes. The committeeiscurrently
working on benchmarks for shared memory
architectures as well. Currently the PARK-
BENCH committee offers four different
types of benchmarks:

74

Benchmarking of Multiprocessors

- Low level benchmarks

- Kernel benchmarks.

- Compact application benchmarks.
- HPF compiler benchmarks.

Low Level Benchmarks

As the name indicates, these benchmarks are
specifically designed to stress certain hard-
ware capabilities of the target system. Two
types of low level benchmarks are offered:

- Single processor benchmarks:

Besides reference to existing monoproces-
sor benchmarks, PARKBENCH included
some low level benchmarks to evaluate the
performance of a computing node of the
(multiprocessor) target system. These
benchmarks help to find the timer resolu-
tion and the correct timer value which is
important for measurements. Secondly,
they provide a test for the basic arithmetic
operations performance including a test of
pipeline units. The last two low level
benchmarks try to explore memory bottle-
necks of the system.

Multiprocessor benchmarks:

Since the computational performance is
evaluated by the PARKBENCH low level
single processor benchmarks, the multipro-
cessor benchmarks provide routines to
stress the communication system. The first
two routines use so called ping-pong com-
munication with varying message length
(messages are sent forth and back between
pairs of processors) to characterize the per-
formance for short and long messages.
Varying the message length is necessary
since some target systems use different
message passing protocols for short and
long messages. A bandwidth saturation
benchmark tries to find the limits of the
communication system. Using a "worst
case" scenario for communication load, all
processors broadcast a message to all other
processors at the same time. Executing this
test with a varying number of processors
points out potential communication bottle-

necks and bandwidth limitations of the sys-
tem. Besides communication the
synchronization speed in massively parallel
systems is always an important issue. This
isaddressed by the last low level communi-
cation benchmark which tests the time to
carry out a barrier synchronization on the
target system.

Kernel Benchmarks

The low-level benchmark codes are designed
to measure the basic architectural features of
parallel machines. Full application codes ob-
viously measure the performance of aparallel
system on the full problem and this is ulti-
mately what the user wants. However, in
many instances, the full application codes are
complex, contain many hundreds of thou-
sands of lines of Fortran, and are not avail-
ablein asuitable parallel version. In order to
obtain a guide to the performance of any giv-
en parallel system on a particular application
something less complex than the full applica-
tionisuseful. A profile of the sequential ver-
sion of the application enables the compute
intensive portions of the program to be iden-
tified. It is these compute-intensive sections
of an application that are modeled with the
parallel kernel benchmarks.

The kernel codes are typicaly up to a few
thousand lines of Fortran and are sufficiently
simple that the performance of a given paral-
lel machine on this program may berelated to
the underlying architectural parameters. It
must be acknowledged, however, that the
performance on kernels alone is insufficient
to completely assess the performance poten-
tial of aparallel machine on full scientific ap-
plications. The main difficulty is that a cer-
tain data structure may be very efficient on a
certain system for one of theisolated kernels,
and yet this data structure would be inappro-
priate if incorporated into a larger applica-
tion. For example, the performance of areal
computational fluid dynamics (CFD) appli-
cation on aparallel systemiscritically depen-
dent on data motion between different com-
putational kernels. In addition, full applica-

Workloads for Multiprocessors

75

tionstypically have initialization phases, |/0
and so on, so complete reproduction of these
features can be of critical importance for are-
distic guide to performance.

To cover alarge spectrum of applications run
on highly parallel systemsthe PARKBENCH
suite includes:

- Matrix kernel benchmarks such as:
dense matrix multiply, transpose matrix,
dense LU factorization with partial pivot-
ing, QR decomposition, matrix tridiagonal -
ization.

- FFT kernel benchmarks (3-D FFT PDE
from the NAS Parallel Benchmark suite).

- PDE (Partial Differential Equations) kernel
benchmarks (MG from the NAS Parallel
Benchmark suite).

- Other kernel benchmarks (EP, CG, 1S) tak-
en from the NAS Parallel Benchmarks.

Compact Application Benchmarks

The codes in the compact applications suite
should be representative of the fields in
which parallel computers are actually used.
The codes should exercise anumber of differ-
ent algorithms and possess different commu-
nication and |/O characteristics. The compact
applications suite is open and expected to
grow in thefuture. Currently two compact ap-
plication benchmarks are available:

- NPB-CFD codes (NAS Perallel bench-
marks computational fluid dynamics
codes).

- PSTSWM (Paralel Spectra Transform

Shallow Water Model code, compare sec-
tion 6.3.3.).

MFLOP/s
10000000 3
] T3D
10000.00 - T916 7
E Para{MPR1.3
E €90 ae) Par a-SurM o
]] 3916 ber .05 RL2
100000 5=
1" nCUBERs
10000]
1000
i 2 2 16 o7 B4 128 256 12
Number of Processors
= Ca0 T30 = Para-MP R1.3 Par= O5FR1.2
= 9B THE ParzSunMos = nCUBEZ:

Fig. 4.10. Results from PARKBENCH's Graphical Benchmark Information Service

76

Benchmarking of Multiprocessors

HPF Compiler Benchmarks

The benchmark suite comprises several sim-
ple, synthetic applications which test several
aspects of HPF compilation. The current ver-
sion of the suite addresses the basic features
of HPF, and it is designed to measure perfor-
mance of early implementations of the com-
piler. They concentrate on testing parallel im-
plementation of explicitly parallel state-
ments, i.e, aray assignments, FORALL
statements, INDEPENDENT DO loops, and
intrinsic functions with different mapping di-
rectives. In addition, the low level compiler
benchmarks address the problem of passing
distributed arrays as arguments to subpro-
grams. The language features not included in
the HPF subset are not addressed in the cur-
rent release of the suite. The codes included
in the current suite are either adopted from
existing benchmark suites, NAS suite, Liver-
more Loops, and the Purdue Set, or are devel-
oped at Syracuse University.

Results

Resultsfrom PARKBENCH are availablevia
the Graphical Benchmark Information Ser-
vice (GBIS) at two sites:

The University of Tennessee in the United
States under the URL:

http: //mww.netlib.org/par kbench/gbis/html/
The University of Southampton in the United
Kingdom under the URL:

http: /imww.ccg.ecs.soton.ac.uk/gbis/
papiani-new-ghbis-top.html

4215 GENESISBenchmarks

The GENESIS Benchmark [GEN91] suite
originated within ESPRIT project P2702
(GENESIS) with the codes being written by a
number of the project partners. It isadistrib-

These sites contain results for awide variety
of multiprocessors. Being equipped with a
graphical user interface it is simple to view
result data. Fig. 4.10. shows an example for a
result graph. The benchmark used to produce
thisfigureis 3-D FFT PDE from the PARK-
BENCH kernel benchmarks (originally taken
from the NAS Pardlel Benchmarks suite).
The target systems are CRAY-T3D, INTEL
Paragon, and nCUBE/2 (compare section
6.1.3).

Summary for PARKBENCH Benchmarks

In summary, the pros and cons of the PARK-
BENCH benchmarks are:

Pros:

Different workload types from low level to
application programs are considered to offer
tests for different users and purposes. The
PARKBENCH'’s Graphical Benchmark In-
formation Service makes it easy to access
performance measures for a wide variety of
machines. Also, the objectives of the PARK-
BENCH group which are described in thein-
troduction of this section are al realized.

Cons:

The problem of the PARKBENCH Bench-
marksisthat they are not scalablein terms of
problem size.

uted-memory benchmark suite which tries to
evaluate the performance of distributed mem-
ory MIMD systems on scientific and engi-
neering applications. A Graphical Bench-

Workloads for Multiprocessors

7

mark [nformation Service (GBIS)

http: /imww.ccg.ecs.soton.ac.uk/gbis/
papiani-new-ghbis-top.html

was set up to act asarepository for the bench-
mark suite, a source of papers and informa-
tion concerning the benchmarks and a data-
base of benchmark results.

Most of the benchmarks are message passing
codes written in Fortran 77, using mainly
double precision arithmetic. There are two
different versions of each message passing
code, one using the PARMACS 5.1 message
passing macros and the other using PVM 3.x.
There are also data parallel versions of some
of the codes, written in High Performance
Fortran (HPF), and sequential versionswhere
applicable. The benchmarks are divided into
three categories:

- low level codes

- gpplication kernels
- compact applications

As the three categories already indicate, the
GENESIS Benchmark suiteisvery similar to
the PARKBENCH benchmark from the pre-
vious section. The only differenceisitsfocus
on distributed memory architectures. The
GENESIS Benchmark suite is available at
anonymous ftp.par.soton.ac.uk. The GENE-
SISfilesarelocated in the directory:
pub/genesis.

Summary for GENSIS Benchmarks

In summary, due to the similarity of the two
approaches, the pros and cons of the GENE-
SIS do not differ from the pros and cons of
the PARKBENCH benchmarks.

78

Benchmarking of Multiprocessors

4216 SPLASH-2

The Stanford Peralel Applications for
Shared Memory (SPLASH) [SPL9]] suiteis
aset of parallel applications designed to facil-
itate the performance study of shared memo-
ry multiprocessors. The properties being in-
vestigated are:
- Concurrency and load balancing:
The concurrency and load balancing char-
acteristics of aprogram indicate how many
processors can be effectively utilized by
that program, assuming a perfect memory
system and communication architecture.
This indicates whether a program with a
certain data set isappropriate for evaluating
the communication architecture of a ma-
chine for a given scale. For example, if a
program does not speed up well, it may not
be appropriate for evaluating a large scale
machine.

Communication to computation ratio:

The communication to computation ratio
indicates the potential impact of communi-
cation latency on performance, as well as
the potential bandwidth needs of the appli-
cation. Additionally, the total communica-
tion traffic and local traffic is characterized
for aset of architectural parameters.

Working set:

The working sets of a program [Den68],
[RSG93] indicates its temporal locality.
They can be identified as the knees in the
curve of cache missrate versus cache size.
Knowledge of the working sets can help to
prune the cache size dimension of the pa-
rameter space.

- Spatial locality:
The spatia locality in a program has tre-
mendous impact on its memory and com-
munication behavior. In addition to the
single processor trade-offs in using long
cache lines (prefetching, fragmentation and

transfer time), cache coherent multiproces-
sors have the potentia drawback of false
sharing, which causes communication and
can be very expensive.

Similar to the NAS and PARKBENCH
benchmarks, the SPLASH-2 [SPL95] suite
consist of amixture of complete applications
and computational kernels. It has eight com-
plete applications and 4 kernels, which repre-
sent a variety of computations in scientific,
engineering, and graphics computing.

Applications:

- Barnes
The Barnes application simulates the inter-
action of a system of bodies in a three-di-
mensional space over a number of time
steps, using the Barnes-Hut hierarchical N-
body method.

- FMM
Like Barnes, the FMM application aso
simulates a system of bodies over anumber
of time steps. However, it simulatesinterac-
tionsin two dimensionsusing adifferent hi-
erarchical N-body method called the
adaptive Fast Multipole Method [Gre87].

OCEAN
A red-black multigrid Gauss-Seidel solver
[Bra77] is used to study large-scale ocean
movements based on eddy and boundary
currents.

- Radiosity
The equilibrium distribution of light in a
sceneis computed. Radiosity usestheitera
tive hierarchical diffuse radiosity method
[HsA91].

- Raytrace
A three dimensional scene is rendered us-
ing ray tracing [SGL94].

Workloads for Multiprocessors

79

- Voalrend
A three dimensional scene is rendered us-
ing aray casting technique [NiL92].

Water-Nsquared

This application evaluates forces and po-
tentials that occur over time in a system of
water molecules. The forces and potentials
are computed using an O(n?) algorithm,
and a predictor-corrector method is used to
integrate the motion of the water molecules
over time.

- Water-Spatial

The same problem asin Water-Nsquared is
solved using a more efficient O(n) algo-
rithm for large number of molecules.

Kernes:

- Cholesky
Factorization of a sparse matrix into the
product of alower triangular matrix and its
transpose.

- LU
Factorization of a dense matrix into the
product of alower triangular matrix and an
upper triangular matrix.

- Radix
Iterative integer radix sort kernel [Ble9l].

All kernels and applications are scalable with
respect to problem size and numbers of pro-
cessors. Tab. 4.15. contains a breakdown of
instructions executed for default problem siz-
es on a 32 processor machine. Instructions
executed are broken down into total floating
point operations across al processors for ap-
plications with significant floating point
computation, reads and writes. The number
of synchronization operationsis broken down
into number of barriers (column B in Tab.
4.15.) encountered per processor, and total
number of locks (column L in Tab. 4.15.) and
pauses (flag based synchronizations, column
P in Tab. 4.15.) encountered on all proces-
Sors.

More details on SPLASH-2 and results can

- FFT
Complex 1-D version of the radix-./n six ~ Pefoundin[SPL95].
step FFT agorithm [Bai90].
Total | Total| Total | Total| Shared |Shared
Problem Inst. [FLOPS | Reads |Writes| Reads |Writes

Size M) M) M) M M| M) B Ll P
Application Code
Barnes 16 K part. | 2002.79|239.24 |406.85 |313.29|225.05 | 93.23 | 8| 34648 0
FMM 16 K part. | 1250.02|423.88(226.23 | 38.58/217.84 | 30.10 | 20| 28088 0
Ocean 258x258 ocean | 379.93|101.54| 81.89| 18.93| 80.26| 17.27 | 364| 2592 0
Radiosity room,-ae 5000 | 2832.47 ---1499.72|284.61| 261.08 | 21.99 | 101231190, O

-en 0.05 -bf 0.1

Raytrace car | 829.32 ---1208.90| 79.95/159.97 | 22.22 | 0| 94471 0
Volrend head | 754.77 ---|152.19| 59.57| 81.93| 3.07 | 15| 28934, O
Water-N. 512 molec. | 460.52| 98.15| 81.27| 35.25| 69.07 | 26.60 | 10| 17728 0
Water-S. 512 molec | 435.42| 91.50| 72.31| 32.73| 60.54| 22.64 | 10| 353 0
Kernel Code
Cholesky tk 15.0 | 539.17(172.00|111.86| 28.03| 75.87| 23.31 | 3| 540544203
FFT 64K points | 34.79| 6.36| 4.07| 288 4.05| 287 6 o O
LU 512x512 matrix | 494.05| 92.20|104.00 | 48.00| 93.20| 44.74 | 66 0 0
Radix 1M integers 50.99 ---| 12.06| 7.03] 12.06| 7.03| 10 0| 124
Tab. 4.15. Characteristics of SPLASH-2 applications and kernels

80

Benchmarking of Multiprocessors

Summary for SPLASH Benchmarks

In summary, the pros and cons of the
SPLASH benchmarks are:

Pros:

Different workload types consisting of appli-
cationsand kernelsfor shared memory multi-
processors are considered to offer tests for
different users and purposes. All workloads
are scalable with respect to problem size and
number of processors. The number of syn-

4217 SLALOM

All previous benchmark approaches defined
some (scalable or parametrized) workload to
implement it on the target system and moni-
tor its execution. The results are execution
times or performance measures such as
MFLOPS or MIPS. The SLALOM (Scalable,
Language-independent, Ames Laboratory,
One-minute Measurement) approach tries to
answer a different question, namely "How
big a SLALOM problem will my computer
solve?'. The advantage of this approach is
that it makes it possible to compare a very
wide range of computers from the low end of
performance to powerful multiprocessors.

Fortran, C, and Pascal definitions of the re-
vised benchmark are available, with variants
for SIMD, shared-memory MIMD, distribut-
ed-memory MIMD, and vector computers,
through anonymous ftp to a workstation at
Ames, tantalus.al.iastate.edu.

The application used to generate the work-
load isaradiosity program as described in the
previous chapter. The program isavailablein
different languages (C, Fortran, PASCAL)
and changes due to code optimization are a-
lowed. The reason for the choice of radiosity
were scalability, radiosity involves solving a

chronizations and the number of accesses to
shared data for al workloads are given as a
measure of the communication |oad produced
by the parallel programs.

Cons:

SPLASH benchmarks asthe name already in-
dicates are designed for shared memory mul-
tiprocessors and thus, they cannot be used for
distributed memory architectures.

nearly-dense system of equations, has 1/0
and set up costs, and appears to lack hidden
"shortcuts" that might be unevenly exploited.

In contrast to the previously discussed bench-
marks, SLALOM also takes I/O and the setup
of the problem into account. Constructing an

N by N dense matrix takes an order of O(N?)
steps, whereas solving that matrix requires
O(N®) steps. For large N, the solving will
dominate the benchmark. Y et, the operations
needed to set up each element is in the hun-
dreds, so the operation counts are roughly in
balance when N = 200. The slower machines
are spending much of the time setting up the
problem instead of solving it. For the 1/0 op-
erations, the input isin the form of reading a
geometry file from mass storage. The output
consists of writing the answer (position, size,
and color of every patch) to mass storage.

The performance is fed back to the user for
each problem size, in aform that summarizes
and profiles the run. Tab. 4.16.shows the re-
sult for atypical SLALOM iteration. The re-
sidud is shows the accuracy of solution. itis
defined as usual:

Workloads for Multiprocessors

81

_ lAx—b|

residual = 1—=—1L
(A1)

The results of the SLALOM benchmark are
verified. The setup of the matrix is cross-
checked by seeing that the rows sum to unity.

The residual of the matrix solution is found
after the job is done. Lastly, answer files can
be compared for small and large problem siz-
es, against examples maintained with the pro-
gram versions. Also, displaying the result
graphically can quickly show errors.

Task Seconds Operations MFLOPS % of Time
Reader 0.001 258. 0.025800 0.0%
Region 0.001 1148. 1.148000 0.0%
SetUpl 10.520 20532123. 1.951723 17.8%
SetUp2 23.130 39372520. 1.702227 39.1%
SetUp3 0.130 236856. 1.821969 0.2%
Solver 24.890 135282624. 5.435220 42.1%
Storer 0.480 25440. 0.053000 0.8%
TOTAL 59.160 195425529. 3.303339 100.0%
residua is 2.2566160051696E-12
Approximate data memory use: 2311600 bytes

Tab. 4.16. SLALOM benchmark results for single processor SGI 4D/380S

In the SLALOM benchmark the problem ex-
ecution time is fixed at 60 seconds. The
benchmark has logic to timeitself and adjust
automatically to find that problem size, or the
user can do the trial-and-error manually.

The smallest SLALOM run possible is one
with only 6 patches: one for each face of the
box. That job has 8812 floating-point opera-
tions, so a computer must be capable of at
least 148 FLOPSto run SLALOM in under a
minute.

The performance of the system under test is
measured in number of patches that were
solved. Tab. 4.17. contains SLALOM results
for some single and multiprocessor ma-
chines. MFLOPS are also quoted in thistable
for continuity with earlier benchmarks, but
the number of patches determine the rank.
See the MasPar versus the NCUBE 6400
ranking, for example. More information on
SLALOM can be found in [Gus9l] and
[Gus92].

Summary for SLALOM Benchmarks

In summary, the pros and cons of the SLA-
LOM benchmarks are:

Pros:

The idea to benchmark a system through the
amount of work which can be donein agiven
time interval sounds very reasonable. Com-
pared to many other benchmarks, the time to
set up a problem and to output the result is
also included. The workload is scalable and
well suited for a wide range of computing
systems.

Cons:

The problem of the SLALOM Benchmarksis
that only one workload is considered. The
conclusions from this workload are not

82

Benchmarking of Multiprocessors

enough for a performance evaluation of a
computing system.

Machine, environment Procs. Patches Ops. Secs. MFLOPS
Cray Y-MP/8, 167 MHz

Fortran+tuned LAPACK solver 8 5120 126 G 59.03 2130.
Cray 25/8-128, 244 MHz

Fortran+directives, FPP 3.00Z25 8 2443 144G 59.83 240.
NCUBE 6400, 20 MHz

Fortran+assembler 64 1438 283G 59.95 47.2
MasPar MP-1, 125 MHz

C with plural variables (mpl) 8192 1407 293G 57.65 50.8
Silicon Graphics 4D/380S, 33 MHz

Fortran (-O2 -mp -Iparalin) 8 1010 115G 59.85 19.2
IBM RS/6000 POWERSstation 320

Fortran (xIf -O -Q) 1 642 328. M 59.+ 5.6
iPSC/860, 40 MHz

Fortran (-OLM -i860) 1 419 105. M 59.91 1.75
Myrias SPS2 (mc68020, 16.7 MHZ)

Fortran (mpfc -Ofr) 64 399 92.2.M 59.26 1.56
SUN 4/370, 25 MHz,

C (ucc -O4 -dalign etc.) 1 380 81.1M 59.85 1.35
NCUBE 2,20 MHz

Fortran + assembler subroutines (-O2) 1 354 67.5M 59.73 1.13
DECStation 2100, 12.5 MHz,

Fortran (f77 -O2) 1 285 388M 59.72 0.649
Cogent XTM (T800 Transputer)

Fortran 77 (-O -u) 1 149 7.89M 59.37 0.133
Tab. 4.17. SLALOM benchmarks results

4.2.1.8 The SPEC High-Performance Group

In 1994, the Standard Performance Evalua-
tion Corp. (SPEC) established the High Per-
formance Group (HPG), which establishes,
maintains and endorses a suite of benchmarks
that represent high-performance computing
applications for standardized, cross-platform
performance evaluation. The benchmarkstar-

get high performance system architectures,
such as symmetric multiprocessor systems,
workstation clusters, distributed memory par-
alel systems, and traditional vector and vec-
tor parallel supercomputers.

The SPEChpc96 suite includes two applica-
tion areas:

Workloads for Multiprocessors

83

seismic processing (SPECseis96), an in-
dustrial application that performs time and
depth migrations used to locate gas and oil
deposits

- and computation chemistry (SPECchem96)
which contains GAMESS (General Atomic
and Molecular Electronic Structure Sys-
tem). Many of the functions found in
GAMESS are duplicated in commercial
packages used in the pharmaceutical and
chemica industries for drug design and
bonding analysis.

The applications are scalable in terms of
problem size, input data sets for a small, me-
dium, large, and extra large problem are pro-

vided. For SPECseis96, problem sizes relate
directly to the number and the type of analy-
sis the application performs. For
SPECchem96, problem sizes relate to the
complexity of the molecule under analysis.
Additional applicationsfrom CFD (computa-
tiona fluid dynamics), molecular dynamics,
and westher predictions are under investiga-
tion for future releases of SPEChpc suites.

An overview on the structure and members of
the SPEC HPG is given in Fig. 4.11., addi-
tional information and results are available
at:

http: //imww.specbench.org/hpg/

Benchmarking of Multiprocessors

The SPEC HPG Initiative

SPEC

Standard Performance
Evaluation Corporation
founded in 1988

High-Performance Group

http://mww.specbench.org/hpg/

Founded in 1994

First benchmark suite SPEChpc96
released at Supercomputing ' 95

/

PERFECT " Club"

founded in 1988

Academic Members: -
- University of Illinois -
- University of Michigan

- University of Minnesota
- University of Tennessee
- Purdue University

- International Supercomputing -
Technical Institute

Industrial Members:
Cray Research

DEC

Electronic Data Systems
Fujitsu America

HP/Convex

Kuck & Associates Inc.
NEC, HNSX Supercompters
Silicon Graphics

SUN Microsystems

Fig. 4.11. The SPEC High-Performance Group

Workloads for Multiprocessors

85

4.2.2. LOOP Programs

The number of multiprocessor architectures
has substantially increased in the last years,
so did the efforts to evaluate these machines.
The popular kernel benchmarks that have
been used for traditional vector supercomput-
ers, such as the Livermore Loops, the LIN-
PACK benchmark and the original NAS ker-
nels, are clearly inappropriate for the perfor-
mance evauation of highly paralel
machines. First of al, the tuning restrictions
of these benchmarks rule out many widely
used parallel extensions. More importantly,
the computation and memory requirements of
these programs do not do justice to the vastly
increased capabilities of the new parallel ma-
chines. Another problem is that none of the
previously discussed approaches is feasible
for a wide range of existing multiprocessors
or is adaptable to user defined workloads.

The LOOP approach describes a portable
high level workload description language
(LOOPIlanguage) for parallel systems. To au-
tomatically produce program code for the dif-
ferent systems, a program generator was de-
veloped that translates the LOOP computa-
tion and the LOOP communication
instructions into instrumented paralel C
code. The instrumentation results in trace
data that are visualized by appropriate tools.
Thus, a user can evauate a system for the
specific workloads of his applications. Addi-
tionally, LOOP descriptions of a set of pa
rameterized workloads are part of the LOOP
benchmark package. These workloads are
used to compare different systems.

In the field of paralel computing a broad
black box approach with fixed workloads
(e.g., asused by SPEC) isno longer adequate.
Some knowledge of the machine architecture
aways influences the design of the applica-
tion program. The LOOP method introduced

in the next section allows certain machine de-
pendent optimizations.

The term parallel systems used here refersto
massively parallel computer systems and not
to architectures such as multi processor work-
stations. Benchmarking the latter issimilar to
the evaluation of single processor architec-
tures. These environments normally consider
anumber of processes per processor with lit-
tle communication between them. They are
programmed in a code-parallel manner. Be-
sides eval uating pure processor performance,
benchmark tests must determine processor
capabilities, e.g., how many processes can be
handled at the same time and how long are
the context switches. Under this scenario
workload mixes consisting of conventional
benchmarks can be used, aslong asit is guar-
anteed that al available processors have
some computational work to do. Workstation
networks running applications in an SPMD
(single program multiple data) mode can aso
be considered as massively paralel systems
and can thus be evaluated using the LOOP
approach.

The situation in evaluating massively parallel
computers is more difficult than for single
processor architectures. Standard benchmark
tests cannot be used for such systems since
they have not been specially designed for
these architectures. Special algorithmsarere-
quired since applications normally are tuned
to certain processor or cache topologies. Con-
trary to single processor architectures, mas-
sively parallel machines are typicaly not
stressed under normal workload conditions.
Thiscreatesthe need for anew kind of bench-
mark. The communication features of the
system should be evauated, and specia
workload characteristics should be described.
The remainder of this section summarizesthe

86

Benchmarking of Multiprocessors

approach of a new benchmark that is able to
evaluate the overal system performance of
massively parallel computer systems. The ad-
vantages of this parameterized benchmark

4.221. Using Parameters

Most of the existing benchmark tests de-
scribed previously do not allow the use of pa-
rameters by which the user load can be cali-
brated. This restricts the influence that a user
has on the execution of a benchmark pro-
gram. This restriction is useful to make sure
that results are uniform and comparable. On
the other hand, the user isbound to aprogram
which probably does not represent the same
workload as the specific application of inter-
est. Giving the user the ability to adapt the be-
havior of a certain application enables the
benchmark to mimic the behavior of the de-
scribed program. Two approaches are possi-
ble.

A first and rather static approach isto create
asingle program that is able to change its be-
havior according to input parameters from
the user. Such a program can change its be-
havior in arestricted manner.

Another, more flexible approach is to devel-
op aprogram that not only makes use of these
parameters, but also generates different pro-
grams. These synthetic programs are then to
comprise the benchmark workload. Thisim-
plies the creation of a Benchmark Generator
rather than developing a benchmark program
inisolation.

In both cases, the use of parameters has the
important advantage that only a single pro-
gram hasto be ported to different machinesin

over previous benchmarks are given, and the
methods by which the new approach can be
applied are explained.

order to obtain a wide variety of synthetic
workloads. This implies that a user does not
have to port an application program to the
new architecture to investigate its behavior.
By incorporating several scaling parameters
it is possible to simulate the application's
(communication and computation) behavior
under different conditions.

A second important advantage of this ap-
proach is the fact that specia features of a
system’s performance can be tested individu-
ally. For example, different kinds of message
patterns can be generated by manipulating
message size and frequency parameters.

The benchmark generator also has another
advantage over simply porting specia appli-
cations and using them as benchmark pro-
grams. Evaluation facilities and tracing capa-
bilities can automatically be included. Using
aset of parameters to describe an application
implies a trade-off between the conflicting
goals of easy usability and model representa-
tiveness. A large number of parameters
makes it easier to create a workload with be-
havior close to the application from which
these parameters are derived. However, the
extra parameters add to the complexity of the
benchmark. Ideally, the benchmark should be
characterized by a small set of parameters
while not sacrificing representativeness.

Workloads for Multiprocessors

87

4222. TheLOOP Method

In the LOOP approach [Bre94], [Sch93]
workloads are not defined using one specific
workload described in detail. Instead, an en-
vironment for a user specified evaluation of
parallel computer systems is provided. The
LOOP method has been developed assuming
that the user has structural knowledge of the
intended workload. The benchmark generator
then constructs a workload with the same
structural characteristics.

It is often useful to obtain a first impression
of a new agorithm’s behavior on a known
machine. The exact amount of code related to
communication handling does not have to be
specified. Instead, one can concentrate on the
algorithm itself. Some predefined standard
workloads described in later sections can be
used to get a first impression of the system
without the need to fully implement a user
specific application.

Structural parameters
(Loop program)

Runtime parameters
(used by generated workload)

- Problem size
- Number of processors

—
Ly oy

Visualization of trace data
B —— Trace data

Fig. 4.12. Workload generation with the LOOP approach

~__—w» Workload

Y

M ultiprocessor System I

In Fig. 4.12., the LOOP approach isillustrat-
ed. A structural load description (LOOP pro-
gram) isfed into the generator. The generator
produces the corresponding parallel instru-
mented program. The program can be run on
thetarget architecture with different input pa-
rameters and the behavior can be analyzed
using collected trace information. The central

part of the LOOP method is the Workload
Generator. Thisgenerator istheonly program
that has to be ported to a new machine to test
the new machine with awide variety of work-
loads.

Although the problems evaluated using the
LOOP method can be defined at a high level
of abstraction, the use of a powerful visua-

88

Benchmarking of Multiprocessors

ization tool alows the user to examine such
things as the communication structure in de-
tail. Communication bottlenecks in the hard-
ware or in the chosen algorithm can be detect-
ed. It can be determined if a certain network
topology is suitable for a problem with spe-
cific characteristics. Examples are described
in later sections.

Given a description of the workload and the
architecture to be tested, the workload gener-
ator constructs a program in standard C
which is executed on the target system. To
have awidely accepted communication mod-
el, the generator uses the PICL library
[PICL90] (Portable Instrumented Communi-
cation Library). Besides the ability to write
portable code for massively parallel systems,
this library is capable of tracing basic com-
munication instructions. PICL trace informa-
tion can be analyzed with avisualization tool,
ParaGraph [Parad2].

The main god in the design of the LOOP
model isto ensure ease of use. Thisisaccom-
plished by making the description of the
workload significantly more concise than the
user’s actual application. In situations where
anew architecture is to be evaluated, this is
especially important. Another important goal
in the LOOP design is to make the program-
ming of parallel program communication for
message passing systems as easy as possible.

In the LOOP method, the user can describe
programs in a pseudo-code like manner simi-
lar to that often found in literature, for exam-
ple [Gol83], [Pre88]. To accomplish this, the
LOOP language is an extension to standard C
and PICL [Sch93]. LOOP constructs and data
structures can easily be manipulated. Theim-
plementation of the abstract constructsfor the
description of communication workloads
guarantees deadl ock-free workloads, because
sender and corresponding receiver are auto-
matically addressed as pairs.

How to write LOOP programs

The first step in the evaluation of a parallel
system with the LOOP method is to give

structural information of the desired work-
load to the generator. Based on this informa-
tion, the generator produces executable code
for thetarget system. By using the LOOP lan-
guage, all structural information is given.

In atypical experiment, it is often useful to
execute the same workloads with different
problem sizes and with varying number of
processors. Such sensitivity analysis finds
limitations in the hardware regarding memo-
ry or cache behavior. Therefore, at runtime
certain parameters can be specified to the
generated workload. This implies that even
without rebuilding the program, problem size
limitations of agorithms or hardware can be
tested.

Structural Parameters

The structural parameters are specified via
LOOP language constructs. In this section,
the most important constructs are explained
and their usageisdemonstrated viaexamples.

Programsand Data Structures

Considering problems normally solved on
massively paralel systems, numerical appli-
cations are arguably the most important. Nu-
merical programming problems mainly deal
with operations on matrices and vectors. Pro-
grams for these kinds of problems, therefore,
consist of iterations over matrices and vec-
tors. For this reason, the design of the LOOP
language focuses on offering convenient
ways to describe such operations.

Along with the\L OOP construct which deter-
mines loop nesting, several instructions
handling high-level data structures are avail-
able. In Fig. 4.13., a LOOP program abstrac-
tion of asimple parallel matrix multiplication
isshown. The use of the construct \LOOP and
the declaration of high-level data structures
can be seen. The communication is specified
via the \COMMUNICATE statement which
is explained later. The declared matrices are
alocated dynamically by the\MAT construct
and initidlized as specified by the

construct. This Initiaization

Workloads for Multiprocessors

89

can be omitted if specific array values are not
required.

All LOOP language instructions are prefixed
by the sign \. The generator recognizes these
tagged backslash instructions and converts
themto normal C. Thisimplies that addition-
al C code can beincorporated directly into the
LOOQP program.

The construct
\LOORP [iterator]

inFig. 4.13. isused to describeiterations over
the complete problem size. The use of itera-
tion variables (i1 - i3 in our example) is op-
tional. The variables can be omitted if they
are not needed. The default number of LOOP
iterationsisthe problem size. No definition or
initialization for theiterators and the matrices
is necessary. Iteration variables are automati-
cally declared by their use in the LOOP con-
struct. High-level data structures like matri-
ces are declared and initialized by using spe-
cia instructions which, in our example, are
the constructs

\MAT and \INIT_ARRAY.
The construct
\LOORP [iterator]

inFig. 4.13. isused to describeiterations over
the complete problem size. The use of itera-
tion variables (i1 - i3 in our example) is op-
tional. The variables can be omitted if they
are not needed. The default number of LOOP
iterationsisthe problem size. No definition or
initialization for theiterators and the matrices
is necessary. Iteration variables are automati-
cally declared by their use in the LOOP con-
struct.

The code given in Fig. 4.13. is the complete
input for the generator to produce a parallel,
parameterized program for a matrix multipli-
cation. Theresult of the generator isaparallel
instrumented program (PIP). The benchmark
packageincludesauser friendly interface that
aidsin all phases of the machine evaluation.
After the PIP is generated, the code is com-
piled and executed. A tracefile is collected
and written to disk.

int main(void){
int nprocs, me, host;
int psize, amount;
\OPENO
(&nprocs,& me,& host, & psize,
TRACE_BUF_SIZE);
[* Declarations: */
\Mat(double) Mat1;
\Mat(double) Mat2, Mat3;
[*random init */

amount= sizeof (double)*
psize* psize/nodes,
\LOOPi3{

\LOOPIi2{
\LOOPi1{
Mat3[i3][i2] +=
Mat1[i3][i1]*
Mat2[i1][i2];

}
\COMMUNICATE(amount,1,1);
1}
\CLOSEQ();
}
Fig. 4.13. Complete LOOP program for a par-
allel matrix multiplication

Computational L oad

In the above example the computational |oad
results from the statement
Mat3[i3][i2] +=
Mat1[i3][i1]* Mat2[i1][i2]

in the inner loop. Often the user may not be
able to give the exact statements generating
the desired computational load. In such cases
itisimportant to have aset of statementswith
which the computational behavior can be de-
scribed. Since the resulting computational
load depends upon the position in the loop hi-
erarchy, these statements have to be deter-
mined for each loop level of the program
structure. Three examples of such statements
illustrate various options.

\MATPROD

90

Benchmarking of Multiprocessors

indicates the calculation of amatrix multipli-
cation. The type of operations can be deter-
mined by the declaration of the matrices
which are to be multiplied. The sizes of the
matrices (submatrices) can be given as argu-
ments.

\MATVECPROD

issimilar to the matrix multiplication instruc-
tion and generates code for a matrix-vector
product.

\SCALPROD

calculates a scalar product. Two vectors and
the name of the resulting scalar are given as
arguments.

These and other operations often used in mas-
sively parallel programming are provided to
make the description of the computational
load easy. Since various data structures can
be specified it is easy to generate different
classes of workloads. Using these constructs,
it is possible, for example, to describe a di-
verse set of abstract testsfor integer and float-
ing point performance.

M odeling Communication

The design of aworkload for multiprocessor
machines should include a description of
workload placed on the interconnection net-
work. Several goals are discussed in the fol-
lowing.

Firgt, it isimportant to have asimple, easy to
use description of several communication re-
|ated parameters. Such parametersinclude:

- the frequency and type of messages,
- the size and pattern of messages, and

- the locality and communication distance,
including the sending and receiving nodes.

Another god, related to the programming of
message-passing architectures, isto make the
communication code deadlock-free. The de-
velopment of such code is problematic since
statements for receiving messages are nor-
mally blocking. In order to make the code
deadlock-free, a mechanism is needed which

assures that an adequate number of messages
are sent to nodes which are waiting to re-
ceive.

Describing communication in an abstract
way implies that neither setup routines nor
specia point-to-point programming should
be necessary. The LOOP language provides
high level instructions from which the gener-
ator is able to produce correct communica
tion code for each node. These are motivated
through the following example.

The COMMUNICATE Statement

One common communication function is the
transfer of messages between severa proces-
sor nodes of agiven distance. In parallel com-
puting, situations can be found in which sev-
eral processors of a certain distance commu-
nicate regularly. Nodes typically send results
to another node and receive new data from a
third node.

As an example, the simple parallel matrix
multiplication LOOP program of Fig. 4.13.is
considered. The underlying algorithm is de-
scribed in Fig. 4.14.

Each node performs the following step number of
nodes times:

* getspart of A and B
* computes a submatrix of C
« sends own part of B to another node

* receives new part of B from athird node

= - - G

A B C

Fig. 4.14. Structure of a paralel matrix multi-
plication

Inthisfigure, it isshown that both matrices A
and B are distributed in blocks of rows and
columns, respectively. Each node is able to
compute a certain sub-matrix of the resulting

Workloads for Multiprocessors

91

matrix C. Having calculated the sub-matrix,
it is necessary that each node sends its col-
umn block of matrix B to another node and
receives anew block of columns from athird
node. Typically, the blocks of columns are
exchanged cyclically.

Reconsidering the LOOP program shown in
Fig. 4.13., the communication can be mod-
eled with the

\COMMUNICATE (size, distance, partners)

instruction. The arguments specify the
amount of data which has to be communicat-
ed, the distance between the communicating
processors, and the number of processors to
which the data shall be transferred, respec-
tively. Thus, the

\COMMUNICATE(amount,1,1)

statement in Fig. 4.13. indicates that acertain
number of matrix entries (amount) has to be
transferred to one partner of distance one.
Optionaly, the\COMMUNICATE statement
can be given a compound statement. Such
compound statementsindicate casesin which
the low level send and receive operations
generated by the high level \COMMUNI-
CATE instruction are positioned at different
placesin the parallel code. The sending oper-
ations are done before the execution of the
compound statement and the receiving of the
messages is done afterwards. Inside the com-
pound statement a certain amount of compu-
tation may be performed. Because of the non
blocking send operation, overlapping be-
tween communication and computation can
be achieved. Generaly spesking, with the
\COMMUNICATE instruction it is possible
to check the performance of the interconnec-
tion network with respect to

- the communication distance and
- the message length.

Information Exchange

Similar to the \COMMUNICATE construct,
the \EXCHANGE statement generates com-
munication between two processors of a cer-
tain distance. Although it might initially seem

possible, this construct cannot be replaced by
the use of two \COMMUNICATE instruc-
tions which generate only very few bidirec-
tional communications by coincidence. The
parameters size, distance and partners of the
\COMMUNICATE statement do not allow to
specifically allocate pairs of processors for
\COMMUNICATE statements executed on
two processors. Therefore, a construct which
generates only bidirectional communication
between pairs of processorsis provided. The
construct

\EXCHANGE (size, distance, partners)

generates bidirectional communication by
sending and receiving messages of length
‘size’ between ‘partners’ (i.e., processors) of
a certain communication ‘ distance’.

In pardlel linear algebra and image process-
ing there are several algorithms which make
use of dataexchange between pairs of proces-
sors. Asan example, the principles of aparal-
lel red-black relaxation algorithm are consid-
ered.

Fig. 4.15. Parallel red-black relaxation

All elements of the matrix are marked in a
chess-board like manner using the colors red
and black. Each processor gets a part of the
matrix asshownin Fig. 4.15. In eachiteration
step, al elements of a processor’s submatrix
are recalculated. New values are calculated
by using a function which takes a certain
neighborhood of the point into account. This
means for each point, a statement

92 Benchmarking of Multiprocessors
P[i.j1 = f(PLIL given limit, this example iterates a distinct
PLi-1](j], Pi+1](j], number of times. At runtime the user can
PLill-11,PLIG+1]) specify the amount of iterations by defining

has to be calculated.

Red elements are recalculated first in which
elements shared between two processors
have to be exchanged. After that, recalcula-
tion and exchange of black elementsis done.
This process continues until changes in the
matrix values are below a certain error
threshold where the algorithm is assumed to
have found the solution to the problem.

int main(void)
{
int amount, host, me;
int psize, nprocs;
int psize_node =
(int) (psize/ nodes);
\MAT (TYPE: MY_TYPE,
S1: psize_node) Mat;
\OPENO(& nprocs,& me,& host,
&psize, T_BUF);

amount=psize*sizeof(MY_TY PE);

\LOOP (ITERATIONS) {
\EXCHANGE (‘amount, 1, 2);
relax (0, psize, psize_node);
\EXCHANGE (‘amount, 1, 2);
relax (1, psize, psize_node);

} /* END LOOP */

\CLOSEOQ();

return EXIT_SUCCESS;

}

Fig. 4.16. LOOP program for parallel red-
black relaxation

A LOOP program which is capable to model
thisalgorithmisshownin Fig. 4.16. The sub-
routine relax performs the iteration of one
color (red or black) on the matrix. The func-
tion for the computation of new elements is
the arithmetic mean of the four neighboring
elements. In contrast to a real agorithm
which would terminate if the error bound be-
tween two iteration steps is smaller than a

the value of iterations.

Besides placing computational load on each
processor, the program as it is described in
Fig. 4.16. stresses the interconnection net-
work with a large amount of bidirectional
messages expressed by the \EXCHANGE
construct. Here it can be seen how some nor-
mal C constructs are integrated in the LOOP
program. The distribution of the matrix itself
and other setup overhead is not regarded in
this example. To handle the distribution of
data some high-level communication rou-
tines as shown below are provided.

High-level Communication Routines

Two major types of high-level communica
tion routines are provided: multi-broadcast
and vector communication kernels. The first
one has been implemented to place amassive
load on the interconnection network. All of
these massively communicating routines are
implemented by sending a certain amount of
data from all nodes to all others. This func-
tionality is called a multi-broadcast opera-
tion. The LOOP package has three slightly
different implementations of this muilti-
broadcast statement.

\MULTIBCASTO(amount)

All nodes start by performing all send opera-
tionsfirst; after that all receives are executed.
The amount of data sent by each nodeis giv-
en as an argument. All nodes begin by send-
ing to node O and proceed by sending to the
remaining nodes in numerical order. (Nodes
do not send messages to themselves). Mes-
sage receiving isdonein the same order start-
ing at node 0.

\MULTIBCAST_ME(amount)

This procedure is similar to the above de-
scribed operation. The only difference is that
nodes do not start sending to node 0. Instead
each starts with the node which is numbered
one greater than itself (modulo the highest

Workloads for Multiprocessors

93

processor number). Thisisto make sure that
node 0 and the communication paths near
node 0 are not overwhelmingly loaded.

\MULTIBCAST_ALTER(amount)

In contrast to the two above mentioned func-
tions this one does not separate al send and
receive operations. Instead, as the name indi-
cates, it places areceive operation after each
send. The order of these operations is such
that send operations are done with increasing
and receive operations are done with decreas-
ing processor numbers. This strategy avoids
hot spots and puts an evenly distributed com-
munication load on the interconnection net-
work.

The other class of high-level communication
routines are vector communication kernels.
Such routines are often used in parallel com-
puting. Routines for distributing, collecting,
and broadcasting vectors are provided. The
communication pattern used by these proce-
duresisbased on avirtua (binary) tree topol-
ogy. Although atree topology might not map
well on the target architecture, it does offer
the advantage that collection and distribution
can bedoneinlogarithmic time. Three differ-
ent routines are provided by the LOOP lan-
guage.

\TREE_BCAST (start_data,amount)

Node 0 sends (broadcasts) ‘amount’ bytes to
al other nodes. The datasent islocated at the
position indicated by ‘start_data'.
\TREE_COLLECT VEC(start_vec)
Processor 0 collects the parts of a distributed

vector from all other processors and rebuilds
the original vector at ‘start_vec'.

\TREE_DISTRIB_VEC(start_vec)

Processor 0 starts distributing a vector at
‘start_vec’ to al other processors. Each node
gets its own part of the vector. These tree
communications are carried out in log,(pro-

cessors) steps. In each step the data to be col-
lected/distributed is passed to the next upper/
lower level of the assumed virtual tree topol-
ogy. A default logical tree topology isimple-
mented with the LOOP package. The map-
ping of the nodes on the target architecture
can be tuned by the user.

Runtime Parameters

In the preceding, the structural parameters
needed to generate a certain type of workload
have been described. For different execu-
tions, this generation step need not be repeat-
ed, only different runtime parameters are
needed.

Oneimportant runtime parameter isthe prob-
lem size. The overal execution time and
communication behavior depend directly on
this parameter. For example, inthe SLALOM
benchmark, by varying the problem sizeit is
possible to analyze the cache influence.
Workloads with a large problem size do not
fit in small data caches. A second important
runtime parameter is the number of proces-
sors alocated to the generated workload.
Both, the problem size and the number of al-
located processors, are important in deter-
mining the granularity at which the problem
is solved most efficiently on the tested ma-
chine. To be able to model iterative algo-
rithms, athird runtime parameter, the number
of iterationsis provided.

Problem size:
The size of the data structures over which the
program iterates.

Processors:
The number of processors allocated to the
workload.

Iterations:

In case of iterative algorithms, the number of
passes the algorithm makes over the specified
data structures.

Benchmarking of Multiprocessors

4223 PICL and ParaGraph

An important feature of any successful
benchmark is to design it to be portable
across as many machines as possible. Thisis
a difficult task in the case of multiprocessor
architectures, because there is no standard
programming language. There are also vari-
ous programming models (e.g., host node
model, node model, synchronous communi-
cation, asynchronous communication). A
group of researchers at Oak Ridge National
Laboratory (ORNL) addressed this task by
constructing a communication library. The
ideaissimple:
1. Identify the communication needs of a
message passing program (e.g., send, re-
ceive, barrier, broadcast, etc.).

2. Provide the user with routines for those
needs.

3. Put the routines in a software library that
iseasy toinstall for awide variety of mul-
tiprocessors.

4. Makeit publicly available.

The result is PICL (Portable Instrumented
Communication Library) which has beenim-
plemented on several multiprocessor sys-
tems. PICL programs are portable between
machines where PICL isimplemented. PICL
includes all communication routines that are
needed for parallel message passing pro-
grams. The generator of the benchmarking
package transforms the L OOP description of
a paralld workload into a parallel program
with C and PICL statements. A detailed de-
scription of PICL can be found in [PICL90],
which is also part of the LOOP benchmark

documentation package!.

PICL automatically instruments the code for
tracing purposes. The resulting traces can be

1. available viaftp (ftp.irb.uni-hannover .de)

interpreted with ParaGraph, a graphical dis-
play system for visualizing the behavior and
performance of parallel programs on message
passing multicomputer architectures. Visua
animation is provided based on execution
trace information monitored during an actual
run of aparallel program. The resulting trace
dataisreplayed pictorially and provides ady-
namic depiction of the behavior of the paral-
lel program. Graphical summaries of overall
performance behavior is also provided. Dif-
ferent visual perspectives provide different
insights of the same performance data. A de-
scription of ParaGraph can be found in
[Para92], which isalso part of the benchmark
documentation package.

The output of the generator was chosen to be
PICL programs for three reasons: instrumen-
tation, availability, and portability. PICL pro-
vides instrumentation, it is public domain
software and it is implemented on severa
systems. The generator output isnot inherent-
ly restricted to PICL. Whenever a new mes-
sage passing paradigm becomes available
that meets the three requirements above, the
generator output can easily be changed. This
implies that the basic LOOP approach is in-
dependent of the underlying message passing
hardware. In thisbook it isnot possible to de-
scribe al LOOP statements, a complete de-
scription can be found in [Bre94].

4224 Predefined Benchmarks

Once the basic LOOP structure has been
specified it is possible to write generic LOOP
programs to analyze a wide range of system
features. The LOOP package includes some
programs that can be used as predefined
benchmarks. The predefined benchmarks
consist of LOOP programs for typical paral-
lel workloads (e.g., matrix multiplication,

Workloads for Multiprocessors

95

conjugate gradient, relaxation, fast fourier
transformation) and of one specia synthetic
test program that provides an overall impres-
sion of the computation and communication
performance of the machine. Thisspecial test
program is termed the Fingerprint LOOP
program. The predefined benchmarks are de-
signed for users who want to evaluate and
compare different machines.

The Fingerprint

#include “LOOP.h"
#define TRACE_BUF_SIZE 250000
#define MY _TY PE double
int main(void)
{
/* declarations*/
int myself,allnodes;
int host,problemsize ;
\VEC(TYPE:MY_TY PE) s, vecl;
\VEC(TYPE:MY_TY PE) vec2;
/* main program */
\OPENO(& allnodes,
&myself, &host,
&problemsize,
TRACE_BUF_SIZE) ;

\LOOP{
\SCALPROD(sc, vecl, vec2);}

/* multi-broadcast, 1 bytes*/
/* multi-bcast,500 bytes */
\MULTIBCASTO(500);

[* multi-bcast, 1000 bytes */
\MULTIBCASTO(1000);

\CLOSEQ();
return EXIT_SUCCESS;

Fig. 4.17. LOOP source code for Finger-
print

To assessthe communication capabilities of a
machine in comparison to the computational
power, the Fingerprint benchmark has been
developed. Thegoal isto provide quick, visu-
a reference information for a first glance
comparison between different machines. As
shown in the annotated version of the space
time diagram in Fig. 4.18., the Fingerprint
was designed to illustrate

(1) thetime needed for a certain computa-
tion intensive phase,

(2a-c)the time needed for communications of
different message length, and

(3) the effect of heavy communication
loads which partially saturate the com-
munication network.

This latter effect is provoked by concentrat-
ing on node 0O, then on node 1, and so on.
Thus, communication delays tend to be com-
pounded for higher processor numbers.
Therefore, a severe “V-type* profile indi-
cates a high number of conflicts in the com-
munication network. A more rectangular
(i.e., vertical) profileistypical for a non-sat-
urated network as evidenced by the ends of
phases 2a and 2b. In Fig. 4.17. the LOOP
source code for the Fingerprint workload is
given.

The execution of the Fingerprint workload
falsinto two parts. In the first part, a scalar
product of two vectors of size problemsizeis
calculated on each node. The parameter prob-
lemsize is specified at runtime making sever-
a different executions possible. The second
part consists of three multibroadcast instruc-
tions with different message lengths. In each
multibroadcast the selected amount of infor-
mation is transmitted from each node to all
other nodes. This produces a heavy load for
the interconnection network. The different
amount of data sent increases the network
load and produces space time diagrams
which can be compared across various ma-
chines.

To provide aboundary between the computa-
tion and communication phases easier a

96

Benchmarking of Multiprocessors

\VISIBLE_SYNC() construct is used. Since
the PICL syncO instruction does not produce
any trace datato be visualized by ParaGraph,
the LOOP system provides this special form
of synchronization. All nodes execute asyncO
operation. Next, every node sends a short

messageto itsright hand neighbor. This pro-

1. Using avirtual ring topology

duces a vertica line in the space-time dia-
gram. To synchronize the execution of all
nodes after sending a message to and receiv-
ing a message from the neighbors, a second
syncO is performed by all nodes. The second
syncO minimizes the time difference for the
processors to start the next phase of the pro-
gram.

mowmomoomT

AmmIcz

nCUBE/2 - Finger print(100,1,500,1000)
visible sync
y
o | &
14 :
1z
12
11
1@
a
2
7
[
5
+ : ; S :
2 ; 2 4 : B
° 3L REEE v il SR K
|
r®—— Computation Phase —— P short W‘W over-| &
commu. commu. commu. | load
phase phase phase phase
message length O bytes for visible sync or 1 byte for multbcast(1)
«==mms Message length 500 bytes for multbcast(500)
— Message length 1000 bytes for multbcast(1000)
Fig. 4.18. Space time diagram for atypical 16 processor Fingerprint execution

Comparison of nCUBE/2 and MEIK O using Fingerprint

As an example, two distributed multiproces- test machine is the nCUBE/2 which is de-
sors of similar technology are now compared scribed in section 4.1.2.1 of this book. The
using the LOOP Fingerprint operation. One other machine is a MEIKO multiprocessor

Workloads for Multiprocessors

97

which is based on T800 Transputers running
at 20 MHz.

nCUBE/2 - Finger print(100,1,500,1000)
(time axis scaling factor: 120)

SPACETIME DIACRANM

mowmomoomT

AmmIcz

TIME

MEIKO - Finger print(100,1,500,1000)
(time axis scaling factor: 500)

SPACETIME DIACRAN

[

Tommmoo®T

AmMmz=CczE

TIME

Fig. 4.19. Space-time diagram of 16 processor Fingerprint on MEIKO and nCUBE

B5i

Fig. 4.19. shows space-time diagrams for the
first experiment. A Fingerprint with the pa-
rameter quadruple (100,1,500,1000) is exe-
cuted on 16 processors on each machine. The

first parameter 100 is the problem size of the
scalar product of the computation phase. The
second parameter 1 is the number of bytes
used for the multibroadcast of the first com-

98

Benchmarking of Multiprocessors

munication phase. The third and fourth pa-
rameters are the number of bytes being used
for the second and third multibroadcasts.

The two space-time diagrams indicate that
communication costs are higher on the MEI-

KO. For a better optical comparison, differ-
ent time axis scaling is used in Fig. 4.19. for
the two space-time diagrams. If the scaling of
the MEIKO diagram is used for the nCUBE,
the resulting diagram is shown in Fig. 4.20.

nCUBE/2 - Finger print(100,1,500,1000)
(time axis scaling factor:

SPACETIME DIACRANM

500, same scale as MEIKO)

AMWICET MOomOmMOomT

Fig. 4.20. Space-time diagram of 16 processor Fingerprint on nCUBE

TIME &5

Tab. 4.18. summarizes the execution times
for the experiment. The total execution time
is better for the nCUBE system. Of greater
importance is the computation/communica-
tionratio. A value of onefor thisration means
that the time spent for computation equalsthe

time spent for communication. A value of
smaller than one of this ration means that
more time is spent for communication, aval-
ue greater than one means that more time is
spent for computation. A value close to one

Workloads for Multiprocessors 99

indicates a balanced system in terms of com-
putation versus communication.

nCUBE/2 MEIKO

number of nodes: 16 number of nodes: 16
total execution time: 0.0765 sec toal execution time: 0.282 sec
computation time 0.0367 sec computation time 0.060 sec
communication time 0.0398 sec communication time 0.222 sec
compu./commu ratio 0.922 compu./commu ratio 0.270
avg time send (usec): 4353 avg time send (usec): 18276

Tab. 4.18. Comparison of MEIKO and nCUBE using a 16 processor Fingerprint

In the second experiment, the same Finger- 4.18. (nCUBE is 3.68 times faster than MEI-
print (parameters 100, 1, 500, 1000) is exe- KO) and Tab. 4.19. (nCUBE is 4.98 times
cuted on 32 processors on each machine. faster than MEIKO) it shows that the higher
Since the computational load is unchanged communication costs of the MEIKO system
and the communication load isincreased the slows down the system for larger numbers of
computation/communication rationisexpect- processors. Also, the average time for the
ed to become smaller. Tab. 4.19. confirmsthe send operation has increased by a higher fac-
expected results. If the relative speed of tor for the MEIKO system.

nNCUBE versus MEIKO is compared for Tab.

nCUBE/2 MEIKO

number of nodes: 32 number of nodes: 32
total execution time: 0.1122 sec total execution time: 0.559 sec
computation time 0.0367 sec computation time 0.060 sec
communication time 0.0755 sec communication time 0.499 sec
compu./commu ratio 0.486 compu./commu ratio 0.120
avg time send (usec): 9836 avg time send (usec): 49669

Tab. 4.19. Comparison of MEIKO and nCUBE using a 32 processor Fingerprint

Parameterized Applications

For the comparison of different computer - fingerprint (fp),
systems the benchmark package provides - conjugate gradient method (cg),
five different LOOP workload programs: - matrix multiplication sync (mmm_s),

100

Benchmarking of Multiprocessors

- matrix multiplication async (mmm_a), and
- red-black relaxation (red_black).

The fingerprint workload is described in the
previous section. The second workload (cg)
isaLOOP workload for a parallel conjugate
gradient method. The two different matrix
multiplication versions are with asynchro-
nous communication (mmm_a) and with syn-
chronous communication (mmm_s). In the
first case, sending of messages is overlapped

4225 Results

For the comparison of a MEIKO (a 64 node
T800 based multiprocessor), an nCUBE/2 (a
128 node hypercube connected multiproces-
sor, compare section 4.1.2.), and an INTEL
Paragon (a 512 node i860 based mesh con-
nected multiprocessor, compare section
4.1.2), five different LOOP workloads that
are described are executed on each system.
The workloads are executed with 16 and 32
processors on al three machines [Bre94].
The timings are given in Tab. 4.20. On the
nCUBE/2 and the Paragon the workloads are
also executed with 64 and 128 nodes. There-
sults are shown in Tab. 4.20.The result tables
are organized as follows. First, the name for
the LOOP workload program is given. The
first parameter isthe number of allocated pro-
cessors, the second parameter is the problem
size, and the third parameter is the number of
iterations (if applicable).

Execution Times

Tab. 4.20.shows the results of the LOOP
benchmarks executed on the different sys-
tems. Aninteresting result is that none of the
three target architectures profits from the
overlapping communication in the second
matrix multiplication agorithm. On the Para-
gon and the nCUBE, asynchronous commu-
nication results in a lower bandwidth. The

with computation. This can be important for
architectures being capable of doing compu-
tation and communication in paralel. The
synchronous version is favorable for archi-
tectures with a synchronous message passing
hardware. The last workload simulates a par-
allel red-black relaxation agorithms. The
L OOP workload program is described in Fig.
4.15.

asynchronous communication can aso slow
down computation because the processor and
the communication unit try to access main
memory simultaneously. On the MEIKO,
asynchronous communications are converted
to synchronous communications at the hard-
ware level resulting in additional overhead.
[Note: In a separate experiment, the message
passing paradigm “send as soon as possible,
receive aslate as possible" does not necessar-
ily improve performance.]

Runtime in seconds

MEIKO nCUBE Parag.
fp 16/100 0.282| 0.073| 0.024
fp 32/100 0.559| 0.112| 0.036
cg 16/256/8 0.601| 0.299| 0.062
cg 32/256/8 0.624| 0.237| 0.055
mmm_s16/256| 13.461| 8.586| 1.692
mmm_s32/256| 7.788| 4.643| 0.855
mmm_a16/256| 13.680| 8.437| 1.692
mmm_a32/256| 7.922| 4.470| 0.886
r_b 16/1024/5 6.885| 4.439| 0.567
r_b 32/1024/5 3.621| 2210| 0.284
Tab. 4.20. Execution times for the LOOP

benchmarks

Workloads for Multiprocessors

101

To see the results from a relative viewpoint,
the times are converted to “paragon seconds’
(seeTab. 4.21.). The workloads in the tables
are ordered from communication bound loads
to computation bound loads. That is, the fin-
gerprint workload has the highest communi-
cation/computation ratio, while therelaxation
workload has the lowest communication/
computation ratio. From the published single
node peak performances, one could expect
that the performance of the nCUBE/2 and the
MEIKO are similar and that the Paragon isan
order of magnitude faster.

The first experiment (Fingerprint) shows that
this expectation is not necessarily true. For a
communication bound synthetic workload
(i.e., fp16/100) a slowdown of only 3 is ob-
served for the nCUBE/2 and a slowdown of
11 is observed for the MEIKO. However, the
lower the communication/computation ratio
is, the more the MEIKO and the nCUBE/2
are outperformed by the Paragon. For the
most computation bound workload,
red_black32/1024/5, the closer the MEIKO
and NCUBE/2 are to each other and are ap-
proximately an order of magnitude slower
than the Paragon. The Fingerprint results (ex-
ecution time, space time diagram) show that
the NCUBE/2 scores better with respect to
communication bound workloads.

Slowdown

MEIKO nCUBE Para
fp 16/100 11.729 3.033 1.0
fp 32/100 15.517 3.111 1.0
cg 16/256/8 9.931 4.823 10
cg 32/256/8 11.345 4.309 10
mm_s 16/256 7.956 5.074 1.0
mm_s 32/256 8.800 5.246 1.0
mm_a 16/256 8.085 4.986 10
mm_a 32/256 8.941 5.045 10
r_b 16/1024/5 12.121 7.743 1.0
r_b 32/1024/5 12.750 7.782 1.0

Tab. 4.21. Slowdown against Paragon

Some of the results are expected (e.g., over-
al performance). However, some tests pro-
vide interesting insight into machine behav-
ior (through trace visualization tools). These
results can be used by both parallel program-
mers and system developers to improve per-
formance. Examples include balancing the
computation and communication perfor-
mance (e.g., Fingerprint) and the improving
of asynchronous communication (e.g., matrix
multiplication). It is noted that the parallel-
ization for message passing systems is still
rather coarse (i.e., a certain amount of com-
putation between communication is needed)
otherwise slowdowns can easily result from
adding processors (e.g., theresult for the con-
jugate gradient workload on the MEIKO for
16 and 32 processors).

Standard Result Sheets

For a more complete overview on the test re-
sults, three standard result sheets for each ex-
periment are developed. The first page con-
tains information on the workload, including
the structural and runtime parameters, infor-
mation on the system hardware (e.g., number
of processors, type of interconnection net-
work), the measured performance metrics
(e.g., execution time, percentages for busy,
idle and overhead times), a profile of the par-
allel workload, and a utilization summary for
each processor. The second page gives an
overview of various statistical information of
an experiment. It contains information such
as the number of messages sent and received,
the average, maximum and minimum times
for the send and receive operations, and mes-
sage queue lengths.

The PICL tracefiles contain all the informa-
tion on communication and computation
events. Paragraph offersawide variety of dis-

1. A report explaining in more detail the standard eval-
uation sheets for all testsis available viaftp from
ftp.irb.uni-hannover.de (directory /pub/bench)

102

Benchmarking of Multiprocessors

playsto visualize these events. Thus, the user
can go into as much detail as desired.

Summary for LOOP Benchmarks

In summary, the pros and cons of the LOOP
benchmarks are:

Pros:

The LOOP language makes it easy to define
workloadsfor target systems. The benchmark
generator automatically transforms the work-
load descriptions into benchmark programs.
Furthermore, the benchmark programsarein-
strumented and a compl ete measurement en-
vironment is available. Additionally, the pro-

gram behavior can be visualized using the
ParaGraph tool.

The benchmarks are scalable, problem size
and number of processors are runtime param-
eters.

Besides the advantage of user defined work-
loads, aset of standard workloadsisdelivered
with the benchmark in order to be able to
compare different target systems running the
same workload.

Cons:

The LOOP benchmarks are designed to eval-
uate message passing multiprocessor archi-
tectures and thus, they are not portable to
shared memory machines.

Summary Benchmarking

103

4.3. Summary Benchmarking

The main goa for deterministic evaluation
techniques based on performance measure-
ment of real systemsis to find performance
bottlenecks and, if possible, to eiminate
them. Normally it is not possible to change
the hardware of existing ready to market sys-
tems, but the results can be used to improve
the design of successors.

Perfor mance Evaluation

Deterministic Evaluation

[

Measurements

Low

Applications ‘ ‘ Kernels‘ Benchmark
level

suites

Fig. 4.21. Deterministic performance evaluation|

The previoustwo sections of thistext, namely
performance evaluation of monoprocessors
and performance evaluation of multiproces-
sors, gave an overview of existing benchmark
workloads and benchmark technologies. For

all benchmark efforts, the starting point is to
run areal workload or amodel of areal work-
load on an existing system.

Workload

Model

Workload | System

Real Real
Fig. 4.22. Performance Measurement

The results of benchmarking for system de-
signers can be used to improve future sys-
tems. For application devel opers benchmark-
ing can help to identify architectural weak-
nesses which might be avoided. But the most
important use of benchmarking isto compare
systems on the market, to provide informa-
tion for purchase decisions and to classify
systemsin terms of performance.

Sinceareal systemisnot alwaysavailablefor
performance evaluation and since the imple-
mentation of benchmark workloads on paral-
lel systemsis acomplex and time consuming
task, the next sections present modeling tech-
niques for parallel systems.

104

Benchmarking of Multiprocessors

P
‘ Real System based ‘
‘ Benchmarkmg ‘

Low Ie\/e\

Applications

|
‘ Kernels
|
‘ Suitess

Performance Ana

Model based

<
\,

‘ Deterministic ‘
i Simulation Analyt. System
Q=N T WIEER) ‘ based H M%del%/ng ‘
Petri Nets 17
Stochastical r
workloa%gmodel ‘ perbrel ‘

5. Performance Modeling for Multiprocessors

Performance models of multiprocessors (in-
cluding their communication systems) with
the goal to optimize and guide new designs
have been studied in many publications and
books (compare [Pat92], [Men94], [Laz84],
and others). With the growing complexity of
the hardware, these methods are of growing
importance and their use in practise will in-
crease. The approach so far has often been
tuning a new system using educated guesses
and experimentation results with existing
similar systems. With the growing complexi-
ty of the systems, this intuitively based ap-
proach is harder to realize, since the under-
standing of the system behavior is harder to
acquire. Additionally, the concurrent behav-
ior of multiprocessor systems is a degree
more complex than the behavior of monopro-
cessor systems

Asindicated in the header, this section covers
model based stochastic performance evalua-
tion techniques. In contrast to modeling
monoprocessor systems, to model amultipro-
cessor system requires the ability to model
the concurrent execution of taskson asystem.
Additionally the interconnection networks
between processors and memory are more
complex for multiprocessor systems. In the
case of message passing systems, the inter-

connection network between processors is
aso part of the system model. In summary,
the modeling of multiprocessorsisademand-
ing task, but it is also necessary for the devel-
opment of new systemsand for thetuning and
understanding of existing systems.

This section will demonstrate that the queue-
ing network systems presented in section 3.2.
of this book are aso well suited to model
multiprocessor systems. Additionaly, the
Petri Net approach to model concurrent sys-
tems is aso presented in this section. Both
approaches alow graphical descriptions of
the problems to be solved. This feature helps
to describe and understand the model of the
target systems. In the last part of this section
a guantitative approach to model multipro-
cessor behavior is presented. This approach
uses workload properties to estimate the pos-
sible speedup and efficiency of an applica-
tion.

Typical Monoprocessor Model

Fig. 5.1. is a scheme for the typical interac-
tion between the user and a monoprocessing
system. The user submits jobs to the (time
shared) system, which are processed by the
system and the results are sent back to the us-

104

Performance Modeling for Multiprocessors

er. The workload for this type of interaction
[K0s95] can be modeled using:

- transaction workload
(characterized by arrival rates of re-
quests)

- batch workload
(constant number of requests)

- terminal workload
(characterized by number of usersand
their think times)

The main difference between performance
modeling for monoprocessors and multipro-
cessorsisthe complexity of theworkload and
the systems. No model is able to capture ev-
ery detail of a contemporary computing sys-
tem. Instead, the modeler must abstract the
essential features which account for the cause
and effect relationships that result in the ob-
served behavior of the system. The intention
of this section is to show how basic tech-
niques can be applied to multiprocessor sys-

tems.
Queue J

time shared

-
o
»
o

Fig. 5.1. Basic monoprocessor system model

Program development
and execution

Typical Multiprocessor Model

The typical model for different multiproces-
sor classes (loosely coupled and tightly cou-
pled) is described now.

M essage Passing M ultiprocessor s

Fig. 5.2. shows the basic architecture of dis-
tributed memory (message passing) multi-
processors (in the modeling literature often

referenced as loosely coupled systems). The
program development is realized using a
"conventional" computing system, the so
called host system. From there the programs
are downloaded onto the parallel processing
system (multiprocessor) to be executed. For
many systems (NCUBE, INTEL Paragon,
MEIKO), the multiprocessor operates in a
space sharing mode. In contrast to time shar-
ing, the user-allocated resources are not time
slots, but the number of processors the user
needs to execute the parallel program. These
processors are arranged as a subsystem (sub-
cubes for hypercubes, subarrays for meshes)
for the time the program is running. Sub-
systems can be gathered to build alarger sub-
system or distributed to build some smaller
subsystems. In contrast to sequential work-
loads, most parallel workloads already con-
tain parameters for the target system (size of
subsystem to be used). The model for the
whole multiprocessor including user interac-
tion would be very complex with a difficult
choice of adequate parameters. This is why
most approaches for the modeling of multi-
processors focus on the modeling of the be-
havior of the subsystems when executing a
single paralel program. The workload for
such an experiment can be characterized as a
batch workload. The workload model will
consist of a quantitative description of the
single program. User commands can be ne-
glected. If different single programs cresting
different workloads are considered, a multi-
class workload model [Pat92] has to be cho-
sen.

Shared Memory Multiprocessors

The modeling approach for shared memory
multiprocessors (in the modeling literature
often referenced as tightly coupled systems)
is similar to the modeling of monoprocessor
systems. From the modeling point of view, a
tightly coupled system consists of several
processors that operate under the coordina-
tion of a single operating system. The com-
munication and synchronization is realized
through shared data in the main memory.
This design alows a high degree of interac-

105

tion between processors without a significant
degradation of performance. Thus, the set of
processors can be seen as a single entity. The
tightly coupled multiprocessor can then be
modeled as a single server with a single
queue for job scheduling [Men94]. Whenever
aprocessor becomes free, the next job is tak-
enfromthe queuefor execution. Theproblem
with this approach is the correct model as-
sumption for the processor speed. Software
contention, operating system overhead and
workload properties can lead to performance
degradation that reduce the effective proces-
sor speed. A solution to this problem is a

queueing network model with a load-depen-
dent server representation (compare
[Men94], chapter 7). The solution of queue-
ing networks with load-dependent devicesre-
quiresthe definition of aservicerate multipli-
er function. Shared memory multiprocessors
are state of the art technology in today’ s com-
puters. Besides compute and file servers,
even personal computers (PCs) or worksta-
tions are realized as shared memory multi-
processors. But the focus of this text is more
oriented towards massively parallel systems.
These systems arerealized asloosely coupled
systems.

Parallel Processing System
(time and/or space shared)

- ﬁ Queue

- {3
-

" 3 time shared

T

v

|

Program development

Fig. 5.2. Basic multiprocessor system model

Program execution

Inter connection Networks

Both, message passing and shared memory
multiprocessors require interconnection net-
works. The shared memory system needs the
interconnection network to connect the pro-
cessor modules to the main memory (com-
pare (Fig. 4.1.), the message passing system
needs the interconnection network to connect

the processors (compare Fig. 4.2.). Thus, the
interconnection network is an integral part of
every multiprocessor system and needs to be
represented in each model for the whole sys-
tem. In [Pat92] some networks (switching
and multistage) and approaches to model
them using queueing networks are presented.

106 Performance Modeling for Multiprocessors

5.1. Queueing Networks

5.1.1. Queueing Network Example

Based on the example in section 3.2. a small
multiprocessor system is considered (com- .
pare Fig. 5.3.) on avery high level. It consists Servicerate:
of two processors (Al and A2, each with a ‘

service rate of m=1, i.e. onejob is executed
per time unit) and of a queueing system
which can hold at most 4 jobs (the arrival rate ?
| is1,i.e. inaverage onejob arrives per time
unit, if there are less than 4 jobs waiting).

00

Service rate: -
Queueing system
(max. # of jobs = 4)

S a

@ Fig. 5.4. Random queue strategy
> —

22

N

The second strategy is to realize only one
queue which can hold up to four jobs. The
jobswait in the queue until one of the proces-
sorsis available and are then sent to that pro-

Queueing system cessor. This strategy is called common
(max. # of jobs = 4) queue.
Fig. 5.3. System model (multiprocessor) Servicerate:
Before the system designer realizes the hard- «(/\’ /D
ware for the queueing system, heisinterested /

in comparing different strategies in terms of
throughput and response time. The first strat-
egy is to implement two separate queues 23
(each can hold up to four jobs, but the total
number of jobsin the systemisstill limited to Queueing system
four jobs). When a job enters the queueing (max. # of jobs = 4)
system, one of the queues is randomly as-
signed to it. This strategy is caled random
queue.

)

/
N

Fig. 5.5. Common queue strategy

Queueing Networks

107

The third strategy is to realize two queues
(each can hold up to two jobs), when ajob en-
tersthe queueing system, the job is sent to the
currently shorter queue. This strategy is
called shortest queue.

Service rate:
| N
shortest >
R m
m=1 KAZJ
Queueing system

(max. # of jobs = 4)

Fig. 5.6. Shortest queue strategy

The last strategy is similar to the first one.
There are two separate queues (each can hold
up to four jobs, but the total number of jobsin
the system is still limited to four jobs). The
strategy is to dternate between the two
queues. When a job enters the queueing sys-
tem, it is sent to the next queue from point of
view of itspredecessor. Thisstrategy iscalled
next queue.

Service rate:
i
| s N
next —
T
m=1 \ /
Queueing system

(max. # of jobs = 4)

Fig. 5.7. Next queue strategy

The question now is which of the strategies
results in the best performance. The perfor-
mance measures to be determined are utiliza-
tion, throughput, average waiting time, and
responsetime. Asin section 3.2. amarkovian
based approach is used to solve this problem.

108

Performance Modeling for Multiprocessors

Random Queue Strategy

Every job which enters the queueing system
is randomly assigned to one of the two
queues. Randomly assumes that the probabil-
ity for the job to enter either one of the two
queues is the same, namely 1/2. Therefore,
jobs entering the queueing system arrive at
each queue with rate | /2.

Y S 7 S () S- ()
m m

,
5

Fig. 5.8. State diagram of random queue

3

©x
0x
@9
€y
@

The steady state diagram for this strategy is
outlined in Fig. 5.8. A state is described by
the pair (ij), with i=0,1,...,4 and j=0,1,...,.4.
Theindicesi and j are the number of jobsin
the corresponding queue (i for thejobsin the
first queue, j for the jobs in the second
queue). The probability Py, is, for example,
the probability for one job in the first queue
and two jobs in the second queue. The jobs
are only removed from the queue when the
processing of the job has finished. At every
point intimeat most one state transition using
one of the arcs can happen. The arcs show the
rates for the state transitions with | = arrival
rate and m= servicerate. Theresulting system
of flow balance equations (flow-in = flow-
out) is the following:

| Pog = MPgy + 1Py
_
(I +mPg; = 5P+ Py + 1Py,

|
(I +mPgy, = §P01+”P03+”P12

I
(I +mPys = §P02+nP04+ Py,

_ |
(1 +m)P10 = §P00+nP11+rTP20

_ | |
(I +2mPyy = SPg +5Pyg+ Py, + 1Py

_ |
(I +2mpP,, = 5P02+§P11+”P13+”P22

_ | |
2MPy3 = SPo3* 5Py
_ |
(I +mPy = §P10+”P21+”P30

_ | |
(I +2mPy; = 5Py + 5Py + Py + 1Py

_ |
2Py, = §P12+§P21

|
(1 +mPgg = SPog + P + 1P

_ | |
2MPg; = 5P+ 5Py

MPyg = |§P30

The sum of all probabilities equals one:
ar;=1

Thisisalinear system with 15 unknowns and
16 equations. One of the equations is redun-

dant. This system can be solved for given
rates| and m However, it is more elegant to

Queueing Networks

109

solvethissystemfor all B;; asfunctions of the
parameters| and m Changesin the workload
(parameter |) or the system (parameter) can
then be done without the need to solvethelin-
ear system again. The resulting state proba-
bilitiesare listed in Tab. 5.1.

Poo =

16m'
51 %+ 8l 3m+ 121 2nf + 161 it + 160"

Por = Py =

8l m
51 4+ 81 3m+ 121 2nf + 161 nt + 16"

Poe = P1p = Py =

4] 2m2
51 %+8l 3m+ 121 2nf + 161 it + 160"

Pog = P1p = Py = Py =

2| 3m
51 4+ 81 3m+ 121 2nf + 161 it + 16n"

Pog = P13 = Py = Py = Py =

4
|

51 4+ 8 ®m+ 121 2nf + 161 nt + 16m"

Tab. 5.1. State probabilities for random queue

Now the performance measures utilization,
throughput, average waiting time, and re-
sponse time can be calcul ated.

State Probabilitiesfor | =1 and me1:

Using theformulae from Tab. 5.1., the steady
state probabilitiesfor | =1 and n=1 of theran-

dom queue strategy are:
POO = 16/57
Por= P10 = 8/57

P02 = Pll = P20 = 4/57
Po3 = P12 = P21 =P3p = 2/57
Po4=P13= P2 =P3 =Py = vs7

Utilization:

With probability Py the system isidle, with
probability Py« or P«g with (*=1,2,3,4) the
system is utilized at 50%. Thus, the utiliza-
tion can be calculated as:

_ 1 1 1
Urang = 1-FPoo* 5Po1* 5P10+ SPo2

1 1 1 1 1, 6
+5P20+5P03+5P30+5P40+5P04g

The state diagram outlined in Fig. 5.8. shows
symmetry aong the diagonal P with
(i=0,1,2). Thisresultsin P;; = P;;. Using this
symmetry, the utilization U, 54 can be calcu-
lated as:

Urang = 1= (Pgg * Pog + Pgp + Pz + Pyy)

Urang = 22 = 04561
Throughput:

The service demand D for each job is one
time unit, thus the throughput X;nq is:

rand _ 28 - 04561

- U -
X rand ~ 57

rand = T p

The average number of jobs (njob) in the sys-
tem is needed to compute the response time
rt. Knowing steady state probabilities makes
it easy to calculate the average number of
jobsin the system. For each state the number
of jobsin the system is determined as number
of jobs in that state weighted by the steady
state probability of being in that state. Sum-
ming these values for all states will yield the

110

Performance Modeling for Multiprocessors

average number of jobs in the system. Thus,
the formulafor njob is:

njobang = é n(ij)Pij (Eq.5.1)

with n(ij) = the number of jobsin state (ij).

Using symmetry, it can be calculated for the
random queue system as:

Njob, 4ng = 2Pgy + 6Pgy + 12Py3 + 20P,

. _84 _
njob, ang = 5 - 1.4737

After njob is calculated, it is possible to use
Little'sLaw [Lit61]:

For the example system D=1/n¥1. The wait-
ing time wt, 5,4 for the random queue strategy
is:

W ang = Ttang—1 = 2.2308

ran

The four strategies are compared under dif-
ferent load conditions. Doubling the work-
load parameter | yieldsthe following results.

State Probabilitiesfor | =2 and ne1:

Using the formulae from Tab. 5.1., the steady
state probabilitiesfor | =2 and 1 of theran-

dom queue strategy are:
Poo = 2/28
Po1 = Po = 1/28
Po2 =P11 =Py = 2/28
Pz =P12= P31 =Pg = 2/28
Pos=P13=Pyp=P3=Pyp= 2/28

njob = Xxrt

(Eq.5.2)

to calculate the response time rt of the sys-
tem.

rt = m’)%? (Eq.5.3)

The response time rt;4,g for the random
queue system is.

84
_57_8 _
rtrand = 2—6 = ‘2-6 = 3.2308
57

The waiting time for a job is defined as the
time a job spends in the system without ser-
vice. It can be calculated by subtracting the
average service time from the average re-
sponse time. The service rate is m The aver-
age service time D is the reciprocal value of
m Thus, the waiting timewt is calculated as:

Wt = rt—D (Eq.5.4)

Utilization:

- 1 1 1
Urana = 1=&Poo* 5Po1 * 5P10* 5P

1 1 1 1 1, 6
+5P20+§P03+5P30+5P40+5P04g

Using symmetry:

Urand = 1= (Pgg* Poy + Poz + Poz + Pgy)

9 06786

Urand = 28

The service demand D for each job is one
time unit, thus the throughput is:

=19 - 06786

Urand
X = = Urand - 28

rand = T p

Using symmetry the mean queue length
(njoby 4ng) can be calculated as:

Njob, 4ng = 2Py + 6Py + 12P5 + 20P,

Queueing Networks

111

: 78
— = 2.7857
njob % 8

rand ~

The corresponding response time rt.5q is
then:

78

_ 28
rand ~ 79
28

rt = 4.1053

Thewaiting timewt, 5,4 for the random queue
strategy is:

Wt g = Myang—1 = 3.1053

Common Queue Strategy

Every job enters the system through the com-
mon queue, from thereit proceeds to the first
available processor. In Fig. 5.9. the steady
state diagram of the common queue strategy
is outlined. A state is defined as triple (ijk),
with (i=0,1,2; j=0,1; k=0,1). The first index
i is the number of jobs waiting for execution
in the common queue, the index j is the num-
ber of jobs being currently executed by the
first processor and the index k is the number
of jobs being currently executed by the sec-
ond processor.

m
e,
BN

D
,@ .
s

Fig.5.9. Statediagram of common queue

The resulting system of flow balance equa-
tions (flow-in = flow-out) is the following:

I Poog = MPoog + MPogo

_ |
(I +mPoo; = SPooo + Moy

_ |
(1 +mMPoyo = 5Pooo * MPoy

(I +2mPgyy = | Pogy * | Pogg + 2Py
(I +2mPyyy = | Pogy + 2Py

2Py, = 1Py

112

Performance Modeling for Multiprocessors

The sum of all probabilities equals one:

Using the calculated utilization Ugymy, the
resulting value for the throughput Xcommis:

<} _
a Pik =
_ . Xoomm = = = 0.4783
Tab. 5.2. liststhe steady state probabilitiesfor 23
the common queue strategy.]
Using symmetry, the mean queue length
Njobegmm Can be calculated as:
8m4 i
Pooo = 73 o) T NjoBeomm = 2Po1g + 2Pggy *+ P11 + 4Py
1 7+21 "m+4l “m + 8l m +8m
Poto = Poor = Using the calcul ated steadly state probabilities

4 m3

4 22 4
| +2I3m+4l m+8|m3+8m

22
p _ 4 "m
011 = 2 2 4
I4+2I3m+4l m + 8l m3+8m
p _ 2I3m
11~
I4+2I3m+4I2m2+8I m3+8m4
|4
P12 = 3

22 4
| +2I3m+4l m+8|m3+8m

Tab. 5.2. Results for common queue

State Probabilitiesfor | =1 and me1:

Using the formulae from Tab. 5.2., the steady
state probabilities Py for | =1 and me1 of the

common queue strategy are can be calculated
as before.

Utilization:

_ 1 1 6
Ugomm = 1~ FPooo + 5Po10* 5Poo1g

Using the calcul ated steady state probabilities
Pijjk for I =1 and m=1, the resulting value for

the utilization Uggmm is:

U, = %1 = 04783

comm 3

Pjjk for I =1 and n¥1, the resulting value for
the mean queue length njobegmm is:
_ 26 _

= = 11304

nj Obcomm - 23

Using the calculated the mean queue length
njobeomm and the calculated throughput

Xcomm the resulting value for the response
time rtgomm is:

26

_ 23
comm ~ ﬁ

23

rt = 2.3636

The waiting time Wty for the common
queue strategy is:

=rt -1 = 13636

wt comm

comm

As before, the workload parameter | is dou-
bled:

State Probabilitiesfor | =2 and 1.

Using the formulae from Tab. 5.2., the steady
state probabilities P;;, for | =2 and n¥1 of the

common queue strategy are can be calculated
as before.

Utilization:

_ 1 1 6
Ugomm = 1—&Pooo + 5Po10 * 5Poo1g

Queueing Networks

113

Using the calcul ated steady state probabilities
Pij for I =2 and n¥1, the resulting value for

the utilization Uggmm IS

_ 13 _
Ugomm = T¢ = 08125
Using the calculated utilization Uggmm, the
resulting value for the throughput X gmm is:

_ 13 _
Xcomm = 7¢ = 08125
Using symmetry, the mean queue length
Nnjobgomm can be calculated as:

Njobeomm = 2Pop*+ 2Pog + 3P1q1 + 4P g

Using the cal cul ated steady state probabilities
Pijk for I =2 and m=1, the resulting value for

the mean queue length njobgmm is:
_ 38 _

comm = 3¢ = 2375

Using the calculated the mean queue length
njobe,mm and the calculated throughput
Xcomm» the resulting value for the response
time rteomm is:

38

_ 16
Meomm = 1—3

16

= 2923

The waiting time Wty for the common
queue strategy is:

wt =rt -1 =1923

comm comm

Shortest Queue Strategy

Each job which enters the queueing system is
assigned to one of thetwo queues by alternat-
ing between them. The probability for thejob
to enter either one of the two queues is the
same, namely 1/2. Therefore, jobs entering
the queueing system arrive at each queue
withratel /2.

O 2

m
10) \ 11) 12
m m
m m m

Fig. 5.10. State diagram of shortest queue

The resulting steady state diagram is shown
by Fig. 5.10. A state is described by the pair
(ij), with i=0,1,...,4 and j=0,1,...,4. The indi-
cesi and j are the number of jobsin the cor-
responding queue (i for the jobs in the first
queue, j for the jobsin the second queue).

The results for the steady state probabilities
in Tab. 5.3. are derived by solving the linear
system of equations from Fig. 5.10.:

| Pog = mPo; + Py,

(I +mPy, = |§P00+nP11+rTP02
(I +mPg, = Py,

(I +mPy, = |§P00+nP11+rTP20

(I +2mPyy = 1Py +1 Py + 1Py, + 1Py,

114

Performance Modeling for Multiprocessors

|
(I +2mPy, = | P02+§P11+m:>22
(I +mMPy = Py
|
(I +2mPy, = §P11+I P+ Py,

2mP,, = | P, +1 Py

The sum of all probabilities equals one:

o

aPux=1

Poo =

2m(3l m + 4m4)

(1 +mql 412 3meal 2m2+6I m3+8m4)

Po1 = Py =

I (31 nf +4m)

(1 +ml 4o 3m+ a1 2nf + 6l m o+ 8m4)

Po2 = Py =

32
| "m

(1 +ml 442 3me a4l 2nf + 6l m o+ 8m4)

Py =

21 2nf(l +2m
(1 +ml 442 %me a2t + 6l m o+ 8m4)

State Probabilitiesfor | =1 and ne1:

Using the formulae from Tab. 5.3., the steady
state probabilities P;; for | =1 and n+1 of the

common queue strategy are can be calculated
as before.

Utilization:

U 1-

short —

1o .1g .1y 1o &
oot 5Po1 +5P10* 5Po2* 5P

Using symmetry the formula for the utiliza-
tion Ugngr can be simplified to:

Ushort = 1= (Pgo + Pg1 + Pgp)

Using the cal cul ated steady state probabilities
P;; for I =1 and n¥1, the resulting value for

the utilization Ugyq¢ is:

20
U = = 04762
42

short =
Using the calculated utilization Ug,t, the re-
sulting value for the throughput Xg,o¢ is:

20
= = 04762
2

Xshort = 2

Using symmetry, the mean queue length
NjObghort Can be calculated as:

Pip =Py =

3
1 "m

I4+2I 3m+4| 2m2+6I m3+8m4

Py =

4
|

4 22 4
17 +2 3m+4| m + 6l m3+8m

Tab. 5.3. Results for shortest queue

Njobgpoy =
2P01 + 4P02 + 2P11 + 6P12 + 4P22

Using the cal cul ated steady state probabilities
P;j for I =1 and m¥1, the resulting value for

the mean queue length njobgyq¢ is:

0 - 11905

: _5
nJObshort - 4—5

Using the calculated the mean queue length
Njobghort and the cal culated throughput Xgnort,

Queueing Networks

115

the resulting value for the response time rt-
short IS

50

_ 22 _
chort = 50 = 25000

42

rt

The waiting time wtg,o¢ for the common
queue strategy is:

Wignort = Meporg—1 = 1.5000

As before, the workload parameter | is dou-
bled:

State Probabilitiesfor | =2 and me1:

Using the formulae from Tab. 5.3., the steady
state probabilities P;; for | =2 and 1 of the

common queue strategy are can be calculated
as before.

Utilization:

Ushort = 1= (Poo * Pog + Pgp)

Using the cal cul ated steady state probabilities
Pjj for | =2 and n¥1, the resulting value for

the utilization Ugyq¢ is:

39 - 07647

Ushort = 51

Using the calcul ated utilization Ugye,, there-
sulting value for the throughput Xg,o+ is:

_ 39 _
Xehort = =i 0.7647

Using symmetry, the mean queue length
Nnjobghort Can be calculated as:

Njobgpe =
2P01 + 4P02 + 2P11 + 6P12 + 4P22

Using the cal cul ated steady state probabilities
P;j for | =2 and m¥1, the resulting value for

the mean queue length njobgyq¢ is:

= 8 _ 53137
51

njObshort
Using the calculated the mean queue length
Nnjobghort and the cal culated throughput Xgnorts
the resulting value for the response time rt-
short IS:

18
_ 51
short ~ 39‘

51

rt = 3.0256

The waiting time Wtg,,; for the common
queue strategy is:

Wlgnort = Mepore =1 = 2.0256

116

Performance Modeling for Multiprocessors

Next Queue Strategy

The next queue strategy is to aternate be-
tween the two queues. When ajob enters the
queueing system, it is sent to the next queue
from point of view of its predecessor. The
steady state diagram for this strategy is out-
lined in Fig. 5.11. A state is described by the
pair (ij), with i=0,1,...,4 and j=0,1,...,4. The
indicesi and j are the number of jobsin the

corresponding queue (i for thejobsin thefirst
queue, j for the jobsin the second queue. One
of theindicesis always underlined. Thisindi-
cates the queue that has been assigned at the
previous arrival. For each arrival the queue
changes, i.e. the underlined index isincreased
by one and the underline changes to the other
index. The steady state diagram for this strat-
egy isoutlined in Fig. 5.11.

Fig. 5.11. State diagram of next queue

—_— . =

symmetry line

A

The system of equations resulting from the
steady state diagram for this strategy is more
complex compared with the previous ones.
28 states result in 28 flow balance equations
that have to be solved. Since the system will
be solved symbolically intermsof | andm a
smaller number of equationswould makethis
task much easier. Looking at the state dia-
graminFig. 5.11., symmetry along the drawn
symmetry lineis obvious. Four arcs cross the
symmetry line from |eft to right and vice ver-
sa. Thesearcsarereplaced by the correspond-
ing dotted arcs. After this replacement, only
one of the two systems (l€ft or right from the
symmetry line) has to be solved. The result-

ing flow balance equations for the left side
are:

| Pog = rTPO%+rTP91

(! +m)P91 = P09+nP1%+rTP92
(1 +m)PO} = rTP1}+rTPOg

(1 +2n7P1} =1 Pgl*”Plg*'”Pgl
(! +m)P92 = PO%+TTP%2+TTPQ3

(1 +m)Pog = rTPlg+rTPO§

Queueing Networks

117

(1 +2m)P1? =1 P92+nP22+rTP1§
(! +2m)P%2 =1 P1%+rTP2?+rTP}3
(! +m)P93 =1 Pog+rrP}3+rTP94

(I +MPg = Py

2Py, = 1Py
2Py = 1Py,
2P 13 = | Pog
Py, = | Pog

The sum of all probabilities equals one:
aPik=0

The solution of thislinear system is givenin
Tab. 5.4.

State Probabilitiesfor | =1 and me1:

Using the formulae from Tab. 5.4., the steady
state probabilities P;; for [=1 and n¥1 of the

next queue strategy can be calculated as be-
fore.

Utilization using symmetry:

Unext = 1=(2Pgg+ P1g+ Py + Pyy+ Pgy +
P39 + P0§ + P49)

Using the cal cul ated steady state probabilities
Pjj for | =1 and n¥1, the resulting value for

the utilization Upgy is:

10014 _ 8972

- = = 04701
19086 19086

U

next —

Using the calculated utilization U ey, the re-
sulting value for the throughput X,y is:

= 8972 _ 4701

X = &z
short ™ 19086

Using symmetry, the mean queue length
njobneq Can be calculated as:

NjObneyt =
2P91+2P10+4Pll+4PQZ+4PZO+
6P51 +6P1+6Pg3+6P35+8P oo+
8P13+8P31+8Py

Using the cal cul ated steady state probabilities
P;j for | =1 and m¥1, the resulting value for

the mean queue length njobpey is:

_ 24750 _

njobnext = 1‘9‘6‘8‘6 = 1.2968

Using the calculated the mean queue length
njobpe and the calculated throughput X ext.
theresulting value for the responsetime rtg
is:

24750

19086 _ 5 7586

8972

19086

rtnext =

The waiting time Wtg,,; for the common
queue strategy is:

wt 1 = 1.7586

next = Mpext —

As before, the workload parameter | is dou-
bled:

State Probabilitiesfor | =2 and ne1:

Using the formulae from Tab. 5.4., the steady
state probabilities P;; for | =2 and n+1 of the
next queue strategy can be calculated as be-
fore.

Utilization using symmetry:

118

Performance Modeling for Multiprocessors

Unext = 1=(2Pgg+ P+ Poy + Pyg+ Pgy +
P39 + P0§ + P49)

Using the cal cul ated steady state probabilities
Pjj for | =2 and n¥1, the resulting value for

the utilization Upey is:
926 2358
=1-— === =071
Uned 384 - aoea 00
Using the calculated utilization U e, the re-
sulting value for the throughput X,y is:
_ 2358 _

chort = Sy = 07180

Using symmetry, the mean queue length
Nnjobyey Can be calculated as:

NjObneyt =
2PQl+2P;O+4P;l+4PQZ+4PZO+
6P21 +6P12+6P93+6P§0+8P22+
8P13+8P§1+8PQ4

Using the cal cul ated steady state probabilities
Pjj for | =2 and n¥1, the resulting value for

the mean queue length njobye, is:

_ 8228

next = 5o = 25055

njob
Using the calculated the mean queue length
njobye and the calculated throughput X eyt
theresulting value for the response time rt,ey
is:

8228
- 3284

next 2358
3284

rt = 3.4894

The waiting time wtg,; for the common
queue strategy is:

wt rt . .—1 = 24894

next — 'next

Queueing Networks

119

m'(151 ® + 1341 *m+ 4881 “nf + 9361 3 + 9281 %' + 4161 7 + 64nT)

POO: POO:
- - Den
Pu=Pi= | mo(8l © + 821 Sme+ 3331 *nf + 7061 3ni + 7761 2’ + 3841 v + 64nT)
Den
bo—p = | 20200 +m)(71 4 + 451 3me+ 1201 2nf + 1201 ni® + 32m)
01~ 10m Den
p..=p..= 12t ®+36 *m+ 1420 *nf + 3001 °m’ + 3541 °m' + 1841 7’ + 32n1)
117711
Den
o 13nf(a1 ® + 301 *m+ 1301 3nf + 2421 2 + 1921 mi' + 48n7)
PQZ_ PZQ_ Den
b —p. = | *nf(a*+23 m+ 651 *nf + 761 i’ + 28n1)
027" 20~ Den
Pi,=Py= 2 4n’(l 215 m+ 7m2)(l 3+41%m+6lnf+ 2m3)
- Den
PPz 2 3¢t +m)(1 %+ 81 “m+ 251 3nf + 451 %ni + 361 m' + 8nY)
- h Den
2 % +my(3+ 81 2m 221 nf + 21n)
Pos=P30= Den
6 3 2 2 3
—-p_ - | 1 7+8 "m+22l m +21m
Pos=Ps0= m)
Den
Py=Py= | (1 +m)(1 °+ 81 “me+ 251 3nf + 451 2ni’ + 361 mi' + 8nY)
- Den
5,2 2 3 2 2 3
D — 170" +5I m+7m)(I "+ 4] "“m+6l m +2m
P13=P31= (X S)
5 | 6(I +m)(l 3+8I 2m+ 220 nf + 21m3)
P13=P31= Den
7,3 2 2 3
Pos=Pag= 1717+ 8l “m+ 22l m +21m’)

Den

Denominator for all Pj;:

Den =2(4 %+ 421 ®m+ 1911 8nf + 5211 “ni® + 10161 Cni* + 16151 Ot + 21221 4nP +

21121 3 + 13761 %nt + 4801 m + 64ni)

Tab. 5.4. Results for next queue

120

Performance Modeling for Multiprocessors

Comparison of Results

The performance measures throughput, num-
ber of jobs in the system, response time and
waiting time of the four strategies (random
queue, shortest queue, next queue and com-
mon queue) are ranked in Tab. 5.5. (absolute
values) and Tab. 5.6. (relative values). The
common queue strategy isthe best for all per-
formance measures. In the second table, the
performance measures of the best ranked
strategy are set to 100%. The other valuesare
given as variations in per cent. If the work-

ference of the strategies aso increase for the
performance measure throughput. It does not
necessarily increase for the other perfor-
mance measures. This is an effect of the
closed system, the maximum number of jobs
inthe systemislimited to four. The higher the
workload is, the closer the average number of
jobs in the system will be to the maximum
number of jobs in the system for any of the
four strategies. Since response time and wait-
ing time are direct derivatives of the average
number of jobs in the system, it is clear that

load parameter | increases, the relative dif- they show the same behavior.

I =1,m=1 Throughput njob |Resp. time Wait. Time |Rank
common queue 0.4783 1.1304 2.3636 1.3636 1
shortest queue 0.4762 1.1905 2.5000 1.5000 2
next queue 0.4701 1.2968 2.7586 1.7586 3
random queue 0.4561 14737 3.2308 2.2308 4
| =2,m=1

common queue 0.8125 2.3750 29231 1.9231 1
shortest queue 0.7647 2.3137 3.0256 2.0256 2
next queue 0.7180 2.5055 3.4894 24894 3
random queue 0.6786 2.7857 4.1053 3.1053 4
Tab. 5.5. Comparison of the four queueing strategies (absolute values)

I =1,m=1 Throughput njob |Resp.time Wait. Time |Rank
common queue 100.00 100.00 100.00 100.00 1
shortest queue 99.56 105.32 105.77 110.03 2
next queue 98.29 114.72 116.71 128.97 3
random queue 95.36 130.36 136.69 163.60 4
I =2,m=1

common queue 100.00 100.00 100.00 100.00 1
shortest queue 94.12 97.42 103.51 105.32 2
next queue 88.37 105.49 119.37 129.44 3
random queue 83.52 117.29 140.44 161.47 4
Tab. 5.6. Comparison of the four queueing strategies (relative values)

Queueing Networks

121

5.1.2. Extended Queueing Networks

Asshown by the examplein the previous sec-
tion, the queueing network modeling tech-
nigue can make it easy to compute perfor-
mance measures. Additionally, the graphical
representation helps to intuitively generate
modelsfor systems. The conventional queue-
ing networks as described in the previous sec-
tion, however, cannot represent synchroniza-
tion and simultaneous resource poOssession
which is important especialy for modeling
multiprocessors. To overcome this problem,
extended queueing networks have been intro-

duced in [Kel76]. Besides service stations
and customers as building blocks, extended
queueing networks may also contain passive
centers (e.g. Links available in Fig. 5.12.) to
model passive system resources with a limit-
ed number of elements such as disk control-
lers, memory partitions, and communication
links.

In [Lin98] an example to motivate the use of
extended queueing networksis given.

Links
available | M
Memory
system 1
Q Memory
<RI~ i
Q Snooping Allocate Release
protocol link link
Memory
Active system 3
processors @
Memory
K system 4
Fig. 5.12. Extended queueing network of multiprocessor system

The multiprocessor in Fig. 5.12. is a shared
memory system with K processors and 4
memory modules. To access one of the mem-

ory systems, the processor must get both ac-
cess to a communication link and to the cor-
responding memory system. After issuing a

122

Performance Modeling for Multiprocessors

memory reguest, the snooping protocol of the
issuing processor determinesafreelink of the
interconnection network. The snooping delay
is assumed to be exponentially distributed.
The model in Fig. 5.12. takes into account
contention for communication links by the
passive resource Links available. Passive
centers contain a finite number of elements,
called tokens, which represent the finite num-
ber of elements of a passive system resource.
Tokens of a passive center like Links avail-
able are alocated to customers. The custom-
ers keep the token until they are serviced at
one or more service centers. At apassive cen-
ter, no active service is provided to visiting
customers. By means of visiting allocate to-
kens and release tokens which are represent-
ed by triangles and diamonds, respectively,
the customers request and return atoken. An
allocate token has associated a queue (com-
pare Fig. 5.12.), since the customer might
have to wait until a requested token becomes
available.

Extended queueing networks also contain
building blocks for creating and destroying
tokens of a passive resource which alows
modeling further synchronization constructs.
The introduction of passive centers to queue-
ing networks provides a powerful extension
to conventional queueing networks because
they enable the representation of customers
holding several system resources simulta-
neously. More information on extended
queueing networks can be found in [MNS86].

Queueing Networks

123

5.1.3. Hierarchical Approach for Complex Systems

The basic technique to handle complex sys-
tems, namely hierarchical decomposition,
can aso be applied to queueing network
models. In [Laz84] the concept of flow equiv-
aent service centers (FESC) is introduced.
The ideaisto split one model into a number
of smaller submodels, each of which can then
be analyzed in isolation. The solution of the
original model is formed by combining the
solutions of the submodels. This combination

of the submodels is derived by using flow
equivalent service centers. A FESC mimics
the behavior of the submodel in terms of
throughput and customer departure. It isrep-
resented as aload dependent service center in
themodel. At aload dependent service center
the servicerate varieswith the number of cus-
tomers present. An example of aload depen-
dent service center is pointed out in section
3.2.4. of this book.

Complement Aggregate
/ Links \
available

Memory

system 1

O Memory

: Q > system 2
Q Snooping Allocate Release

protocol link link

Memory

system 3

FESC Memory
K system4 /

Fig. 5.13. Hierarchical modeling using a flow equivalent service center

The extended queueing network of the previ-
ous section is realized with the help of aflow
equivalent service center in Fig. 5.13. In the

genera case, there is an arbitrarily defined
subsystem, called the aggregate, which inter-
acts with the other service centersin the net-

124

Performance Modeling for Multiprocessors

work, called collectively the complement or
complementary network. The aggregate itself
may or may not be representabl e as anetwork
of service centers. In this example, the com-
plement represents the processing elements,
while the aggregate represents the complex
memory system. The basic idea of athe hier-
archical approach is to replace the entire ag-
gregate by asingle service center that mimics
its behavior, thus reducing the size of the net-
work to be solved.

For the complement, the aggregate is nothing
but ablack box with an arrival rate that is the
same as the departure rate at the complement.
The customers stay in the aggregate for acer-

tain timeinterval (residence time at the black
box) and they |eave the black box at arate or
pattern to return to the complement. As long
as the black box (FESC) mimics the resi-
dence time and the departure process correct-
ly, it does not affect the complement. Withre-
spect to the service centers in the comple-
ment, any representation of the aggregate that
results in accurate inter-departure times is
sufficient to solve the network.Thus, the per-
formance measures obtained for the comple-
ment are the same regardless of whether the
aggregate is represented as a large number of
service centersor asasingle (mostly load de-
pendent) service center.

Complement
« O

Snooping
protocol

(0

Fig. 5.14. Complement and aggregate using a FESC

Aggregate

ﬁ—%

FESC

M odel decomposition

Since FESCs can be nested, the hierarchical
concept isobvious. Fig. 5.15. showsthe mod-
el decomposition. At the highest level (level
0) the computer system is modeled by
FESCs, each of which represents some por-
tion of the system. On the next level, the de-
scription for each component is more de-
tailed, if it is a FESC on the previous level.
Since FESCs may be nested, each of the mod-
elsonlevel 1 can contain other FESCs. Start-
ing with the solution on thelowest level (level
2inFig. 5.15.) themodel s are solved. The so-
lution of each level (k+1) is used to solve the
model on level k until finally the highest level

(level 0) is reached. The definition of the
model istop down, the solution of the models
is bottom up. More details on hierarchical
modeling using FESCs and on the solution of
models including FESCs can be found in
[Laz84].

Queueing Networks 125

Level O
Level 1
>
Level 2
—
FESC
Fig. 5.15. Model decomposition in ahierarchical approach

126

Performance Modeling for Multiprocessors

5.1.4. Application Areasfor Queueing Networks

Queueing networks have become important
tools in the design and analysis of computer
systems. For many applications this model-
ing technique achieves a favorable balance
between accuracy and efficiency. Themodels
can be defined, parameterized, and evaluated
a relatively low cost. They can be used
throughout the design cycle from specifica
tion to hardware realization. Systems can be
modeled from high level to detailed models
of system components.

Several problems arise with the modeling of
complex systems with several service sta-
tions and several customer classes with dif-
ferent service needs. The graphical represen-
tation of such systemsis complex, so are the
steady-state diagrams and the resulting sys-
tems of equations to be solved. Special solu-
tion techniques were devel oped to solve these
equation systems. The solution methods vary
from direct methods with intelligent pivoting
strategies to iterative methods such as Conju-
gate Gradient methods with special precondi-
tioning.

Especially for multiprocessors with a large
number of processing elements (e. g. more
than 1000 processors) it is not possible to
model the system as awhole. A hierarchical
approach like the flow equivalent service
center approach as described in the previous
section can make it possible to handle these
systems.

Another problem is the modeling of the
workload involved. Theworkload is abstract-
ed by parameters of some probability distri-
bution. If it is not possible to describe the ac-
tual workload with such amodel, it isal so not
possible to use the queueing networks as
modeling technique.

In summary, if asystem and its workload can
be represented as a queueing network, this
modeling technique should be used to predict

its performance measures. By changing the
parameters of the model, changes in both,
workload and system, can easily be evaluated
without the need to build expensive hardware
prototypes.

Petri Net Models

127

5.2. Petri Net Models

In 1962 Carl Adam Petri [Pet62] introduced a
solution for the problem of representing con-
current or competing processors by a graphi-
cal modeling formalism which is called Petri
Net.

System A
.
Queueing system \ /

(max. # of jobs = 4)

Petri Net for System A

. Token

() Place

Transition

Fig. 5.16. Simple Petri Net

In Fig. 5.16. asimple example for a Petri Net
representing asystem isoutlined. A Petri Net
is a directed bipartite Graph. The first set of
vertices (circlesin Fig. 5.16.) are places and
the second set of vertices (barsin Fig. 5.16.)
are transitions. Each place of a Petri Net can
hold any number of tokens (little blackened
circlesin Fig. 5.16.). A token is moved from
one place to the next place following the ar-
rows, if the transition between the two places
fires. A trangition can only fire if al places
beforethetransition hold at |east one token. If
the transition fires, al places before the tran-
sition loose one token and all places after the
transition gain one token. The place queuein
Fig. 5.16. represents the queue, the places A1
and A2 represent the service stations (proces-
sors). Up to four jobs can circlein Fig. 5.16.,
but each service station can only hold up to
one job. This is derived through a "service
available token", which is transferred to the
service station when a job is executed. The
absence of the "service available token"
blocks the transition to the service place. Af-
ter ajobisfinished, the "service availableto-
ken" isreleased to its place. Thetransition be-
fore the place named queue mimicsjob arriv-
as, the transitions after the places Al and A2
are the service transitions.

A queue implies a first come first serve
(FCFS) strategy which is obviously not real-
ized by the single place for the token in Fig.
5.16. Replacing the queue place of thisfigure
by the Petri Net in Fig. 5.17. would imple-
ment a FCFS strategy for the queue. Aslong
as places are available in the queue, the arriv-
ing jobswander from bottom to top. The "ser-
vice available token" from Fig. 5.16. be-
comes now a "queue place available" token
in Fig. 5.17. When a job departs the system,
the "queue place available" token enablesthe
next job in the queue to forward one place.

128

Performance Modeling for Multiprocessors

Whenever a job forwards a step, its succes-
sors in the queue can also forward one step.

Petri Net for queue with FCFS

>
Departing
jobs

Fig. 5.17. Petri Net for FCFS strategy

Originally, Petri Nets were designed to study
qualitative or logical properties of systems
exhibiting concurrent and asynchronous be-
havior. With the lack of atime concept, Petri
Nets cannot directly be used for quantitative
performance evaluation. The natural ap-
proach for this problem is to implement the
association of time with the transitions of a
Petri Net. The first research proposasin this
meatter [Sym78], [Mol82] focused on the as-
sociation of exponentially distributed firing
delays to dl transitions of a Petri Net. The
next step was the introduction of generalized
stochastic Petri Nets (GSPN) in 1984
[Mar84]. InaGSPN atransition has either an
exponentialy distributed firing delay or the
transition fires without delay. Since the sto-
chastic process underlying a GSPN can al-
ways be represented as a time-continuous
Markov Chain, the GSPNsbelong to the class
of Markovian modeling techniques. Thisalso

impliesthat the stationary analysis of aGSPN
requires the solution of a linear system of
equations.

Petri Net Models

129

5.2.1. GSPN Example

The example of the beginning of this section,
where steady state diagrams are created from
Markov Chains to describe four queueing
strategies for jobs arriving at a multiproces-
sor, isnow reconsidered. The same strategies
are expressed as GSPNs.

Some definitions are needed to be able to un-
derstand the process of transforming a GSPN
into a steady state diagram.

5.21.1 Definitions

Definition: Marking

If P is afinite set of places and each place
may contain a finite number of tokens, a
marking My is a row vector of nonnegative
integers and defines the number of tokensin
each place p; | P. For a marking My, the
number of tokens in a particular place p;j is
given by the i-th component of M.

Definition: Reachability Set

The set of al markings reachable from the
initial marking Mg by firing sequences of
transitions and the initial marking itself isde-
noted as the reachability set of a GSPN.

Definition: Reachability Graph

Thereachability graph of aGSPN isadirect-
ed graph (V,E). The set of verticesV is given
by the reachability set. The set of directed
arcsE isgiven by thefeasible marking chang-
esinthe GSPN dueto transition firingsin al
reachable markings.

Definition: Vanishing Marking, Tangible
Marking

The markings of the reachability set of a
GSPN can be partitioned into two digjoint

subsets. Markings, in which at least one im-
mediate transition (transition without firing
delay) is enabled are called vanishing mark-
ings. Markings in which only timed transi-
tions are enabled are called tangible mark-
ings.

Definition: Tangible Reachability Graph

The tangible reachability graph is adirected
graph (V,E). The set of vertices V is given by
the tangible markings of the reachability set.
The set of directed arcs E is given by the fea-
sible marking changes in the GSPN due to
transition firingsin al reachable markings.

5.2.1.2 Example: Queueing Strategies

Random Queue Strategy

As in the example in the beginning of this
section, the system consists of two processors
(Al and A2, each with aservicerate of m=1,
i.e. one job is executed per time unit) and of a
queueing system which can hold at most 4
jobs(thearriva ratel is1,i.e. inaverage one
job arrives per time unit, if there are lessthan
4 jobs waiting).

The random queue strategy (each queue can
hold up to four jobs, but the total number of
jobs in the system is limited to four jobs) is
outlined in Fig. 5.18. When a job enters the
queueing system, one of the queues is ran-
domly assigned to it. The Petri Net places for
the queues are g1 and g2, the places for the
processorsare Al and A2. The places D; (with
i = 1,2,3,4) are dummy places to ensure cor-
rect sequencing. D; and D, make sure that
only one job can be processed at atime. D3 is
thejob pool. D4 getsall thefinished jobs. The
GSPN contains transitions with exponential-
ly distributed firing delays and transitions

130

Performance Modeling for Multiprocessors

without firing delay. When a delayed transi-
tion fires, al following transitions without
delay have to fire before the next delayed
transitionisenabled tofire. Thus, thefiring of
non delayed transitions has always priority to
the firing of delayed transitions. Since the
jobs are randomly assigned to one of the
queues and the jobs arrive with an exponen-
tially distributed rate of | , the jobs arrive at
each queue with an exponentially distributed
rate of | /2.

Service rate:

)

?
m=1 \ /
Queueing system

(max. # of jobs = 4)

D1

D Transition with exponentially (I e)
distributed firing delay

‘ Transition without firing delay

Fig. 5.18. GSPN for random queue strategy

To find a Markov Chain representing the
GSPN requiresto find the tangibl e reachabil -
ity graph for the GSPN. First, the reachability
set has to be found. Fig. 5.19. shows how to
generate the reachability set. Beginning with
amarking M, all possible markings have to
be found. If the change from one marking to
the other involves only immediate transi-
tions, the marking is a vanishing marking and
is not included in the tangible reachability
graph. The first column in Fig. 5.19. identi-
fies vanishing and tangible markings. The
last column Sis used to describe the system
state. It consists of apair (ij), with i being the
number of jobs in subsystem | (consisting of
gl and Al) and j being the number of jobsin
subsystem Il (consisting of g2 and A2). For
the performance questions, it is only interest-
ing to determine when ajob enters one of the
subsystems and when a job leaves the sub-
systems. This is described by al tangible
transitions from Fig. 5.19.

00
01
01
02
03

o

10
10
20
30
40
11
11
11
21
31
22
12
13

e e a
OCORPNFROFRPOWNRPROROOOOOOR
PRPPRPRPPORPRPRPRPPOOOOOOOR
PRPRPOO0OO0OO0OFRO0OO0OO0OO0OWNEREROR ORN
PRPPRPRPPPOOOOOORREEEREOON
OCO0O0O0O0OFRO0OO0OO0OORRRERELEERRPRP
OCO0O00O0O0ORRLRRPRPPLPILPOOOOR RN
OFRPOORNNNORNWWORNWWMA®

Fig. 5.19. Generation of reachability set

Petri Net Models

131

From the reachability set, the tangible reach-
ability graphin Fig. 5.20. can directly be con-
structed:

o
a9

©
@

Fig. 5.20. Tangible reachability graph from
Petri Net

All arrows pointing from top to bottom sym-
bolize the arrival of ajob in one of the sub-
systems| or | and carry the transition rate of
| /2 for this event. All arrows pointing from

bottom to top symbolize the completion of a
job in one of the subsystems and carry the
transition rate of mfor this event. It can be
shown that the graphs in Fig. 5.20. and Fig.
5.8. areidentical. Asdemonstrated in the pre-
vious section, the resulting system of flow
balance equations can be generated and
solved as functions of | and m Since each
GSPN can be transformed to aMarkov Chain
by algorithmic means, the potential of both
methods for performance evaluation is simi-
lar.

Common Queue Strategy

The second strategy is to realize only one
queue which can hold up to four jobs. The
jobswait in the queue until one of the proces-
sorsis available and are then sent to that pro-
cessor. This strategy is called common
queue.

Service rate:

Queueing system
(max. # of jobs = 4)

Fig. 5.21. GSPN for common queue strategy

132

Performance Modeling for Multiprocessors

Fig. 5.21. showsthe associated GSPN for this
strategy. Since the jobs are assigned to one
queue at arrival rate | and from there to the
next available processor, the system in Fig.
5.21. looks the same as the basic system in
Fig. 5.16., except the transitions with expo-
nential firing delay.

After the generation of the GSPN, the tangi-
ble reachability graph and thus, the steady
state diagram can be constructed.

Shortest Queue Strategy

The third strategy is to realize two queues
(each can hold up to two jobs). When a job
enters the queueing system, the job is sent to
the currently shorter queue. This strategy is
caled shortest queue. The GSPN for this
strategy is not as straightforward as for the
other strategies. A new kind of arc which
only makes atransition fire, if the associated
place holds no token, makes it easier to real-
ize the mechanism for finding the shorter
queue. These arcs are called inhibitor arcs.
Fig. 5.22. shows the graphical representation
of this mechanism.

Transition fires without
delay, if place holds no
token

O—

Fig. 5.22. No token firing transition

Fig. 5.23. shows the GSPN for the shortest
queue strategy. Jobs enter with arrival ratel .
If both queues hold no job (token), one of
them is randomly assigned the job. If only
one queue holds no job, it gets the job (the
transition to assign ajob to the queue is then
enabled). If both queues hold jobs, the shorter
one hasto be found. Aslong as the queue en-
try transitions are disabled (because the
queue holds a token), the large transition t1
can fire and the queues become empty. The
tokens from the jobs residing in the queues
are stored in place s. When both queues be-
come empty, they held the same number of

jobs and the new job is assigned randomly.
After the new job isassigned, thetransition t2
is enabled and the queues get their previous
job tokens back from place s.

Service rate:

Al
m=1

shortest

> A2
m=1

Queueing system
(max. # of jobs = 4)

Fig. 5.23. GSPN for shortest queue strategy

Petri Net Models

133

Next Queue Strategy

The last strategy is similar to the first one.
There are two separate queues (each can hold
up to four jobs, but the total number of jobsin
the system is still limited to four jobs). The
strategy is to dternate between the two
queues, when a job enters the queueing sys-
tem, it is sent to the next queue from point of
view of itspredecessor. Thisstrategy iscalled
next queue, the GSPN for this strategy is out-
linedin Fig. 5.24.

Service rate:

.
m=1
\ N =
>
m=1 \

Queueing system
(max. # of jobs = 4)

Fig. 5.24. GSPN for next queue strategy

5.2.1.3 Queueing Networks versus
GSPNs

From the previous sections and examples it
might look as if queueing networks and sto-
chastic Petri Nets have the same modeling
power. Both techniques use a graphica sys-
tem representation which makes the model -
ing formalism attractive. Looking at the
GSPN examples in the previous section, the
graphical representation of the GSPN build-
ing blocks seems to be less compact than the
graphical representation of queueing network
building blocks. However, each queueing
network model can be represented as a
GSPN. This consequence is not valid vice
versa. There are GSPNs for which no equiva
lent representation as an extended queueing
network exists. In [Ver87] the authors com-
pare the modeling power of both techniques
(Queueing networks and GSPNs). They point
out that probably the main difference in mod-
eling power is the fact that synchronization
can be represented in a GSPN in amore gen-
eral form than in a queueing network. Using
an examplefor atime-out representation they
show a scenario which can be represented as
a GSPN but which cannot represented as an
extended queueing network because this for-
malism does not provide means for pre-emp-
tying timed activities.

‘ Initiate time-out

synchronisation
Wait Event
event : occurred

Y Interrupt
O

Fig. 5.25. GSPN for atime-out synchronization

Timer

134 Performance Modeling for Multiprocessors

Another aspect arethe meansfor theverifica- tent for GSPNs. More information on model -
tion of structural properties of the underlying ing using GSPNs can be found in [Mar95].

system which are not provided by queueing

networks. Since GSPNs are extensions of Theintroductionary example of section 5.1.2.

Petri Nets, these means are inherently exiss can also be realized as a GSPN:

Links

A

available

~

:

|

:

Sr%té\ge Snooping protocol - :$<}>[t
N v O |
A ~Ogp-0-5

.

O

Memory systems

:

:

:

-

Fig. 5.26. GSPN for example in Fig. 5.12. (multiprocessor system)

Petri Net Models

135

5.2.2. DSPN Example

Generalized stochastic Petri Nets (GSPN)
contain two kinds of transitions, differed by
their firing time. Immediate transitions fire
without delay after the input conditions are
satisfied, exponential transitions fire after an
exponentialy distributed random delay. The
lack of transitions which fire after a constant
time delay led to the introduction of deter-
ministic and stochastic Petri Nets (DSPN) as

described in [Mar87]. In computer systems,
examples for constant time delays are time-
outs, setup times for devices (e.g. communi-
cation units, vector units), time slicesin time
shared systems. Especialy for concurrent
systems synchronization on different levels,
DSPNs are well suited. In [Lin98] amultiple
reader, single writer system is used as an ex-
ample to introduce DSPNSs.

Task running, p;

»(K=

Issuing memory request, t;

Isread request, t,

Queue read
requests, ps

Start processing
read request, tz

Processing read
requests, py

Delay for processing
aread request, t4

Fig. 5.27. DSPN for areaders/writer system

Decision, p,
Iswrite request, tg

Queue write
requests, ps

Start processing
write request, tg

Processing write
requests, pg

Delay for processing
awrite request, t;

The elements of the DSPN in Fig. 5.27. are
defined as in the GSPNs of the previous sec-
tion. Two new elements are displayed in this
figure. A black bar with white text stands for

atransition with constant delay, thetext isthe
delay parameter. An arc with a number asso-
ciated to it has the multiplicity of that num-
ber, if no number is present, the multiplicity

136

Performance Modeling for Multiprocessors

of that arc is one. The text in a place stands
for the number of tokens associated with that
place.

In the readers system described in thisfigure,
K tasks share the resource memory. As long
as no write process is present, up to K pro-
cesses are alowed to read from memory si-
multaneously. As soon as a write process is
queued, the read queue gets blocked by the
inhibitor arc, thus giving priority to the write
process. When al K tokens are available in
the Mutex place, the write request can be pro-
cessed. After processing and aconstant delay,
the K tokens are given back to the Mutex
place.

This example demonstrates the modeling
power of the DSPN technique. It includes
sharing resources, synchronization, and pri-
orities. For a small example (K=2) it is now
demonstrated how the tangible reachability
graph of the DSPN can be constructed. As be-
fore, thefirst step isto generate the reachabil-
ity set of the DSPN.

P1 | P2 | P3| Psa|Ps|Ps|P7
Mg|2| O] 0O 0] 0] 0] 2
M, |1 1,10} 0| 0] 0] 2
My, 1] O 110, 0| 0] 2
M3 |1] 0] O 1,0, 0 1
My | O 1|0 1,0, 0 1
Mg | O | O 1 10,0 1
Mg|O| O] O 2] 0] 0] O
M; 0| O] O 11,0 1
Mg|1| 0| 0O 0| 21| 0| 2
Mg|1| 0] 0| O} O 110
Myg| O 110} 0,0 110
M0 0| O 110, 0 110
M0 O] O 0] 1 1] 0
Fig. 5.28. Generation of reachability set (K=2)

The tangible markings for K=2 are {Mg, M4,
M4, ’\/|7Y Ms, Mlo, Mlz}, theVanlﬂ']lng mark-
ingS are {Mz, Ms, M5, MG’ Mg, Mll}' The

reachability graph resulting from the reach-
ability setinFig. 5.28. is:

Fig. 5.29. Reachability graph (K=2)

The vanishing markings are highlighted in
the reachability graph. By removing the van-
ishing markings and adjusting the arcs, the
tangible reachability graph (as shown in Fig.
5.30.) can be generated. One arc in atangible
reachability graph can represent the firing of
a transition sequence, but only one of the
transitions in this sequence can be a timed
transition. In Fig. 5.30. the first transition of
an arc is the timed transition, the transitions
after the comma are the immediate transi-
tions. In [Lin98], an agorithm to automati-
cally generate the tangible reachability graph
of adeterministic stochastic Petri-Net is out-
lined. [Lin98] also contains a software pack-
age (DSPNexpress) with graphical interface
to create and solve DSPNs.

Petri Net Models

137

@

Fig. 5.30. Tangible reachability graph (K=2)

After thetangible reachability graphisgener-
ated, numerical techniques are available to
solve the system and find the performance
measures. More details on these methods can
be found in [Lin98g].

138

Performance Modeling for Multiprocessors

5.2.3. Application Areasfor Petri Nets

Like queueing networks, the modeling tech-
niques involving Petri Nets (stochastic and
deterministic) have become important tools
in the design and analysis of computer sys-
tems. These models can be defined, parame-
terized, and most of the times evaluated at
relatively low cost. For complex models a
considerable numerica effort might be nec-
essary to solve them. Since great progressin
numerical algorithms has led to reducing the
numerical complexity of the solvers by or-
ders of magnitude and since modern comput-
erscontain large main memories and fast pro-
cessors, it is now possible to solve rather
complex Petri Net models. An example for
this development is the DSPNexpress soft-
ware distributed with [Lin98].

The Petri Net models can be used throughout
the design cycle from specification to hard-
ware redlization. Systems can be modeled
from high level to detailed models of system
components.

Especially in the design and development of
multiprocessors, Petri Net modeling tech-
niques are well suited. They inherently sup-
port and address issues like synchronization
and concurrency. Besides modeling the tim-
ing behavior it isalso possibleto use them for
testing forma properties (like deadlocks,
diveness), if al timed transitions are substi-
tuted by immediate transitions.

A practical problem is to model massively
parallel multiprocessors with up to thousands
of processors. In theory, it is no problem for
this technique to model such systems, but the
resulting models are too complex to be han-
died (in terms of memory and computation
time).

Asin the case of queueing networks, another
problem is the modeling of the workload in-
volved. There are basically two choicesto be

made, abstract the workload on a very high
level (job level) or model program behavior.
Thefirst choice might not be detailed enough
for the performance measures to be observed,
whereas the second choice will lead to com-
plex models. The graphical representation of
system behavior is straightforward and easy
to understand for a system engineer. The rep-
resentation of a C-program as a Petri Net
might be more complicate as the C-program
itself.

In summary, if asystem and its workload can
be represented as a Petri Net (GSPN or
DSPN), this modeling technique should be
used to evaluate its performance measures.
Similar to queueing networks, by changing
the parameters of the model, changes in
workload and system behavior, can easily be
evaluated without the need to build expensive
hardware prototypes.

Quantitative Performance Evaluation

139

5.3. Quantitative Perfor mance Evaluation

The previous two sections describe stochastic
performance evaluation techniques. The
workloads and systems are realized using pa-
rameterized stochastic models. Workload and
target system are model ed using the same for-
malism (Queuing Networks or Petri Nets).
The emphasis is on both, finding the correct
model for the workload and system. This sec-
tion presents a different approach [CMS97],
which uses parallel profiles on different ab-
straction levels to characterize a parallel
workload and its execution on a target sys
tem. Together with assumptions for the un-
derlying hardware (number of processors,
communication latency), it is possible to pre-
dict performance behavior measures like exe-

cution time (in timesteps), speedup and effi-
ciency.

Starting point for this so called quantitative
performance evaluation isaformalism to de-
scribe and find an average degree of parallel-
ism for a workload. Each problem can be
considered on different levels of abstraction.
These levels form a hierarchy from a natural
problem description to a running parallel
program (compare Tab. 5.7.). Going from
one level to the next causes losses in the av-
erage degree of paralelism. The first four
levelsin Tab. 5.7. are independent of the tar-
get system architecture. Thus, the parallel
profiles of these levels can be determined
without looking at specific systems.

Leve of abstraction

Loss of parallelism caused by

Problem (in nature)

natural problem description

level of description, granularity

algorithmic problem description

problem decomposition, granularity

high level programming language program

communication primitives,
choice of data structures

machine language program

number of processors,
mapping of task graph onto machine

Tab. 5.7. Loss of parallelism caused by problem formulation

Using the different levels of abstraction from
Tab. 5.7., two different parallel profiles, the
algorithmic profile and the execution profile,
can be defined (compare Fig. 5.31.). To de-

termine the algorithmic profile an agorithm
issubdivided into elementary operations. De-
pending on the problem nature, such elemen-
tary operations can be arithmetic operations,

140

Performance Modeling for Multiprocessors

logical operations, data base accesses, etc.
The agorithmic profile P(i) is defined as the
number of elementary operations which can
be executed concurrently at timei. Theinter-
val for each timestep i = 1, 2,..., i, can be
chosen arbitrarily by the user. For example, a
timestep can be defined as a multiple of the
clock frequency of the target system. It can

aso be defined as the time needed for an
arithmetic operation, for a logical operation
or for adata base access. To determinetheal-
gorithmic profile, anideal target systemisas-
sumed, i.e. an indefinite number of proces-
sorsisavailablewhich have accessto aglobal
address space without communication and
synchronization delays.

| Algorithm | -- >C algorithmic profile >> CP(i) (i aretimesteps, i = 1,2,...imax)>

A timestep of the algorithmic profileis
for example the time to execute one

Program with

Chardware parameters

arithmetic operation. Timesteps are

runfime parameters

' '

Fig. 5.31. Parallel profiles from algorithm to program execution

user defined and application depen-
dent. The computaion resources are as-
sumed to be unlimited.

The timestep defintion is that of the al-
gorithmic profile. Because of the hard-
ware parameters, the resources (num-
ber of processors, address space) for
the execution profile are limited

Algorithmic Profile

A parallel matrix multiplication is now used
as an example to demonstrate how to con-
struct an algorithmic profile and to show how
to transform this profile into an execution

profile. Two matrices A(N,N) and B(N,N)
(with N = the dimension of the quadratic ma-
trices) are to be multiplied. The result matrix
isaso aquadratic matrix of dimension N.

all [al2 | ~-----" al,16 b11 | b12 | :------ b1,16
a2l a2 | ----- a2,16 b21 | b22 [------- b2,16
------- |a16,16| | b16,1 | b16,2 | ------- b16,16

N= 16: matrix A(16,16)

Fig. 5.32. Matrix multiplication of A and B

matrix B(16,16)

Quantitative Performance Evaluation

141

To compute one element of the result matrix,
adotproduct of one row of matrix A and one
column of matrix B hasto be carried out. This
dotproduct requires N multiplications (com-
pare Fig. 5.34.) and some additions (compare
Fig. 5.35.). If the assumption of unlimited re-
sources (unlimited number of processors, un-
limited global address space) is made, all
multiplications for one dotproduct can be
performed concurrently. Furthermore, the
multiplications for all dotproducts of the re-
sult matrix can be calculated concurrently in
onetimestep (thelength of onetimestep isde-
fined as the time to execute one multiplica-
tion or one addition). In total, N? dotproducts
with N multiplications each (=N® multiplica-
tions) can be performed in parallel at the first
timestep of the algorithmic profile (compare
Fig. 5.34. and Fig. 5.33.). Thus, the first bar

of the algorithmic profile with N elementary
operations of Fig. 5.33. is found. The next

timesteps are needed for the concurrent cal-
culation of the dotproducts for each element
of the result matrix (compare Fig. 5.35.)

P(i) A
N

- i =5

N2*N/8—|
=

N2
1 4 5

y

Fig. 5.33. Algorithmic profile for parallel
matrix multiply with N = 16

timestep i = 1: execute all necessary multiplications (16* 16* 16) = (N) operations

al,l |*| b1l al,2 |*| b2,1
al,l |*| bl2 al,2 |*| b2,2
[a1 |*[br16| [av2 |-[b26]
al6,l [* | bl,1 al6,2 [* | b2,1
al6l [* | bl,2 al62 [* | b2,2
[a6.1] [br16| [at62] [b2,16]
Fig. 5.34. Parallel agorithm for matrix multiplication (part 1)

al,16 |*
al,16 |*

b16,1
b16,2

() frerd

al6,16[*
al6,16[*

b16,1
b16,2

e} e

To compute the dotproducts, an agorithm
with atreelike topology isused. Thefirst step
(timestep i = 2 in Fig. 5.35.) computes (N/2)
sums for N pairs of previousy calculated
products. These sums are calculated concur-

rently for all N2 elements of the result matrix.
Thus, (N**N/2) elementary operations are
performed in this timestep (compare Fig.
5.33.). Inthe next step (timestep i = 3in Fig.
5.35.), the sums of the previous step are con-

142 Performance Modeling for Multiprocessors

currently added by pairs to produce the next
results. The number of elementary operations

needed TOI’ this tlmeﬁq) are (NZ* N/4) This FlVetlmestq)S ('m = 5) areneeded to pe.form
method is repeated for the next timesteps un- these operations which results in an average

til the calculation of the dotproducts is fin- o ¢ norallelism b of 7936/5 = 1587
ished in the | ast step. The total number of op- 0 P P '

erations for the parallel matrix multiplication
is:

16%+16° <8+ +16° %2+ 16° = 7936

[ar1b11 [a13b31 | arsbsa [at7+b71 [a19b9.1 [at11+b111[a1 13613 1[an 15%b15.1]
i i i i i i i i
[aL2b21 | arabat | aLerber [atswbe [a110b10,1]at12*b121 a1 14 b14 11 16" b16.1]

I I I 1 I 1 I
[s] [2] [s] [=#] [s] [s] [=] [=]

timestepi =2 executeall N =8 additions for next step of dotproduct for all (16*16)=(N?)
elements of resultmatrix concurrently

s13 sl4

timestep i =4: executeall %I = 2 additions for next step of dotproduct for all (16* 16)=(N?)
elements of resultmatrix concurrently

timestep i =5: executeI’\é =1 addition for last step of dotproduct for all (16*16)=(N?)
elements of resultmatrix

Fig. 5.35. Parallel agorithm for matrix multiplication (part 2)

More general, the total number of all elemen-

tary operationsis called work A with: A=3 :m= P (Eq.5.5)

Quantitative Performance Evaluation 143
This formula does not include additional op- 1 o _ A
erationsfor communication and synchroniza- P=:=xa imz 1P(l) =i (E0.5.6)
tion) that might be necessary for the execu- m m

tion of the algorithm on amultiprocessor sys-
tem. The underlying agorithmic profile also
assumes that unlimited resources are avail-
able.

The average degree of paralelism p for the
agorithmic profileis defined as:

Execution Profile

Going from the algorithmic profile to the ex-
ecution profile requires to consider the avail-
able resources. Applied to the implementa-
tion of the matrix multiplication on a rea
multiprocessor this means that no more than
nprocs (with nprocs = number of available
processors) elementary operations can be
computed concurrently at any timestep. In
Fig. 5.36. the execution profile of the parallel
matrix multiplication is visualized for
nprocs=8 processors. One computation ci,j

If al elementary operations could be evenly
distributed over time and the previously
made assumption of unlimited resources is
used, pisidentical with the expected speedup
Sof the algorithm.

(withi=1,2,.,.Nand j=1,2,...,N) is the calcu-
lation of one dotproduct of the result matrix.
It can be done in 6 elementary timesteps. In
thefirst two timesteps of each step i}, al the
multiplications of the dotproduct are comput-
ed concurrently. Since only 8 processors are
available, two timesteps are needed for these
16 elementary operations. In the next four
timesteps of each step ci,j the sum of the dot-
product is calculated as described in Fig.
5.35.

P (i) A

8
=nprocs

=N
[|

i = 1536

=

1534 1535 1536

Fig. 5.36. Execution profile for parallel matrix multiply with N = 16 and nprocs = 8

c16,16

The total number of timesteps for the execu-
tion profile iy, increases to 1536 compared
withi,,, = 5timesteps of the corresponding al-

gorithmic profile. The definition of work
which isthe total number of elementary oper-

ations can aso be applied to the execution
profile:

A=8 P

SR (Eq.5.7)

144

Performance Modeling for Multiprocessors

The total number of operations remains the
same for both profiles (A = A”).

The average degree of parallelism as defined
in (Eq.5.3) decreases with increasing iy, :

A _ A
Im Im

(Eq.5.8)

B(i) is defined as the number of elementary
operations which can be performed concur-
rently at one timestep i for a given architec-
ture. In the example above, B(i) = const =
nprocs. The maximum work a parallel ma-
chine can execute for a given number of
timesteps i, is:

Avax = é!:ls(i) =i xnprocs (Eq.5.9)
Amax IS @so called the capacity of the ma-
chine. The capacity definition can be used to
calculate the efficiency of an execution be-
cause efficiency is defined as:

_ performedwork _ _A Eq.5.10
€ capacity Amax (Ea’510)

Using (Eq.5.8) and (Eq.5.9), efficiency can
also be expressed as:

ec A ___A

— A B

Amax i:n Xnprocs N

For the example of the parallel matrix multi-
plication, the performed work (total number
of operations) is 7936. Using the execution
profile of Fig. 5.36. resultsin a capacity of:

i, xnprocs = 1536 x8 = 12288

Thus, the efficiency can be calculated as:

_ 7936 _
12288

Thisisan optimistic estimation since no loss-
es in efficiency caused by communication
and synchronization are considered. The effi-
ciency lossisonly caused by unbalanced load
(compare Fig. 5.36.).

Using the assumption that one timestep isthe
time to perform one elementary operation,
the total number of operations and the result-
ing number of timestepsin the execution pro-
file determine the speedup S.

s - performed work
nprocs 4 of tmesteps for nprocs processors

For one processor, S; = 1 because the total
number of operations (=performed work)
equals the total number of timesteps of the
execution profile (compare Fig. 5.37.).

Lol

0N
1

1 2 N3+15N2E i,

Fig. 5.37. Execution profile for matrix
multiply with nprocs =1

For nprocs processors, the total number of
timesteps will decrease because some opera-
tions will be executed in parallel.

_ A
Snprocs —

m

For the example of the parallel matrix multi-
plication, the performed work (total number
of operations) is 7936. Using the execution
profile of Fig. 5.36. resultsin a speedup of:

S = %% =517 (°p)
In section 2.2.3. of this book, the relation be-
tween efficiency and speedup is defined as:

with P = nprocs.

Thus, the efficiency can be used to calculate
the speedup:

Snprocs = nprocs xe

Quantitative Performance Evaluation

145

Distribution of Parallelism

Execution or algorithmic profiles can be used
to derive the distribution of parallelism. The
behavior of a parallel program is character-
ized by a distribution of paralelism V(P).
Each value V(P) (with P=0,1,2,...,Pyax and
Pmax IS the maximum parallel degree) is the
probability of aprofileto havetheparallel de-
gree P(i) at an arbitrarily chosen timestep i.
V(P) can aso be defined as the percentage of
timesteps that a program has the parallel de-
gree P. With Py is the maximum parallel
degree for a program, V(P) can be calculated
as.

"oz2(i,P)

Qo
1

, WithO£ P £ Py

The distribution of parallelism resulting of
the execution profilein Fig. 5.36. is described
inFig. 5.38.

V(P) for P = 0,1,2,...,8 hasthe values:
V()= VR)=V(5)=V(6)=V(7)=0

V(D) =V(2)=(v4) =2

NI

The sum of all probabilities V(P) must be ze-
ro:
+=+=+- =1

3 V(P) =

oI
ol

Using V(P) the performed work can be calcu-
lated as:

P,
A =i xQ 1™ V(P)xP
maP:O()

=nprocs

]

i = 1536

[.

1534 1535 1536

c16,16

Fig. 5.38. Distribution of parallelism

146

Performance Modeling for Multiprocessors

Speedup with Latency

In the previous section, communication costs
are not considered. If communication is car-
ried out as an operation which is overlapped
with computation the derivation of the for-
mulae for speedup and efficiency is correct.
In general, communication cannot always be
overlapped by computation. A new variable L

L ower Boundary for Speedup (wor st case)

(=latency) is now introduced. The latency L
is ameasure for the time needed for commu-
nication. Itisgiven in multiples of the system
frequency. The execution profile with latency
L can be used to predict upper and lower
boundaries for speedup and efficiency of a
parallel program.

Pi) A
16 —
N2
4 —
= . e,
1 2 3 4 5 1078 10791080 i
P (i) A
Ty T, T3 N2 Ti079 T1080
8 """ VN
=nprocs | | | | | .. .
i" = 2160
4 —
2 — L L L L L L L L
1 — o opm moq—\ o opm cr% ~
12 34 56 78 910 Tttt 2159 2160
cl1 c16,16

Fig. 5.39. From algorithmic profile to execution profile with latency (L=1)

The upper part of Fig. 5.39. shows the algo-
rithmic profile for the execution profile of
Fig. 5.36. The columns represent the steps of
the algorithm for the parallel matrix multipli-
cation. The first column is step one (al mul-
tiplications for one element of the result ma-
trix). The next four columns are the steps for

the calculation of the dotproduct. These five
steps for the computation of one element of
the result matrix have to be repeated for all

N2 elements of the result matrix. The lower
part of Fig. 5.39. shows the resulting execu-
tion profile for eight processorsincluding la-
tency. In addition to the processor constraint,

Quantitative Performance Evaluation

147

the introduction of latency for the communi-
cations which occur after each computation
step increases the total number of time steps
(compare lower part of Fig. 5.39. and Fig.
5.36.). As an example, the assumption is
made that each communication needs one
time unit and that the communication cannot
be overlapped by computation. The new ele-
mentary timestep T; including communica-
tion time is defined as:

TE (B’&H +L (Eq.5.11)
Thetotal time can be calculated as:

* im

in=a T (Eq.5.12)

With (Eq.5.11) and (EQ.5.12) i, can be esti-
mated as:

(Eq.5.13)

oL o im P(i
|m£|m><L+a J_’%)W

Using guﬁﬂg the total number of

timesteps can be estimated as:

: ar Pl

i <imX(L+1)+ I_N (Eq.5.14)
Using (Eq.5.5) resultsin:

L A

|m<|m><(L+1)+—’\-I (Eq.5.15)

Using (Eq.5.15) and

s:é‘_ ; p:_—Ai yly=L+1
i im
L
> L
Lv_/
ly
Fig.5.40.ly= L+1

thelower bound for speedup can be estimated
as.

N
1+
P

S> ,withlys 1

(Eq.5.16)

148

Performance Modeling for Multiprocessors

Upper Boundary for Speedup (best case)

To estimate an upper boundary for the speed-
up, the assumption is made that the commu-
nication for each phase can be initiated after

thefirst parallel computation step and that the
communication can be (at least partialy)
overlapped by computation.

Fig. 5.41. Execution profile with latency hiding

L. >
| ly |
(i Ty ! T2 ! To1e
0 | | —
8 o - > o > —
2
=nprocs i i | N i
. o
DT D2
2 — 4—1> <_>:
1 -
12 3 l

c16,16

Using these assumptions, the new elementary
timestep T; including communication time is
defined as:

T, = maxy, (B’&Hg (Eq.5.17)
Asbefore, lyisdefinedasL + 1.
T = (B{&P%max(o, DT,) (Eq.5.18)

Using DT, = |y-(B{&H

the total time can be calculated as:

n [P+ g |
ai (N W+ai=1(max(O,DTl))

Only positive values of DT; have to be con-
sidered: DT; > 0: P(i) < ly*N.

The distribution of parallelism can now be
used to estimate an upper boundary for
speedup. The frequency D(P) of aparallel de-
gree P(i) is defined by the probability V(P)
multiplied with the number of stepsi

D(P) = im* V(P)

Thesumof D(P) « DT; from P=1to P=lyNre-
sultsin

Quantitative Performance Evaluation

149

*

hea e

With x£[x7:

With (Eq.5.5)

&%, [oe) gy-[EQ L

ime & PWeya ™ oe)-18 " p(e) e

i lo IyN

A o IyN
3 Kl a D(P)

*
m

D(P) xP

(Eq.5.19)

Start comment: Comparison of different distribution functions D;
Using a distribution function D the total Distribution function Dy:
number of stepsi,,, and the parallel work A)
can be calculated as: All i, steps have parallel degree P = Py
o Prax . A2 = Prrax * im; P2 Prax
a,- 1D(P) =i (Eq.5.20)
b Comparison:
a Pm_axl PxD(P)= A (Eq.5.21)
i
A=A = 3 HPrax=1)? 0
Distribution function Dq:
Each parallel degree P = 1, 2,..., Py ap- Ingeneral, for fixed i, und Py > 1 there-
im lation A, > A holdsfor any D;(P
pears —1 times: D(P) = —1 2> A Y DilP)
P
max max
A m
A :épmaxpxim = (P +1)XiLn
TGRs1 Py M2 D(P) D,
fD2
- Pmax +1
L=
P >
py» ”;X (Prax»1) Prnax P
Fig. 5.42. Distribution functions D4 and D,
End of comment

150

Performance Modeling for Multiprocessors

Three cases for the relation between Py
and IyN are consider ed:

e CaseA: Ppax £IYN

A I
D(P D
() 1 ’D2
——
Prnax YN P
Fig. 5.43. D1 and D, with Py £ IyN

With (Eq.5.19) the total number of steps can
be estimated as:

w3 A A
i*n3 KIHyXIm_KI (Eq.5.20)
(Eq.5.20) can be simplified:

i*nd (yxi) (Eq.5.21)

An upper boundary for speedup using the dis-
tribution functions D, and D, can be made:

CaseB: Py > IyN and distribution Dy

A]

D(P) Dy i

IyN

Pmax

Fig. 5.44. D1 with Py 3 IyN

S EL |for pg 'Jl\'éf_l ,(Dy) (Eq.5.22)

S,£R Ifor p£IyN ,(D) (Eq523

o |yN im
a._,bP) =
P=1 Pmax

xlyN

o IyN _ im IyN+ 1
P xD(P) = —— xlyN x
a,_,PrOP) =gy 2

Using (Eq.5.19):

IyN xi 1 i
4y x m_—x_Mm x|yN x:
N y P N P y

max max

IyN+1
2

With Prgy » 2p:

) 2 L
s P><|m+ly xN ><|m_|m><|y><(|yN+l)
m N 2p 4p

Prim . g N
T l+|yN(Iyl\2|—1)

4p

S=

An upper boundary for speedup using the dis-
tribution function D, can be made:

S £ __;E_’\I_Z (D) (Eq.5.24)
1+ é‘%ﬁg

for p>|-l’§’1I and lyN»1 .

Quantitative Performance Evaluation

151

e CaseC: Py > lyN and distribution D,

A

D(P)

oY

YN Prax

Fig. 5.45. Dy and Ppay 2 YN

Using § D(P) = 0 resultsin:
4 PxD(P) =0
With (Eq.5.19) an upper boundary for speed-

up using the distribution function D, can be
made:

| (D,) (Eq.5.25)

S,EN

for p>IyN.

Summary
For distribution Dy:

P forpEI_xN_f_l‘
2

i
ooy
N !
- MI<51£-:- N for p>YN+1
" p i1+ @YNG 2
7 €2po

For arbitrary distributions:

N p£IyN

l+|—y—’1I
p

Ip
<82£in
iN p>IyN

The point p = IyN in Fig. 5.46. characterizes
the behavior of the workload (described by p)
and the architecture (described by IyN). This
point iscalled speedup-knee, for p>lyN an ef-
ficiency e >50% isrealized.

s upper boundary, all D;
oL _
|

N I/ lower boundary, all D;
2T 7> |

I [}

| |

— ' '

IyN IyN 2lyN 3IyN p
2
"speedup knee"

Fig. 5.46. Speedup-knee

152

Performance Modeling for Multiprocessors

‘ Real System based ‘

‘ Benchmarkmg ‘

Low level (hw)

Applications

|
‘ Kernels
|
‘ Suitess

Performance Ana

Model based

‘ Deterministic ‘
i Simulation Analyt. System
Queueing Theory ‘ Dulati H %de%g ‘
Petri Nets
Stochastical PerPreT
workloa%gmodel ‘ erre ‘

5.4. Summary Performance Modeling

The development of a performance model for
acomputing system is a challenging task. As
outlined in Fig. 5.47., the development of a
computing system takes several steps from
the high-level design of the system and its
components down to the hardware develop-
ment. Each level in this top down approach
should be accompanied by appropriate per-
formance evaluation techniques in order to
optimize the system in terms of performance.
Performance might have different meanings
in this process, it can be speed, availability,
fault tolerance and others. The performance
measures are defined by the system design-
ers.

The top down development process yields an
increasing complexity from level to level.
Thisisalso valid for the performance evalua-
tion techniques, they must be capable to deal
with the increasing complexity. The problem
is the lack of a common environment for
both, the development and the modeling side
in Fig. 5.47. There are tools for each step of
the development and modeling, but there is

no single common environment from top to
bottom (vertical solid arrows in Fig. 5.47.).
There is aso a lack of interfaces between
development and modeling tools (horizontal
solid arrows in Fig. 5.47.). One way to over-
come these lacks is a closer cooperation
between developers and modelers.

The approach to use deterministic and sto-
chastic Petri Nets to model performance as
described in [Lin98] tries to establish a com-
mon environment to the first three steps of
performance modeling in Fig. 5.47. Inthe au-
thor’ s opinion the Petri Net approach has two
main advantages compared with other tech-
niques:

- The computational effort to solvethere-
sulting systems of equations could bere-
duced by using numerical methods.

- Thegraphical representation of the sys-
tem asaPetri Net may provide additional
insight to computer system designers.

The problems with this approach (as with
others) are that there is no interface from the

Summary Performance Modeling

153

modeling world to the developer world and
that there is no interface to the deterministic
evaluation which succeeds the stochastic
modeling.

The dotted arrows in Fig. 5.47. indicate that
performance results at any stage can be vali-
dated by using performance results of the
next design stage.

High-level design of Closed-form or combinato-
computer system and rial solution, or numerical
system components solution methods
A 0
! o
1 - S
! : Numerical or approximate @
Dizlﬂedcgr;e? ggeor{ts '« »| numerica solution methods, o
i P or discrete-event simulation g
2
i = a
. : Approximate numerical
([:)oertﬁal L(et?ardes's({:]gﬁ f solution methods or
puter sy discrete-event simulation
A
, - | N o
/" Trace-driven and N e
Software prototype ‘ h : ‘
of compufer sys?t/(gm < > execution-driven | ‘\ =
\\ simulation studies //’ | =
~ - N 4
A s
/ r ‘\ §
Hardware development 4 N S
of computer system < ™ Measurements J)) @
_ — / =)
Fig. 5.47. Support of system design by modeling (from [Lin98])

In Fig. 3.17. an approach to build a validated
system model is described. This technique is
included in a modeling cycle described in
[Laz84]. In many cases, the application of
queueing network modeling techniques in-
volves projecting the effect on performance
changes to the configuration or workload of
an existing system. Fig. 5.48. outlines the
three phases that are revisited for such a
study. Beginning with the measurements
from the existing system a baseline model is
defined and constructed in thefirst phase, the
so called validation phase. The system work-
load measures are used to provide model in-

put data and the model output is compared
with the system performance measures. If
discrepancies are detected in this phase, the
model has to be redefined.

In the next phase, the so caled projection
phase, the derived model is used to forecast
the effect on performance of the anticipated
modifications. The model is then evauated.
The difference between the modified model
outputs and the original model outputs is the
projected effect of the modification.

In the last phase, the so called verification
phase, the results from the second phase are

154

Performance Modeling for Multiprocessors

compared with measurements taken on the
modified system. The last phase can only be

compared to the model outputs and the work-
load measures are compared to the model in-

carried out if the modified systemisreadized. puts.
In this phase the performance measures are
M easurem)ey \Miawranmt
- Model .
Parameterization ¢ definition # Comparison
Evaluation
Modification
jf analysis M odel Comparison
o
Fi Evaluation
]
T Modified Modified
model inputs model outputs
Comparison ¢ ¢ Comparison
5 Modified system Modified system
g workload measures performance measures
= >
> Measurement Measurement
‘ Modified system
v i
Fig. 5.48. The modeling cycle

Looking at both figures, Fig. 5.47. and Fig.
5.48., it becomes clear that the workload does
not play an important role in conventional
stochastic modeling techniques. In Fig. 5.47.
itisnot even mentioned, in Fig. 5.48. existing
workload measures are used. Theworkload is
abstracted on a very high level using simply
parameters and probability distributions to
describe its behavior. This is not surprising
since the main god of the performance mod-
eling is to enhance and improve the capabili-
ties of the system or system components, and

not to change the workload itself. Of course,
modifying and improving the system also has
side effects on the workload, but the work-
load itself is not modified. In paralel sys-
tems, the problem is more complex, since the
mapping of the workload onto the system is
not as straight forward as in monoprocessor
systems. In the next section, a modeling tool
for performance prediction is presented that
involves detailed workload and system mod-
elsto predict performance measures.

P
‘ Real System based ‘

‘ Benchmarking ‘

‘ Low level (hw)
‘ Kernels
‘ Applications
‘ Suitess

Performance Analys's

‘ Queueing Theory

Model based
Analyt. System
nM%desi}/ng

S
‘ Slocljast| c ‘

A
Simulation
based

Petri Nets

Stochastical
workload model

6. Analytical Performance Modeling for

Massively Parallel Systems

Problems in modeling complex architectures
and applications using queueing based ap-
proaches were the start for the development
of PerPreT (Performance Prediction Tool)
[Bred5]. Before implementing a paralel ap-
plication the programmer has to decide for a
parallelization strategy for the problem. In
general it istoo time consuming to implement
several parallelization strategies, measure
their timing and use the best one. PerPreT
provides the user with information for the ex-
pected overhead without the need to explicit-
ly implement and monitor these strategies.
PerPreT is specialy designed for multipro-
cessors with large numbers of processing ele-
ments which are also called massively paral-
lel systems.

Inthelast years, several articleswith thisgoal
were published [Tho86], [Wabh94a], [Laz84],
[Har94], and [Har95]. They are based on ap-
proaches using Petri Nets or Queueing Net-
work Models. These approaches result in
very accurate models of target systems and
applications. Neverthelessthere are problems
to apply these approachesto massively paral -
lel systems:

- The graphical representation of systems
with hundreds or even thousands of proces-

sors that would be needed for these ap-
proaches is too complex.

- The application description and the map-
ping of the logical taskgraphs onto the tar-
get systemsis too detailed.

- The systems of eguations produced by the
Petri Netsor Queueing Network Modelsfor
massively parallel systems are too complex
to be solved in redlistic time.

Typical applications for massively parallel
systems use the single program multiple data
(SPMD) Programming model. This section
will show that modeling SPMD programs al-
lows simplifications which do not or only
slightly reduce the accuracy of performance
predictions. The abstractions used to describe
parallel applications do not necessarily mean
aloss of accuracy for the prediction of speed-
up, communication behavior, and execution
time. But these abstractions can lead to mod-
els capable of handling complex applications
for systemswith large numbers of processors.
The system and application description result
in an analytical model for message passing
multiprocessors. From this model perfor-
mance numbers can easily be calculated. This

156

Analytical Performance Modeling for Massively Parallel Systems

is the main advantage of PerPreT as com-
pared to existing approaches based on Petri
Nets or Queueing Network Models.

On the other hand, there are situations that
cannot be modeled by the PerPreT approach
because of its high level of abstraction. On
the hardware side these are cache anomalies
and network contention, on the software side

these are applications with input dependent
complexity like Traveling Salesman Prob-
lems. The Petri Net or Queueing Network
Models based approaches are for these exam-
ples superior to PerPreT. Another restriction
of PerPreT is its focus on the SPMD pro-
gramming model.

Fig.6.1. The PerPreT modules

PerPreT
Application Description Communication System Description
Porameter: Use Library Input Parameter:
- Number of processors \{mut Inputy Input - Setuptime send
- Problem size PerPreT - Bandwidth mem <-> buffer
Analytical Model - Bandwidthlinks
P Ameers - Setuptime receive
Formulae for: - Message passing protocol
- Communication - Network type
- Computation - Node performance
ables, Graphs

=L

Fig. 6.1. summarizes the modular structure of
PerPreT into application description, system
description, and a communication library.
These modules provide the modeling tool
with parameterized analytical models which
alow the calculation of expected speedup,
time spent for communication and time spent
for computation. If these numbers are avail-
ableit is easy to calculate predictions for ef-
ficiency and total execution time.

The parameters used for the application de-
scription alow a scalable modeling. A Per-
PreT experiment may consist of predictions
for several problem sizes or different data
distributions (for different numbers of pro-
cessors). The system description is indepen-
dent from the application description. Thisis
why one application description can be used
for experiments with different systems and

vice versa (for different application descrip-
tions the system description has to be done
once). Theinteger or floating point node per-
formance for an application is the only pa-
rameter which affects both, application and
system description.

The typical result graphs of PerPreT experi-
mentsareshowninFig. 6.2. and Fig. 6.3. The
|eft figure shows predicted times for commu-
nication and computation for afixed problem
size and different numbers of processors. The
sum of communication and computation time
defines the total execution time curve. This
plot is also available as table showing pre-
dicted speedup and efficiency for the experi-
ments. Theright figure shows predicted times
for afixed number of processorsand different

157

problem sizes. Again, thisplot isavailable as
table.

AE Timesin Seconds

0.5
0.25
0.125
0.0625
0.0312

Exec. Time=

0.0156 Comp. Tim

0.0080 Comm. Time:

0.0040

0.0020

0.0010

oooo5b—L
1 2 4 8 16 32 64 128 256 512

Processors

Fig. 6.2. All times plot of CG-Tree with psize
1024 on INTEL Paragon.

All Timesin Secs. for 512 Processors
1

0.25

0.063

0.016
Comm. Time

Comp. Time=,
0.004]

0.001

512 1024 2048 4096 819216384
Problem Size

Fig. 6.3. All timesplot of CG-Treewith nprocs
512 on INTEL Paragon.

158 Analytical Performance Modeling for Massively Parallel Systems

6.1. System Description

Thegoal of the PerPreT system descriptionis
to describe the underlying hardware by its
most important architectural parameters. For
the performance of a multiprocessor system,
the most important components are the com-

6.1.1. Communication M odel

The time for a node to node communication
of a message passing multiprocessor can be
divided into five phases T1,...,T5:

T1:

Setup time for the send subroutine. Thistime
is caused by the communication of the user
process with the communication unit in order
to initialize the message buffers and to trans-
fer the control of the message exchangeto the
communication unit.

Time to copy the message to the message
buffer. Thistime is only needed for systems
with asynchronous communication using
concurrently working communication units.

T3:

Message transfer time which is needed to
copy the message from sender buffer to re-
ceiver buffer.

Setup time for the receive subroutine. This
time is caused by the communication of the
user process and the communication unit.
The user process needsinformation where the
message is stored.

T5:

Time to copy the message from message
buffer to the user memory space. Thistimeis

munication units, the interconnection net-
work structure and the node processors. This
results in the parameters to describe the com-
putation and communication behavior of the
target system.

obsolete for systems which provide the com-
munication units with DMA (direct memory
access) capabilities.

P1
D T1

TS5

awiL

\/

[Program execution
[Waiting for message

Fig.6.5. Communication model for mes-
sage passing systems

As aready mentioned, depending on the sys-
tem and message passing protocol, not all of
the five phases have to be carried out. Trans-

System Description

159

puter for example use synchronous commu-
nication. In that case, the messages are direct-
ly copied from one sender user space to re-
ceiver user space. This saves phase T2 and
phase T5. The five phase model realized for
PerPreT offers enough flexibility to model
most existing message passing technologies
and protocols. Thetotal time for one commu-
nication between two processorsisthe sum of
thetimesT1,..., T5. Three of thetimesaways
are afunction of message length (T2, T3, T5)
the other two can be independent on the mes-
sage length depending on the hardware.

If afull system specification is available, the
times for T1 to T5 can be directly taken and
used for the PerPreT communication library.
Sometimes the hardware vendors do not pro-
vide the user with, or the information on the
performance of the communication system
differs from theory to real implementations,
or additional overhead is created by the user

6.1.2. Computation Model

The system model for the computational be-
havior of the nodesis based on their expected
performance for the application. PerPreT
uses the number of operations per timeunit as
measure (MIPS, Millions of instructions per
second in case of Integer based applications,
or MFLOPS, Millions of floating point oper-
ations per second in case of numerical appli-
cations). Many systems show a wide varia-
tion of the node performancefor different ap-
plications. To find the correct performance
measure for the PerPreT computation model
auser has severa options:

- Run the monoprocessor version of the pro-
gram and cal cul ate the performance for one
node.

- Look whether performance measures exist
for similar applications (vector codes, ma-

through additional software layers for the
communication (for example through using
the communication library PICL instead of
the native communication primitives). For all
these cases, some test programs and measure-
ment have to be carried out to find out formu-
laefor thetimes T1to T5.

Fig. 6.6. Communication phases using mes-
sage passing

trix codes, search codes,...) and use these
values.

- A small kernel to simulate the profile of the
application is implemented and the perfor-
mance is measured.

- Use published benchmark results for com-
parable codes.

It is clear that the accuracy of the approach
depends on the correct value for the node per-
formance estimation. For complex codes it
might be necessary to dividethem into phases
with different performance characteristics. In

160 Analytical Performance Modeling for Massively Parallel Systems

that case a phase model which is presented in
section 6.3.3. can be used.

6.1.3. System Examples

A description of the two multiprocessors
(nCUBE/2 and INTEL Paragon) that are used
to conduct the PerPreT experimentsis given
in section 4.1.2.1 and section 4.1.2.2 of this
text.

PerPreT System Description of nCUBE/2:

The PerPreT system description for the
nCUBE/2 consists of parameters for the com-
putation and communication behavior of the
system. The value for the node performance
is the only parameter that connects system
model and application model. All other pa-
rameters and formulae for system and appli-
cation description are independent. The com-
putation parameter for the application which
were modeled for the nCUBE/2 (compare
section 6.3.) was its performance of 0.43
MFLOPSfor these applications. This number
was taken for all applications from section
6.3. The paralel applications were pro-
grammed using the portable communication
library PICL [PICL90]. For the communica-
tion primitives "send" and "receive" of PICL
the following parameters were determined:

- Setup time send: 100 rreec
- Setup timereceive: 73 neec
- Link bandwidth: 1.67 MByte/s
- Bandwidth for copying message
from user space to communication
buffer: 5.35 MByte/s

PerPreT System Description of INTEL
Paragon:

The PerPreT system description for INTEL
Paragon consists of parameters for the com-
putation and communication behavior of the

system. The computation parameter for the
application which were modeled for the IN-
TEL Paragon needs some work to be deter-
mined. In contrast to NCUBE/2 the Paragon
nodes did not show a nearly constant perfor-
mance for the applications described in sec-
tion 6.3. The performance even differed for
different computing phases of one applica-
tion. The variation is between 3 and 18
MFLOPS per CPU. To find out the correct
performance number, the application was run
and computing phases including their perfor-
mance numbers were determined. These
numbers were taken for the modeling experi-
mentsin the later section. The parallel appli-
cations were programmed using the portable
communication library PICL [PICL9Q]. For
the communication primitives "send" and
"receive" of PICL the following parameters
were determined:

- Setup time send: 45 nrsec
- Setup time receive: 95 rrsec
- Link bandwidth: 40 MBytels
- Bandwidth for copying message
from user space to communication
buffer: 100 MByte/s

Application Description

161

6.2. Application Description

The applications which can be modeled by
PerPreT are parallelized using a SPMD pro-
gramming model. The SPMD programming

6.2.1. Programming M odel

Most massively paralel systems with up to
thousands of processors are realized as mes-
sage passing multiprocessors. Each processor
has fast access to its own local memory. If
data from memories of other computing
nodes are needed a data transfer via message
passing is initiated. Programs for these sys-
tems are mostly implemented using the
SPMD programming model [Ser93].

Each processor executes the same program
on different data. Data dependencies make
communication and synchronization of the
tasks necessary. The synchronization and
communication of the tasks is realized on
user level. In case of amassively parallel sys-
tem the program hasto be well structured and
the communication topology is mostly regu-
lar to avoid load imbalances and communica-
tion deadlocks.This leads to a Program Task
Graph (PTG) as shown in Fig. 6.7. SPMD
programs are characterized by a sequence of
computation and communication phases. The
circlesin Fig. 6.7. represent the computation-
a tasks, the arrows represent communication.

6.2.2. Workload M odel

Fig. 6.8. shows a mapping of the PTG of the
SPMD program from Fig. 6.7. onto 6 proces-

model and the resulting workload model are
used to built a parameterized analytical mod-
€l which represents the application.

An upper boundary for the time for acompu-
tational phase is Tepj time units (i=1,2,..,7)
and an upper boundary for the time of acom-
munication or synchronization phase is Tey;
time units (j=1,2,..,6).

O “Tem
O OO0 O O O T
Q Tera
OO OO O O T
O O O Tom
OO 0O O O O Tu
@) _Terr

O Tax
Fig. 6.7. SPMD Program Task Graph

sors. Using this mapping (and assuming there
are enough processors for the tasks of the

162 Analytical Performance Modeling for Massively Parallel Systems

computation phases), an upper boundary for
the communication time of the application
can be given:

& Tewj (Eq.6.1)
i

Also, an upper boundary for the computation
time of the application can be given:

é_. Tepi (Eq.6.2)

Adding the times of (Eq.6.1) and (Eq.6.2) re-
sultsin an upper boundary for the total execu-
tion time of the program:

é_. Tepi +é. Tewm; (Eq.6.3)

!]

® @ e
[Tcm

O [Tcpz

0@

O [Tom
O Tors

[Ters
OfTers
O [Teer

O O O
OO0 000

Fig.6.8. Mapping of an SPMD program
onto 6 processors

Experiments with measurements and valida-
tion using real applications running on real
machines show that the calculated total exe-
cution time often is very close to the upper
boundary. For more general PTGs the num-
ber of subtasks per phase is not necessarily
constant. Also, the assumption that there are
aways enough processors to distribute one

subtask of aphase on an individual processor
is not aways given. These problems result
into different mappings with different tim-
ings (T from Fig. 6.8. becomes T* in Fig.
6.9.), but they do not change the formulae for
the boundaries of communication time and
computation time. If the PTG of Fig. 6.7. is
for example mapped onto 5 processorsit will
look like:

0 ® 66 &

O [Tem
OO0 O[O O[T
O [Tors
Ol O[O0 O[T
O O O [Tw
OO0 O O

O i

Fig.6.9. Mapping of an SPMD program
onto 5 processors

The communication phases of an SPMD ap-
plication can be divided into local communi-
cations (only two or asubset of the processors
are communicating during a phase) and glo-
bal communications (all processors are com-
municating during a phase). Typica global
communications are for example:

- Broadcast: one processor sends data to all
other processors (compare phases CM 1 and
CM3inFig. 6.7.).

- Collect: al processors send datato one pro-
cessor (compare phases CM2 and CM6 in
Fig. 6.7.).

- Butterfly: al processors exchange data us-
ing a butterfly network configuration. Any
other regular network configuration type is
possible.

Application Examples

163

6.3. Application Examples

In order to validate the accuracy and useful-
ness of PerPreT, aset of case studies hasbeen
evaluated on an nCUBE/2 and on an INTEL
Paragon running several parallel kernelsfrom
a LOOP benchmark suite [LOOP94]. All
codes have been implemented using the PICL
[PICL90] communication library. Similar
kernels are also used in the Parkbench bench-
mark suite [Par94]. The execution times and
speedups of the LOOP programs are com-
pared with the predicted values using Per-
PreT. All experiments carried out on the
nCUBE/2 arereported for 1 - 128 processors,
since an 128 node nCUBE/2 is used for vali-
dation purposes. The experiments on the IN-

6.3.1. Matrix Multiplication

TEL Paragon were carried out for various
processor numbers. All curvesin the present-
ed figureswith prefix “ PerPreT* refer to Per-
PreT prediction results, while al curves with
prefix “ <hostname>“ refer to execution
times measured on the nCUBE/2 or on the
INTEL Paragon. PerPreT provides predic-
tions for execution time, communication
time, and computation time in the +10% ac-
curacy range for most cases. For a few ex-
tremecases(i.e., smal problemsizeand large
numbers of processors) the accuracy rangeis
+20%. Slowdowns, as shown in Fig. 6.22.
and in Fig. 6.23., are also predicted correctly.

6.3.1.1 PerPreT Application Description of MM

The multiplication of two matrices A*B=C s
an often used workload for benchmarking
systems. It is easy to program but still de-
manding with respect to processor perfor-
mance and memory access of the target sys-
tem. Using the parameter psize for the prob-
lem size results in the following program for
the matrices A, B, and C of size (psize x
psize):

for (i=0; i<psize; i++)
for (j=0;j<psize; j++)
for (k=0; k<psize; k++)
Cli0i] += ALIK] * BLK][]:

The number of arithmetic statements stg
which have to be executed is:

stg = 2><psize3

and thus the formula for the computation de-
scription of the sequential version of the ma-
trix multiplication is found. The parallel ver-
sion will equally distribute all arithmetic op-
erations onto al processors executing the
program (number of processors = nprocs). In
this case the PerPreT formulafor the parallel
computation of the matrix multiplication st,
is:

_ 2 Xpsi ze3

P nprocs

Besides the formula for computation a for-
mula for the description of the communica-

164 Analytical Performance Modeling for Massively Parallel Systems

tionisalso part of the PerPreT application de-
scription. This formula depends on the paral-
lelization strategy. For the matrix multiplica-
tion severa strategies are possible. The main
advantage of the parallel strategy for the ma-
trix multiplication described in Fig. 6.10. is
that during calculation of the result matrix C
no communication or synchronization is nec-

essary. Thisadvantageis paid for by an enor-
mous memory overhead since both input ma-
trices A and B are copied to the memory of al
processors in the beginning and thus have to
be stored nprocs times (nprocs = number of
processors). This is why mostly version 2
(compareFig. 6.11. and Fig. 6.12.) of the par-
allel matrix multiplication is used.

Version 1 of Parallel Matrix Multiplication:

Copy matrices A and B to all nodes and compute (index driven) the corresponding
fraction of result matrix C concurrently (Example for 4 processors):

P1 P2
A B Memory A B Memory
P3 P4
A B Memory A B Memory|

|:| input data

The result matrix C will be distributed among the processors in row blocks (the
same scheme is possible for column blocks)

Fig. 6.10. Version 1 of parallel matrix multiplication

Version 2 isexecuted in nprocs steps. In each
step the row block of A ismultiplied with the
column block of B. This submatrix multipli-
cation results in a small submatrix of result
matrix C. After the computation of the sub-
matrix a communication step is performed.
The column blocks of matrix C are sent to the
right processor neighbors using aring config-
uration. After this communication, each pro-
cessor has the next column block of B to be
able to compute the next submatrix of C. Af-
ter nprocs computing steps and (nprocs-1)
communication steps the result matrix C is
completed. The row blocks of C are equally
distributed on al processors.

Themain advantage of thisversion of the par-
alel matrix multiplication is that each matrix
hasto be stored only once and thus, the small-
est memory usage is realized. Compared to
the number of arithmetical operations that
have to be performed, the communication ef-
fort for this version is acceptable. For some
systems with DMA capability of the commu-
nication units the communication of this ver-
sion can be overlapped with the computation.

The PerPreT formulafor the parallel compu-
tation of version 2 of the matrix multiplica-
tion isthe same as for version 1:

Application Examples

165

-2 Xpsi ze3
nprocs

The PerPreT formula for the communication
of version 2 of the parallel matrix multiplica-
tionis:

. 2
bytes = typesize xpsize

npocs

The parameter bytesisthe number of bytesto
be transmitted per message, the parameter
typesize is the size of the matrix data type in
number of bytes, the function comm calcu-
lates the time for amessage transfer of length
bytes. This function is part of the PerPreT
communication library. The result of the
communication formula ct is the estimated
communication time for version 2 of the par-

allel matrix multiplication:

ct = (nprocs— 1) xcomm(bytes)

Version 2, Step la of Parallel Matrix Multiplication (Computation):

Distribute matrix A in row blocks, distribute matrix B in column blocks (each pro-
cessor gets one column block and one row block) and compute the corresponding

fraction of C concurrently (Example for 4 processors):

Computation of C

P1 P2
A B Memory A B Memory
P3 P4
A B Memory A B Memory

Version 2, Step 1b of Parallel Matrix Multiplication (Communication):

Send the column block of input matrix B to your right neighbor (assuming aring

configuration):

Communication

P1
B Memory

Memory

B Memory

P4
Memory|

D Input data

Fig. 6.11. Version 2 of parallel matrix multiplication

166

Analytical Performance Modeling for Massively Parallel Systems

Version 2, Steps 3 to nprocs of Parallel Matrix Multiplication:

Repeat steps 1a and 1b (nprocs-1) times. For the last step, no communication is
needed after computation:

Computation of C

P1 P2
A B Memory A B Memory
P3 P4
A B Memory A B Memory
Communication
P2 P4
Memory Memory
Pl P3
B Memory B B Memory B
O
O
O
Last computation step of C
P1 P2
A B Memory A B Memory
P3 P4
A B Memory A B Memory
D Input data

The result matrix C will be distributed among the processors in row blocks (the
same scheme is possible for column blocks)

Fig. 6.12. Version 2 of parallel matrix multiplication (steps 2 to nprocs-1)

Application Examples

167

6.3.1.2 Variation of Problem Size

When the PerPreT application description
and the PerPreT system description are de-
fined, experiments with varying parameters
such as problem size (psize) and number of
processors (nprocs) can be executed. Experi-
ments with varying problem size help to find
theminimal problem sizeto be used for agiv-
en number of processors. In Tab. 6.1. there-
sults for modeling version 2 of the parallel

matrix multiplication are summarized. The
system model is the INTEL Paragon as de-
scribed in section 6.1.3. In this experiment 64
processorswere model ed to execute version 2
of parallel MM with problem sizes varying
from 64 to 512. Problem size 64 means that
all three matrices A, B, and C are of size
(64x64).

Computation for Parallel Matrix Multiplication

Version 2

Processors. 64 Problem Size: 64 ... 512

System: Paragon

Speedup estimate (all timesin seconds):

PSIZE COMM COMP TOTAL SP EFF

64 0.010272 0.002074 0.012345 10.75 0.168

128 0.014626 0.015945 0.030572 33.38 0.522
256 0.032044 0.222156 0.254200 55.93 0.874
512 0.101717 1.777247 1.878965 60.54 0.946

Tab. 6.1. PerPreT result table for parallel MM on INTEL Paragon (varying psize)

All Times for 64 Processors
Timesin sec

2
1
05
0.25
0.125
0.0625
0.03125
0.01562
0.00781
0.00390

0.00195
64

Exec. Timg==

Comm. Time

omp. Time=—

128 256 512

Problemsize

Fig. 6.13. Predicted time for Version 2 of par-
allel MM on INTEL Paragon
with varying psize

For the smallest problem size of 64, Tab. 6.1.
shows poor speedup (column SP) and thus
poor efficiency (column EFF). Speedup and
efficiency are defined in section 2.2.2. Look-
ing at the time spent for communication (col-
umn COMM) and computation (column
COMP) the bad efficiency can easily be ex-
plained. The parallel MM spends more time
in communication than computation for prob-
lem size 64. The next problem size 128 shows
significantly better performance. The speed-
up (33.38) isabout half the number of proces-
sors (64) and thus, the efficiency is approxi-
mately 50%. The larger the problem size
grows the better the multiprocessor performs
for this program. In summary, the experiment
tells the user not to use too many processors
if dealing with small problem sizes.

168

Analytical Performance Modeling for Massively Parallel Systems

Or, in case of the version 2 of paralel MM,
the problem size should at |east be twice the
number of processors, if an efficiency better
than 50% is desired. For easier interpretation

6.3.1.3 Variation of Number of Processors

Running experiments with varying numbers
of processors will help the user to find out
how many processors should be used to reach
an optimum performance for agiven problem
size. For many parallel programsthe effect of
a slowdown is known which can occur if a
too many processors are used to execute a
program with asmall problem size. It will be
discussed in the next section (modeling of the
Conjugate Gradient Method). The results in
Tab. 6.2. clearly show that the parallel MM
program speeds up to a number of 256 pro-
cessors for problem size 256.

All Times for Problemsize 256
Timesin sec
16
4
1 Exec. Timg==
0.25
0.0625 Comp. Time==
Comm. Time
0.0156
0.0039
1 2 4 8 16 32 64 128 256
Processors
Fig. 6.14. Predicted time for Version 2 of
parallel MM on INTEL Paragon

The curves for execution, communication
and computation timein Fig. 6.14. show that
the communication time slowly increases

of theresult tables, PerPreT offersagraphical
output feature. Fig. 6.13. shows the execu-
tion, communication, and computation time
curvesof Tab. 6.1.

with the number of processors and that it
crosses the curve for computation time at ap-
proximately 256 processors. When the curve
of the communication timeis above the curve
of the computation time the resulting effi-
ciency is less than 50%. Using modeling
techniques such as PerPreT alows efficient
use of multiprocessors undergoing the time
consuming task of implementing and measur-

Application Examples 169

ing different problem sizes and numbers of

processors.
Computation for Parallel Matrix Multiplication
Version 2
Processors: 1...256 Problem Size: 256
System: Paragon
Speedup estimate (all timesin seconds):
P COMM COMP TOTAL SP EFF
1 0.000000 14.217980 14.217980 1.00 1.000
2 0.011936 7.108990 7.120926 2.00 0.998
4 0.018115 3.554495 3.572610 3.98 0.995
8 0.021624 1.777247 1.798871 7.90 0.988
16 0.024218 0.888624 0.912842 15.58 0.973
32 0.027196 0.444312 0.471508 30.15 0.942
64 0.032044 0.222156 0.254200 55.93 0.874
128 0.041189 0.111078 0.152267 93.38 0.729
256 0.059201 0.055539 0.114740 |123.91 0.484
Tab. 6.2. PerPreT result table for parallel MM on INTEL Paragon (varying nprocs)

6.3.1.4 Validation of the PerPreT Formulae

The PerPreT system description of the
NCUBE/2 and the INTEL Paragon and the |paraijed MM. 1 to 128 Pr OCESSOr's:
application description of the parallel matrix '
multiplication derived in the previous sec-
tions are relatively simple. The question aris-

es whether the resuilts using these models are i iggj ig'ggg :g'ggi :8'(5)?

accurate enough. 8 | 10204 | 10125 | 0079 | 079
16 5361 | 5216 | 0144|277
32 2941 | 2774 | 0166 6.01
64 1735 | 1503 | 0.141 | 890

128 1141 | 1160 | -0.019 |-1.67

P mod exp Dsec , D%
1 78.033 | 77.963 | 0.069 | 0.09

Tab. 6.3. Validation of parallel MM using 1 to
128 processors on NCUBE/2

To validate the approach the results from
modeling are compared with the execution
times of the real applications on the real sys-
tems. Tab. 6.3. and Fig. 6.15. show theresults

170 Analytical Performance Modeling for Massively Parallel Systems

for the nCUBE/2 system. The accuracy of the
prediction is always better than + 10%.

Parallel MM, 1 to 64 processors:

P mod exp , Dsec, D%
1 14217 | 14.182 0.035] 0.25
2 7.120 7.162 | -0.041 [-0.58
4 3572 359 [-0.021 (-0.61
8 1.798 1.811 | -0.013 [-0.72
16 0.912 0.901 0.011 | 1.23
32 0471 0.439 0.031 | 7.17
64 0.254 0.251 0.002 | 1.01

Tab. 6.4. Vaidation of parallel MM using 1 to
64 processors on INTEL Paragon

The results for the validation on the INTEL
Paragon are in the same range. For this algo-
rithm the INTEL Paragon was approximately
five times faster (unoptimized code) for the
single processor version.

Exec. Timein sec
128
64
32
16 PerPreT —
8
4
Exp.
2
1
1 2 4 8 16 32 64 128
Processors
Fig. 6.15. Comparison of actual and predicted
execution times of parallel MM
for psize = 256 on nCUBE/2

The predicted execution times show an accu-
racy better than £ 10% (compare Tab. 6.4.
and Fig. 6.15.). More experiments with dif-
ferent problem sizes and numbers of proces-

sors (compare Appendix-C and [Bre98])
proved that the PerPreT application and sys-
tem description alows to accurately predict
execution and communication time of the
parallel matrix multiplication.

If the difference between predicted time and
real execution timeisworsethan 10% thefol-
lowing criteria should be checked:

- Is the problem size chosen large enough
(very small execution times of less than 1
msec do not make sense)?

- Is there a memory hierarchy problem
(cacheinfluence)?

- Arethe application and system modelsfine
enough, or do they have to be refined?

Exec. Timein sec
16

N
8l N

4 PerPreT a=

Exp.
0.5

2!
0 5L 2 4 8 16 32 64

Processors
Fig. 6.16. Comparison of actual and predicted

execution times of parallel MM
for psize = 256 on INTEL Paragon

Application Examples

171

6.3.2. Conjugate Gradient Method

The parallel matrix multiplication from the
previous section is a relatively simple algo-
rithm. To show that the PerPreT approach can
aso be used for complex codes, further ex-
periments for the Conjugate Gradient and for
the Shallow Water Code have been carried

out. In recent years, the conjugate gradient
method for the solution of equation systems
A*x=b (Aismatrix, x and b are vectors)

has become popular again. These methods
are also better suited for SPMD programs
than solvers based on Gaussian Elimination.

6.3.2.1 PerPreT Application Description of CG

The basic agorithm consists of amatrix vec-

tor product and several scalar products. The

PTG of Fig. 6.17. shows an SPMD version of

a Conjugate Gradient (CG) Method. N repre-

sents the problem size and P represents the

number of alocated processors. The circles
contain the number of floating point opera-
tions performed by the specific subtask. The
values at the arcs represent the number of
data items that have to be transmitted during
acommunication. If acircleisempty, then no
floating point operations have to be per-
formed. The computation phases (CPi) and
the communication phases (CMi) of the CG-

SPMD program are:

CP1: Distributed computation of a scalar-
vector product. 2N/P statements are
executed per processor.

CM1: Global collect of a distributed vector.
Each processor sends N/P data items.

CP2: No computation is involved.

CM2: Global broadcast of the collected vec-

tor. One processor sends N data items

to each processor.

Distributed computation of a matrix

vector product (2N?/P statements) and

ascalar product (2N/P statements).

CM3: Global sum. Each processor sends one

dataitem.

Global sum built by one processor.

CP3:

CP4:

Tep
Temt

Tepe

Temz

Tems
Tepa

Tema

Ters
Tems

Tcrs

Teme

1
next iteration
©oo Tep

Fig. 6.17. PTG for parallel CG Method

172 Analytical Performance Modeling for Massively Parallel Systems

CM4: Global sum. The processor that per-
formed the sum in phase CP4 sendsthe
sum to every other processor.
Computation of two scalar-vector
products (2N/P statements) and one
scalar product (2N/P statements) per
processor resulting in a total of 6N/P
Statements.

CM5, CP6, CP4: same as CM3, CP4, and

CM4, respectively.

CP5:

For the CG-SPMD program, several global
broadcast operations (CM2, CM4, CM6) and
global collect operations (CM1, CM3, CM5)

have to be performed with different message
lengths. The PerPreT communication library
contains routines that return the predicted
communication times Tgy; for i=1,..,6
(simple_bcast and simple_collect). The rou-
tines require the number of bytes to be trans-
ferred as an input parameter. They also have
access to the global parameters nprocs (num-
ber of processors = P) and psize (problem size
=N). TYPE is an indicator of the data type to
be able to determine the number of bytes per
dataitem.

Data Distribution for Parallel Conjugate Gradient Method:

Matrix A isdistributed in row blocks, all vectors are distributed in blocks

ﬂ E P1 — P2
A X b Memory A X b Memory
H E P3 = . P4
X b Memory A X b Memory|

A
|:| input data

’—‘ result data

Fig. 6.18. Data distribution for parallel CG Method

Version 1: PerPreT Communication Description of CG-Simple:

Since the matrix data are distributed among
al processors (compare Fig. 6.18.), the mul-
tiplying vector hasto be copied and distribut-
ed. To build this vector, the routine
simple_collect is used (phase CM1 in Fig.
6.17.). To distribute the vector, the routine
simple bcast is used (phase CM2 in Fig.
6.17.). Based on the above and the PTG
shown in Fig. 6.17., the following communi-
cation description formula of the CG-SPMD

program is used by PerPreT (the notation is
derived from the C programming language):

bytesl = sizeof(TYPE) * psize,

bytes2 = sizeof(TYPE) * psize/nprocs,
bytes3 = sizeof(TYPE);

comm_time += simple_bcast(bytesl);
comm_time+= 2* simple_bcast(bytes3);
comm_time += simple_collect(bytes2);
comm_time += 2* simple_collect(bytes3);

Application Examples

173

Version 2: PerPreT Communication De-
scription of CG-Tree:

The broadcast and collect operations are the
most time consuming communications for
the parallel CG-Methods. Thisiswhy besides
the simple broadcast routines more efficient
broadcast routines were implemented and
modeled using PerPreT. The prefix tree of the
tree_collect and tree_bcast routinesindicates
that a treelike topology is used to perform
these communication operations. A more de-
tailed description of the PerPreT communica-
tion routines can befound in appendix-C. The
same routines are used to collect (CM3 and
CM5 in Fig. 6.17.) and distribute (CM4 and
CM6in Fig. 6.17.) the global sum of the sca-
lar products. The only difference between
communication phases CM3/CM5 and
CM4/CM6 is the amount of data to be trans-
ferred (parameters bytesl, bytes2, and bytes3
in the formula given below). Thus, the com-
munication description of CG-Treeis:

bytesl = sizeof(TYPE) * psize;

bytes2 = sizeof(TYPE) * psize/ nprocs,
bytes3 = sizeof(TYPE);

comm_time += tree_bcast(bytesl);
comm _time += 2 * tree_bcast(bytes3);
comm_time += tree_collect(bytes2);
comm_time += 2 * tree_collect(bytes3);

The two different versions of the conjugate
gradient method (CG-Tree and CG-Simple)

6.3.2.2 Variation of Number of Processors

The results of atypical PerPreT experiment
aresummarized in Tab. 6.5. The psize param-
eter was set to 1024, the number of proces-
sorsvaried from 1 to 512, the system descrip-
tion used was the INTEL Paragon, the appli-
cation description used was the CG-Method

are used to find the number of processors
where a treelike topology outperforms plain
broadcast/collect routines (compare Fig.
6.22. and Fig. 6.23.).

PerPreT Computation Description of the
Parallel CG-Methods:

Oneiteration of the examined CG-method in-
volves two dotproducts, three scalar vector
operations, and one matrix vector product.
The calculation of one dotproduct requires
2*psize floating point operations, the calcula-
tion of the scalar vector operations require
2*psize floating point operations each, and
the calculation of the matrix vector product
requires 2*psize? floating point operations.
The number of floating point operations per
processor for one iteration of the parallel CG
Method is:

(10 xpsize + 2 xpsi zez)
nprocs

+ 2 xnprocs

The measured and predicted results for prob-
lem size 512 are presented in Fig. 6.22. and in
Fig. 6.23. The experiments included other
problem sizesaswell and consistently exhibit
a good match between predicted and mea-
sured values.The predicted execution times
show an accuracy better than + 10%.

with communication using treelike topolo-
gies.

Each row of the table is the result of one ex-
periment. The result table includes five col-
umns, thefirst column containsthe number of
processors, the second column the communi-
cation time (derived by the communication

174

Analytical Performance Modeling for Massively Parallel Systems

description), the third column the computa-
tion time (derived by the computation de-
scription), the fourth column the estimated
total execution time in seconds and the last
column the expected speedup.

After defining both, the PerPreT application
description and the PerPreT system descrip-
tion (compare section 6.1.), experiments to
predict the runtime, speedup and efficiency
of the parallel application can be carried out.

The PerPreT graphical representation of this
experiment is shown in Fig. 6.2. The default
scale for both axes is logarithmic. Execution

and computation times decrease with increas-
ing processor number. The communication
timeincreases asthe number of allocated pro-
cessors increases. Between 64 and 128 pro-
cessors the curves for communication time
and computation time cross. After this point
the execution time curve does not significant-
ly decrease. In this case, the user may con-
clude that adding more processors will not
significantly improve the execution time.
Thisintersection point also indicates the 50%
efficiency threshold. Beyond this point, more
than half of the execution timeisattributed to
communication.

Compuitation for Conjugate Gradient CG

Communication for Tree Broadcast

Processors: 1...512 Problem Size: 1024

System: Paragon

Speedup estimate (all timesin seconds):

P COMM COMP TOTAL SP
1 0.000000 0.771938 0.771938 1.00
2 0.000789 0.385969 0.386758 2.00
4 0.002285 0.192984 0.195269 3.95
8 0.003781 0.096492 0.100273 7.70
16 0.005277 0.048246 0.053523 14.42
32 0.006773 0.024123 0.030896 24.90
64 0.008268 0.012061 0.020330 37.97
128 0.009764 0.006030 0.015795 48.87
256 0.011260 0.003015 0.014276 54.07
512 0.012756 0.001507 0.014264 54.12

Tab. 6.5. PerPreT result table for modeling a parallel CG Method on Paragon

In Fig. 6.3. the same experiment is presented
with problem size 4096 instead of 1024. In
this example, the execution time continues to
significantly improve for the entire processor
alocation range. For 512 processors, the
communication time and the computation
time have reached similar values. This im-
pliesthat for problem size 4096 the CG-Tree
agorithm scaleswell up to 512 processors on
the INTEL Paragon.

Since CG-Tree and CG-Simple only differ in
calls to communication routines, the compu-

tation description for PerPreT is the same.
For higher numbers of allocated processors,
the CG-Simple workload shows significantly
worse performance. Thisis due to the ineffi-
cient broadcast and collect operations. Using
more than 32 processors, actually resultsin a
slowdown for CG-Simple on both systems
(seeFig. 6.22. and Fig. 6.23.)

Application Examples

175

AE Timesin Seconds

0.5
0.25
0.125
0.0625
0.0312

Exec. Time=

0.0156 Comp. Tim

0.0080 Comm. Time

0.0040

0.0020

0.0010

0.0005

1 2 4 8 16 32 64 128 256 512
Processors

Fig. 6.19. All times plot of CG-Tree with psize
1024 on INTEL Paragon.

All Timesin Seconds
16

Exec. Time=

0.25
0.063 Comp. Time=
0.016 Comm. Time
0.004
0.001 2 4 8 16 32 64 128 256 512

Processors

Fig. 6.20. All times plot of CG-Tree with psize
4096 on INTEL Paragon.

6.3.2.3 Variation of Problem Size

For another type of experiment, it isalso pos-
sible to fix the number of processors and cal-
culate the speedup over a range of problem
sizes. The resulting table for 512 processors
and problem sizes varying from 512 to 16384
is illustrated in Tab. 6.6., and graphically
shown in Fig. 6.21. The first column in Tab.
6.6. contains the problem size (PSZ), the rest
of the columns are self explanatory. The re-
sult of each experiment is summarized in two
rows. The first row contains the execution
time on one processor for the considered
problem size. The second row contains the
times and speedup for 512 processors.

As mentioned before, this type of experiment
may help the user to decide on the minimum
problem size for efficient use on a given (or
constrained) number of allocated processors.
For instance, Fig. 6.21. indicates that given
512 processors, a problem size of at least
4096 is needed to make efficient use of the
system. For smaller problem sizes, a smaller
processor partition would seem more appro-
priate.

All Timesin Secs. for 512 Processors

1
0.25
0.063 Exec. Time=—
0.016
Comm. Time
Comp. Time=,
0.004
0.001
512 1024 2048 4096 819216384
Problem Size

Fig. 6.21. All times plot of CG-Tree (512
processors, varying psize)
on INTEL Paragon

176 Analytical Performance Modeling for Massively Parallel Systems

Computation for Conjugate Gradient CG

Communication for Tree Broadcast

Processors: 512 Problem Size:512...16384

System: Paragon

Speedup estimate (all timesin seconds):

PSIZE

512 MONO Processor execution time.: 0.180685

1024 MONO processor execution time.: 0.771938

2048 MONO processor execution time.: 3.080252

4096 MoNo Processor execution time.: 12.306004

8192 MONO Processor execution time.: 49.194010

16384 mono processor executiontime.: 196.716026

PSIZE COMM COMP TOTAL SP
512 0.01061 0.00035 0.01096 16.48
1024 0.01275 0.00150 0.01426 54.12
2048 0.01594 0.00601 0.02195 140.27
4096 0.02133 0.02403 0.04536 271.25
8192 0.03108 0.09608 0.12716 386.86
16384 0.04870 0.38421 0.43291 454.39

Tab. 6.6. Output Table for CG-Tree (varying psize, 512 processors) on Paragon

6.3.24 Validation

The two parallel versions of the Conjugate
Gradient Method were implemented on the
INTEL Paragon and the nCUBE/2 using

Parallel CG-Simple, 1 to 128 processors:
P mod exp Dsec , D%

PICL. The execution times for varying num-

bers of processors were compared with the ; g'?tg(s) ‘21'3‘71‘21 8‘838 8‘22
times predicted by PerPreT using the applica- 4 1243 1232 | 0010 | 0.89
tion model from the previous section and the 8 0:642 O: 634 0:008 1:39
system models described in section 6.1.3. 16 0.360 0351 | 0008 | 251
The results of the validation experiments for 32 0.252 0.242 | 0.010 | 4.16
nCUBE/2 with problem size 1024 are sum- 64 0.263 0252 [0.011 | 4.41
marized in Tab. 6.7. and Tab. 6.8., theresults 128 0.3% 0383 | 0012 | 337
for this problem size are graphicaly dis- | Tah, 6.7. Vaidation of pardlel CG-Simple on
played in Fig. 6.22. The accuracy of the pre- NCUBE/2 (psize = 1024)

diction is aways better than + 10%.

Application Examples

177

Parallel CG-Tree, 1to 128 processors:

P mod exp Dsec , D%
1 4.900 4.874 0.026 | 0.55
2 2.464 2.442 0.021 | 0.87
4 1.245 1.232 0.013 | 1.06
8 0.640 0.640 | -0.000 |-0.01
16 0.341 0.344 | -0.003 |-1.09
32 0.195 0.201 | -0.005 |-2.95
64 0.125 0.132 | -0.007 |-5.34
128 0.094 0.102 | -0.007 |-7.60

Tab. 6.8. Vdidation of parallel CG-Tree on
nCUBE/2 (psize = 1024)

Exec. Timein Sconds

PerPreT CG-Treem

05 NCUBE CG-Tree—

0.25 .
PerPreT CG-Simple=
0.125| NCUBE CG-Simple

0.0625,

2 4 8 16 32
Processors

64 128

Fig. 6.22. Comparison of actual and predicted
execution times of CG-Methods for
psize = 1024 on an nCUBE/2

The results of the validation experiments for
INTEL Paragon with problem size 1024 are
summarized in Tab. 6.9. and Tab. 6.10., the
results for this problem size are graphically
displayed in Fig. 6.23. The accuracy of the
prediction isaways better than + 10% except
one measurement (64 processors) with avery
small execution time.

Exec. Timein Seconds

05
PerPreT CG-Treem
0.25 Paragon CG-Tree—
0.125
0.0625| PerPreT CG-Simple—
Paragon CG-Simple i}
N
0.03125 T = i 8 6 32 64
Processors

Fig. 6.23. Comparison of actual and predicted
execution times of CG-Methods for
psize =512 on an INTEL Paragon

Parallel CG-Simple, 1 to 64 processors:

P mod exp Dsec , D%
1 0.771 0.758 0.013 | 1.73
2 0.387 0.381 | 0.006 | 1.66
4 0.195 0.192 0.003 | 1.67
8 0.101 0.099 | 0.001 | 1.59
16 0.057 0.051 | 0.001 | 2.82
32 0.041 0.040 | 0.001 | 3.81
64 0.046 0.046 | -0.000 |-0.19

Tab. 6.9. Validation of paralel CG-Simple on
INTEL Paragon (psize = 1024)

Parallel CG-Tree, 1to 64 processors:

P mod exp Dsec , D%
1 0.771 0.758 0.013 | 1.73
2 0.386 0.381 | 0.005 | 1.48
4 0.194 0.192 0.001 | 0.89
8 0.098 0.099 | -0.000 |-0.64
16 0.050 0.052 | -0.002 |-3.81
32 0.027 0.029 | -0.002 |-8.91
64 0.015 0.019 | -0.001 [-12.6

Tab. 6.10.Validation of parallel CG-Tree on
INTEL Paragon (psize = 1024)

178 Analytical Performance Modeling for Massively Parallel Systems

6.3.3. Shallow Water Code (PSTSWM)

PSTSWM is a message passing parallel pro-
gram that solves the nonlinear shallow water
equations on arotating sphere using the spec-
tral transform method. The programisusedin
the context of global climate modeling calcu-
lations. PSTSWM isan interesting case study
in modeling for many reasons. It has numer-
ousdistinct phases, each with its own compu-
tation and communication rates and patterns.
It has (static) load imbalances that change
with the choice of parallel algorithm and log-
ical processor mesh. It requires significant
global communication during each timestep,
divided into two collective operationsthat ac-
cessthe processors in different ways. Finaly,
PSTSWM is a representative member of an
important class of simulation models. The
goal of the following studies (see aso
[Bre98]) isto show that it is possible to build
PerPreT models that are accurate enough to
indicate which parallel agorithm is most ef-
ficient for a given problem size and number
of processors on a given multiprocessor.

PSTSWM iswritten in Fortran 77 with VMS
extensions and a small number of C prepro-
cessor directives. Message passing is imple-
mented using MPI [MPI94], PICL [PICL90],
PVM [PVM94], or native message-passing
libraries, with the choice being made at com-
piletime. Optional performance instrumenta-
tion isimplemented using the PICL trace and
profile collection interface. PICL wasused in
the work described here, to collect perfor-
mance data, but PICL simply represents a
thin layer over the native NX message pass-
ing on the Paragon.

The shallow water equations in the form
solved by the spectral transform method de-
scribe the time evolution of three state vari-
ables: vorticity, divergence, and a perturba-
tion from an average geopotentia . The veloc-
ities are computed from these variables.

PSTSWM advances the solution fields in a
sequence of timesteps. During each timestep,
the state variables of the problem are trans-
formed between the physical domain, where
the physical forces are calculated, and the
spectral domain, where the terms of the dif-
ferentia equation are evaluated. The physical
domain for a given vertical level is a tensor
product longitude-latitude grid. The spectral
domain for a given vertical level is the set of
spectral coefficients in a truncated spherical
harmonic expansion of the state variables.

Transforming from physical coordinates to
spectral coordinates involves performing a
real fast Fourier transform (FFT) for each line
of constant latitude, followed by integration
over latitude using Gaussian quadrature (ap-
proximating the Legendre transform (L T)) to
obtain the spectral coefficients. The inverse
transformation involves evaluating sums of
spectral harmonics and inverse real FFTs.
The basic outline of each timestep is de-
scribed as follows:

1. Evaluate non linear product and forc-
ing terms.

2. Compute forward Fourier transform of
non-linear terms.

3. Compute forward Legendre trans-
forms.

4. Advance in time the spectral coeffi-
cientsfor the state variables.

5. Evaluate sums of spectral harmonics,
simultaneously calculating the horizon-
tal velocities from the updated state
variables.

6. Compute inverse Fourier transform of
state variables and velocities.

Application Examples

179

For more details on the steps in solving the
shallow water equations using the spectral
transform algorithm see [Hac92]. The paral-
lel agorithmsin PSTSWM are based on de-
compositions of the physical and spectral
computational domainsover alogical two-di-
mensional processor mesh of size PX x PY.
Initially, thelongitude dimension of the phys-
ical domain is decomposed over the proces-
sor mesh row dimension and the latitude di-
mension is decomposed over the column di-
mension. Thus, FFTs in different processor
rows are independent, and each row of PX
processors collaborates in computing a
"block" of FFTs.

Similarly, the Legendre transforms in differ-
ent processor columns are independent, and
each column of PY processors collaboratesin
computing a"block" of Legendre transforms.
The computation of the nonlinear terms at a
given location on the physica grid is inde-
pendent of that at other locations. The spec-
tral domain decomposition is a function of
the parallel algorithm used. In the version of
PSTSWM used for modeling experiments, all
computations on the spectral "grid" are like-
wiseindependent. Parallel efficiency isdeter-
mined solely by the efficiency of the parallel
agorithms used for the FFT and LT trans-
forms and by any load imbalances caused by
the choice of domain decomposition.

Two classes of parallel agorithms are avail-
able for each transform: distributed algo-
rithms, using a fixed data decomposition and
computing results where they are assigned,
and transpose algorithms, remapping the do-
mainsto allow thetransformsto be calculated
sequentialy. These represent four classes of
parallel agorithms: distributed FFT/distrib-
uted LT, transpose FFT/distributed LT, dis-
tributed FFT/transpose LT, and transpose
FFT/transpose LT. PSTSWM provides many
parallel algorithms for each of the parallel a-
gorithm classes [Wor92a]. These experi-
ments are restricted to one transpose algo-
rithm (for both FFT and LT), one distributed
FFT agorithm, and two distributed LT algo-
rithms, comprising the best parallel algo-

rithms on the INTEL Paragon. These ago-
rithms are briefly described below.

- Transpose:

Assume that the transpose agorithm in-
volves Q processors and that each proces-
sor contains D data to be transposed. Then
every processor sends approximately D/Q
data to every other processor, for atotal of
Q(Q) messages and a total per processor
volume of Q(D).

- Distributed FFT:
Assume that the distributed FFT algorithm
involves Q processors and that each proces-
sor contains D datato be transformed. Then
each processor exchanges D/2 datawith its
neighborsinalogical (log, Q)-dimensional
hypercube, for atotal of Q(log Q) messages
and atotal per processor volume of Q(D log

Q)

- Distributed L T:

Assume that the LT is parallelized over Q
processors and that each processor will
contain D spectra coefficients when the
transform is complete. Then the per proces-
sor communication costs for the two dis-
tributed LT algorithms can be characterized
by

- Q(Q) messages, Q(DQ) total volume

- Q(log Q) messages, Q(DQ) total vol-
ume

respectively. The Q(Q)-step agorithm
works on a logica ring, each processor
communicating only with its two neigh-
bors. The Q(log Q)-step algorithm uses the
same communication pattern as the distrib-
uted FFT algorithm.

These parallel algorithmsfor the FFT and LT
generate the six paralel agorithms for the
spectral transform method listed in Tab. 6.11.

There are many implementation variants pos-
sible for each of these algorithms, distin-
guished, for example, by the choice of com-
munication protocol and the mapping of 1og-
ical processors to physical processors. For

180 Analytical Performance Modeling for Massively Parallel Systems

these experiments, thoseimplementations are
used that have proven most efficient on the

INTEL Paragon. For details on the different
implementation options, see [Wor92a].

DH: distributed FFT / Q(logQ)-step distributed LT
DR: distributed FFT / Q(Q)-step distributed LT
DT: distributed FFT / transpose LT
TH: transpose FFT / Q(logQ)-step distributed LT
TR: transpose FFT / Q(Q)-step distributed LT
TT: transpose FFT / transpose LT

Tab. 6.11.Candidate PSTSWM parallel algorithms

6.3.3.1 PerPreT Application Description of PSTSWM

Assume that communication costs are negli-
gible or scale linearly with the computation
costs. Assume further that the computation
rate varies in the same way across al ago-
rithms as a function of the number of proces-
sors and of the problem size. Then a simple
computational complexity analysis is suffi-
cient to choose between the alternative paral-
lel algorithms. If these assumptions do not
hold or if runtime estimates are also needed,
then it must be determined both, the compu-
tation and communication costsfor arange of
numbers of processors and of problem sizes.

Earlier research showed that different logical
phases of a code may need to be modeled in-
dividually [Wal92]. Each phase has its own
computation rate, depending on the amount
of computation and the amount and pattern of
memory accesses. As the number of proces-
sors and problem size change, the percentage
of time spent in each phase changes. This
changes the overall computation rate. In the
following, models for important phases are
identified and constructed. For brevity, only
the phase modelsfor agorithm TH (transpose
FFT / Q(logQ)-step distributed LT) are pre-
sented.

Parameters

As mentioned before, PerPreT expects one
formulafor the computation and one formula
for the communication behavior of an appli-
cation as input. These formulae use the num-
ber of processors and the problem size as pa-
rameters. For PSTSWM, the problem is spec-
ified by 8 parameters (to describe the physi-
cal grid and the number of timesteps to be
executed): DT, TAUE, MM, NN, KK,
NLAT, NLON, NVER, and specification of
initial dataand forcing function. The dataand
forcing function specification is fixed in
these experiments and the following perfor-
mance models are specific to the particular

test casel, representing the calculation of sol-
id body rotation steady state flow [Wor92a].
DT isthelength of thetimestep and TAUE is
the duration of the model run in simulated
time. Thus, TAUE/DT is the number of
timesteps in the simulation. For these experi-
ments the number of timestepsisfixed at 108.
MM, NN, and KK determine which spectral

1. Most of the other test cases differ only in calculation of
the nonlinear terms, and only one phase model would
need to be changed when changing cases.

Application Examples

181

coefficients are generated. The common
choice of MM = NN=KK is used, which im-
plies that MM +1 Fourier coefficients are re-
tained from the Fourier transform and
(MM+1)(MM+2)/2 spectral coefficients are
used in the spectral representation. NLAT,
NL ON, and NVER define the tensor-product
physical grid of size NLONXNLATXNVER.
Thesevaluesare dso afunction of MM when
the computational complexity is minimized
subject to satisfying an anti-aliasing condi-
tion. The number of processors used is speci-
fied by the logical processor mesh PXxPY.

The costs associated with each phase of
PSTSWM are functions of the domain de-
composition relevant to the phase. There are
two decompositions of the physical domain
(longitude x latitude x vertical levels):

e NLLON P,NLLAT_P,andNLVER_P,
denoting the number of local longitudes,
latitudes, and vertical levelsassignedtoa
given processor during physical domain
computations,

e NLLON F,NLLAT_F,and
NLVER_F, denoting the number of local
longitudes, latitudes, and vertical levels
assigned to a given processor during the
Fourier transform phases,

and one decomposition of the Fourier domain
(wavenumber X latitude X vertical levels):

¢ NLMM_S NLLAT_S andNLVER_S,
denoting the number of local wavenum-
bers, latitudes, and vertical levels as-
signed to a given processor during the
Legendre transform phases,

and one decomposition of the spectral do-
main (spectral coefficientsx vertical levels):

e NLSP_S,NCSP_S, and NLVER_S, de-
noting the number of spectral coefficients
assigned to asingle processor and to a
single column of processors, respectively,
during computations in the spectral do-
main.

The values for these 11 parameters are func-
tions of MM, NN, KK, NLAT, NLON,
NVER, PX, PY, and the parallel agorithm
being used. The values for parallel algorithm
TH are asfollows:

NLLON_P =éNLON/PX{
NLLAT_P =2&ILAT/2PYU
NLVER P =NVER

NLLON_F =NLON

NLLAT_F =2&ILAT/2PYU
NLVER_F = é&\VER/PXu
NLMM_ S =MM+1
NLLAT_S =2&ILAT/2PYU
NLVER_S = é&\VER/PXu
NCSP S = (MM+2)(MM+1)/2
NLSP. S =NCSP_S

These are maximum values across all pro-
cesses, and load imbalance enters via the
floor and ceiling functionsin the expressions.
The load imbalance varies with logical grid
aspect ratio and parallel agorithm, and be-
tween the different computational domains.

Computation Model

PerPreT requires a simple algebraic expres-
sion for the number of arithmetic statements
executed by each processor. If this number
varies for different processors, the maximum
is used. To implement different models for
different phases, a separate algebraic expres-
sion is generated for each phase. The compu-
tation model for the entire program is a
weighted sum of the phase expressions,
where the weights are the computation rates
associated with the different phases.

Phases are included which involve only
copying. In parallel codes, copying is often a
significant cost. For example, for the trans-
pose-based parallel algorithms the indices of
the field arrays must be in a different order
for the transposition than for the computa-
tion. Thisrequiresan explicit copy beforeand
after the communication phases. The phase
computation modelsin Tab. 6.12. for parallel
agorithm TH were derived from the source

182 Analytical Performance Modeling for Massively Parallel Systems

code and are of two types: number of floating
point computations and number of bytes cop-
ied. For the purposes of these experiments,
simple model s that an industrious application
developer would be willing to generate are
used. Some phases are interleaved in time
even for asingle timestep, and a given phase
model represents the sum of al cals to the
relevant code during one time step. Later it
will be examined whether this number of
phases is necessary or sufficient. The phase
models come in two forms. one-parameter

(single rate) and two-parameter models. All
of the phases show some performance sensi-
tivity to problem size and aspect ratio, but
many of the computational phases are rela-
tively insensitive and a single rate is suffi-
cient. (Accuracy issuesare examined in detail
in section 6.3.3.3) The variations in Tab.
6.12. between different phases arise from dif-
ferent access patterns to and from memory,
and from differing amounts of computation
per memory access.

Phase| Model Rate
physical domain computation (Va, 1/b)

1 | 12xNLLON_P xNLLAT_P xNLVER_P 4.8
forward FFT

2 | gPX-1)/PXux32 xNLLAT_P xNLVER_P x(a+ b>NLLON_P) (45,23.1)

3 | €PX-1)/PXux32 xNLLAT_P xNLVER_F x(a + b>NLLON_F) (17.7,21.6)

5 | 20 xNLLAT_F xNLVER_F xNLLON_F x(a + bxog,(NL L ON_F/4)) (3.8,24.0)

6 | 64 xNLLAT_F xNLVER_F x(a+ b>NLLON_F/4) (4.0,15.2)

7 | 144 xNLLAT_F xNLVER_F x(a + b>NLLON_F/4) (10.4,19.8)
forward LT

9 | (PY-1) x6 xNLVER_SxNCSP_S/PY 4.4

10 | 61 xNLVER_S*NLMM_SxNLLAT_S 10.0

11 | (14 xNLLAT_S-1) XNCSP_SxNLVER_S 15.1

spectral domain computation
12 | 13xNLSP_SxNLVER_S 115
inverse LT

13 | 17 xNCSP_SxNLVER_S 7.0

14 | (14 *xNCSP_S+ 10 xNLMM_S) xNLLAT_SxNLVER_S 12.8

17 | 40 xNLLAT_F xNLVER_F x(a+ bXNLLON_F/2 - NLMM_S)) (22.1, 36.8)
inverse FFT

18 | 70 XNLLAT_F xNLVER_F x(a + b>NLLON_F/4) (8.8, 20.9)

19 | 40 xNLLAT_F xNLVER_F x(a+ b;NLLON_F/2) (2.8, 18.6)

20 | (25/2) xNLLAT_F xNLVER_F xNL LON_F x(a+b*og,(NL L ON_F/4)) (3.8,24.0)

21 | §PX-1)/PXux20 xXNLLAT_F xNLVER_F xNLLON_F 10.2

22 | §PX-1)/PXUux20 xXNLLAT_F xNLLON_P x(@PX + b>NLVER_P) (15.2,18.6)

Tab. 6.12.Computational models and MFLOP/s or MByte/s rates for algorithm TH

In contrast, rates for phases with low compu-
tation to memory access ratios, like copy
phases, vary significantly with aspect ratio
and problem size. With afew exceptions, this
variation is approximated reasonably well
with the following two-parameter model: a

rate for the total number of operations and a
rate for the number of times that the inner
loop is executed. The form of these models
was derived empirically, but onejustification
isthat it takesinto account the additional cost

Application Examples

183

of crossing cache and page boundaries when
accessing memory.

The phases requiring two-parameter models
and the rates for all models were determined
empirically. Timings were taken from a se-
ries of 8-processor runs using two different
problem sizes, 32 hit precision, and al possi-
ble aspect ratios (1x8, 2x4, 4x2, 8x1). For
one-parameter models, the maximum ob-
served rates are used. This avoids contamina-
tion from atypical rates arising from ineffi-
cient memory alignments or poor cache per-
formance. For the two-parameter models,
typical or median values are used, giving
preference to rates for the smaller problem
when there is a significant discrepancy. The
intent is to better capture the behavior when
extrapolating to larger numbers of proces-
sors. If arate for aphase showed variation but
could not be accurately fit with the type of
two-parameter models described above, a
one-parameter model is used.

Interactions with the memory hierarchy are
major determiners of computation and copy
rates, and these change in a phase asthe prob-

lem and algorithm parameters vary. Even
one-parameter phase models that are highly
accurate for the 8-processor calibration runs
will bevalid only for arange of problem and
machine parameters. Consequently, there
will be errorsin the rates when extrapolating,
and scalability will be a problem even in a
phase model approach. Algebraic modelsthat
take into account memory access patterns are
possible, but such models are unlikely to be
developed by an application programmer and
are not discussed here. The hope is that the
range of validity of the rates is large enough
or that the degradation affects all phasesin a
similar enough way that the algorithm com-
parisons will be reasonably accurate.

Communication Model

PerPreT requires a high-level description of
the communication in aparallel program. For
PSTSWM, communication models are re-
quired for the two parallel FFT and for the
three parallel LT algorithms. The detailed
models are given in Tab. 6.13.

Direction Model

Distributed FFT
forward EPX-1)/PXUx(1 + logy(PX)) xcomm(32 xNLLAT_P xNLVER_P x&NL L ON_P/20
inverse EPX-1)/PXUx(1 + logy(PX)) xcomm(20 xNLLAT_P xNLVER_P x&NL L ON_P/20

Transpose FFT
forward (PX-1) xcomm(32 xNLLAT_P xNLVER_F xNLLON_P)
inverse (PX-1) xcomm(20 xNLLAT_P xNLVER_F xNLLON_P)

Q(Q)-step distributed LT
forward (PY-1) xcomm(24 xNLVER_S xNLSP_S)
inverse (PY-1) xcomm(24 xNLVER_S xNLSP_S)
Q(logQ)-step distributed LT
forward 2 !°g) xcomm(8 xé3 xNLVER_S xNCSP_S/2/()
inverse =1
Transpose LT
forward (PY-1) xcomm(64 xNLLAT_F xNLVER_SxNLMM _S)
inverse (PY-1) xcomm(40 xNLLAT_F xNLVER_SxNLMM_S)
Tab. 6.13. Communication models for forward and inverse transforms

184 Analytical Performance Modeling for Massively Parallel Systems

The comm(mess_length) function in Tab.
6.13. returnsthe time needed for one commu-
nication between two processors of the multi-
processor. The parameter mess_length is the
message length in bytes. Contention for
bandwidth and other network resources and
distance in the network are ignored in these
experiments. The models are parameterized
solely by the number of messages and by the
size of each message for a given processor.

Note that the nature of the communication
varies significantly between the different al-
gorithms. The distributed FFT and Q(logQ)-
step distributed LT use a butterfly pattern in
their communication. In the transpose ago-
rithm, each processor sends to every other
processor, using an exclusive-OR ordering to
avoid some contention. In the Q(Q)-step dis-
tributed LT, each processor sends and re-
ceives from only two other processors, and
thetwo processors are chosen to be neighbors

in the physical network if possible. The
Q(Q)-step distributed LT aso attempts to
overlap the communication with computa-
tion. None of these differences are taken into
account in these models, although they could
be, and it is also examined whether more de-
tailed models are needed. More detailed mod-
els of the communication cost are known to
be necessary if poor communication algo-
rithms or protocols are used. For example, a
transpose algorithm in which al processors
send to processor 0, then processor 1, etc., se-
rializes the communication, and the maxi-
mum per processor number of messages and
message volume will not represent the com-
munication cost. The goal of the algorithm
comparison is to compare good paralel im-
plementations with the hope that more de-
tailed communication models are not neces-
sary.

6.3.3.2 Variation of Problem Size and Processors

The performance models described in the
previous sections are meant to be simple
enough to be generated by the application de-
veloper, yet accurate enough to be used when
scaling problem and machine parameters and
when comparing dternative paralel ago-
rithms. The approach taken here has been to
construct the application model from a set of
phase models.

After the application description in terms of
computation and communication model is
available, experiments with varying proces-
sor configurations and different input data
sets are carried out. To give an impression of
the form of experiments which are possible,
Tab. 6.14. shows a result table for modeling
PSTSWM with PerPreT. The goal of this ex-

periment was to find out how the PSTSWM
application scales for a given input data set
considering different topologies.

Application Examples

185

PerPreT results table for modeling PSTSWM for algorithm with TR communica-
tion (transpose FFT, ring LT), problem size set T85:
Procs. Comm. Time | Comp. Time Exec. Time SP EFF
1 0.000000 | 3208.571642 3208.571642 1.00 1.000
b 1x2 7.013710 | 1615.251173 1622.264883 1.98 0.989
2x2 20.114473 894.499153 914.613626 351 0.877
b x4 10.571524 818.590939 829.162463 3.87 0.967
8x1 14.703656 49.480176 464.183831 6.91 0.864
4x2 4.288521 448.906889 463.195410 6.93 0.866
b 1x8 12.439284 420.259845 432.699129 7.42 0.927
16x1 8.217158 228.054713 236.271871 13.58 0.849
b 8x2 8.360842 226.110757 234.471598 13.68 0.855
ax4 9.012488 227.194782 236.207270 13.58 0.849
1x16 13.554605 221.094298 234.648903 13.67 0.855
b 16x2 4.802086 114.712691 119.514777 26.85 0.839
8x4 5.235494 114.426047 119.661542 26.81 0.838
4x8 6.464724 116.338485 122.803210 26.13 0.816
2x16 9.104625 121.406345 130.510969 24.58 0.768
1x32 14.475145 121.511524 135.986669 23.59 0.737
32x2 5.415319 110.523854 115.939173 27.67 0.432
b 16x4 3.140260 58.041680 61.181940 52.44 0.819
8x8 3.763308 58.583571 62.346878 51.46 0.804
4x16 5.372283 60.910336 66.282619 4841 0.756
2x32 8.771674 66.185360 74.957034 42.81 0.669
1x64 15.778748 71.721114 87.499862 36.67 0.573
64x2 6.447695 108.729346 115.177041 27.86 0.218
32x4 3.688796 55.947261 59.636058 53.80 0.420
32x4 3.688796 55.947261 59.636058 53.80 0.420
b 16x8 2.399950 29.706113 32.106064 99.94 0.781
8x16 3.208654 30.662332 33.870986 94.73 0.740
4x32 5.188942 33.196262 38.385204 83.59 0.653
2x64 9.389745 38.575356 47.965101 66.89 0.523
1x128 18.061229 71.733334 89.794563 35.73 0.279
Tab. 6.14. PerPreT result table for modeling PSTSWM on Paragon

186 Analytical Performance Modeling for Massively Parallel Systems

Each row of Tab. 6.14. represents the model
resultsfor one run of the PSTSWM program.

- Thefirst column of Tab. 6.14. contains the
number of processors used for the experi-
ment and their configuration (mesh). For a
given number of processorslarger than one,
several configurations are possible. Eight
processors e. g. can be configured as 8x1,
2x4, 4x2, or 1x8 mesh. The highest execu-
tion time for aconfiguration is marked with
the letter w (worst) and the lowest execu-
tion time is marked with the letter b (best).

- The second column contains the estimated
communication time.

- The third column contains the estimated
computation time.

- The fourth column contains the estimated
total execution time of the program.

- Taking the estimated execution time on one
processor and the estimated execution time
on nprocs processors, the speedup can be
calculated in column five.

- Dividing the speedup by nprocs results in
the efficiency in column six.

Six different versions of the PSTSWM code
(compare Tab. 6.11.) are modeled with two
input data sets each and processor numbers
varying from 1 to 128 processors are mod-
eled. Using PerPreT, 12 experiments (each
agorithm with two input data sets) haveto be
carried out . Thetimeto run aPerPreT exper-
iment is approximately five seconds.

Estimated worst Speedup for PSTSWM
Speedup
128
Ideal Speedup
64
32
16
8
4
2 Est. worst Speedup for distributed FFTs
Est. worst Speedup for transpose FFTs
1
1 2 4 8 16 32 64 128
Processors
Fig. 6.24. Worst speedups for PSTSWM implementations

If these experiments are carried out using the
implementation of PSTSWM on the real ma-
chine, 12* 36=432 instrumented runswith ex-
ecution times between 3200 seconds and sev-

eral seconds would be necessary. All ago-
rithms show good speedup behavior for the
best topology for each number of processors.
These tables also indicate that a non optimal

Application Examples

187

topology will result in high losses of efficien-
cy. Fig. 6.24. summarizes the speedup behav-
ior of the six PSTSWM algorithms for the
choosing the topol ogies with the longest exe-
cution times. In contrast to the almost linear
speedups of the optima topologies, the

6.3.3.3 Validation

After the result tables with the predicted
timesare produced it isimportant to know the
accuracy of the individual algorithm models.
Then the models are used to investigate the
following performance questions:

1. What is the best logical aspect ratio to
use for a given paralel agorithm and
for agiven number of processors?

2. What is the best parallel agorithm to
use for agiven number of processors?

3. How long will the application take to
complete arun?

Two problem sizes are investigated, denoted
by T42 and T85:

, T42 |, T85
MM 2 85
NN 42 85
KK 64 85
NLAT | 128 | 128
NLON | 128 | 256
NVER 16 16

Tab. 6.15.Problem size parameters for
PSTSWM

For the three performance questions, P=
8,16,32,64,128,256,512 are discussed. The
optimal logical aspect ratio is determined for
each parallel algorithm. The optimal parallel
algorithms are determined over all agorithms
and aspect ratios. The estimation of runtimes
is discussed in terms of the optimal parallel
agorithms. Finally, the models are reexam-

speedups only reach approximately 16 for
transpose FFTs and 32 for distributed FFTs
for 128 processors.

ined, evaluating the effectiveness and impor-
tance of the phase model approach in being
able to answer the stated performance ques-
tions.

Optimal aspect ratio

Thefirst performance question of interest for
PSTSWM is how to allocate processors
among the different parallel transforms to
minimize execution time, i.e.,, for a given
number of processors, what logical aspect ra-
tio should be used. The relative accuracy of
the execution time predictions is important
here, not the absol ute accuracy. Tab. 6.16.de-
scribes the true and predicted optimum for
different numbers of processors when they
differ, and the percentage loss from using the
model results. Thelossismeasured in thefol-
lowing way. Let PRED represent the predict-
ed optimal aspect ratio. Let OPT represent
the true optimal aspect ratio. The percentage
lossis defined as:

100 x(predictedtime —truetime)
truetime

Only 17 of the 84 model predictions are in-
correct, and only 4 of theseresult in errorsin
runtime of more than 5%. Performance on the
Paragon is very consistent, but there is some
small variation between runs. The 7 casesin
whichthe"error" islessthan 1% should prob-
ably be considered correct

188 Analytical Performance Modeling for Massively Parallel Systems

T42 T85
model | experimental| %error in model | experi menta{ Y%error in
Procs. results results runtime results results runtime
DH (3 errors)
32 4x8 2x16 0.5 4x8 4x8 -
512 16x32 32x16 8.5 16x32 32x16 0.2
DR (2 errors)
32 1x32 4x8 12 1x32 1x32 -
512 16x32 32x16 16.8 32x16 32x16 -
DT (no errors)
TH (2 errors)
32 | 16x2 | 8x4 | 02 || 84 | 16x2 | 0.3
TR (4 errors)
16 1x16 4x4 54 1x16 1x16 -
32 16x2 8x4 23 8x4 4x8 0.2
64 16x4 16x4 - 16x4 8x8 0.3
TT (6 errors)
16 61x1 16x1 - 16x1 1x16 5.6
32 1x32 4x8 44 1x32 1x32 -
64 16x4 8x8 2.6 16x4 8x8 34
128 16x8 8x16 0.9 16x8 8x16 25
Tab. 6.16.Error in choosing optimal ratio from model results
Tab. 6.17.-Tab. 6.19. areexamplesfor valida-
tion tables of the TR algorithm (compare Tab. 8 Processor's:
6.11.). The predicted execution times (col- "
umn two of the tables) is compared withthe |Procs , mod , exp , Dsec, D%
execution time of the real application running 8 [464.183 [482.253 (-18.069 |-3.75

4x2 | 463.195 | 474.175 |-10.979 (-2.32
2x4 | 466.374 | 476.592 (-10.217 |-2.14
1x8 | 432.699 | 413.238 | 19.461 | 4.71

onthe INTEL Paragon system. Asin the pre-

vious examples an accuracy which is mostly

better than + 10% can be observed.

Tab. 6.17.Validation of PSTSWM (TR-T85)
using 8 processors

64 Processors: 128 Processors:
Procs. mod exp , Dsec, D% Procs. | mod exp , Dsec, D%
64 | 226.144 | 226.451 | -0.306 |-0.14 128 | 227.550 | 227.255 0.295] 0.13

32x2 115.939 | 114.010 1.929 | 1.69 64x2 115.177 | 112.501 2676 | 2.38

16x4 61.181 58.206 2975 | 511 32x4 59.636 56.740 2.896 | 5.10

8x8 62.346 58.012 4334 | 747 16x8 32.106 29.958 2148 | 7.17

4x 16 66.282 61.562 4720 | 7.67 8x 16 33.870 | 31.504 2.366 | 7.51

2x32 74.957 70.744 4.213 | 5.96 4x 32 38.385 | 36.742 1.643 | 447

1x64 87.499 | 84.818 2681 | 3.16 2x64 47.965 | 47.693 0.272 | 0.57
1x128 no experimental data available

Tab. 6.18.Vdidation of PSTSWM (TR-T85) Tab. 6.19.Vdidation of PSTSWM (TR-T85)
using 64 processors using 128 processors

Application Examples

189

What isnot indicated in Tab. 6.16. ishow im-
portant it isto choose agood aspect ratio. The
worst case aspect ratios are as much as ten
times worse than the best case, primarily re-
flecting load imbalance.

Determining agood logical aspect ratioisim-
portant when implementing a parallel strate-
gy. A parallel code could incorporate the
flexibility to change at | east some of these pa-
rameters a compile-time or runtime, in
which case PerPreT simply makes this more
convenient to determine. This convenience
should not be underestimated. Determining
the optimal aspect ratio experimentally re-
quires access to the same number of proces-
sors as will be used in a production run and
numerous, possibly expensive, experiments.

Optimal parallel algorithm

Determining the optimal parallel agorithm
experimentally requires developing, tuning,
and evauating multiple parallel implementa-
tions. This is much more time consuming
than determining the optimal aspect ratio ex-
perimentally, and there is much to be gained
from using performance modelsto predict the
optimal paralel agorithm. As before, rela

tive accuracy in the predicted execution times
isimportant. Tab. 6.20.indicates the true and
predicted optimal parallel agorithm for dif-
ferent numbers of processors, and the per-
centage loss from using the model-identified
algorithm, measured as in (4). The optimal
aspect ratio was found for each parallel ago-
rithm before being compared with the other
parallel agorithms. The model results use the
model-determined optimal aspect ratios. The
empirical results use the experimentally-de-
termined optimal aspect ratios.

The performance models correctly identify
the optimal algorithm and aspect ratio in sev-
en out of fourteen cases, and the correct algo-
rithm (if not the optimal aspect ratio) in ten of
the cases. The error in misidentifying the op-
timal algorithm was acceptable, especialy
for the "scaling” examples, P>8. The perfor-
mance sensitivity of choosing the wrong al-
gorithm (but with an optimum aspect ratio) is
not as extreme as when choosing the aspect
ratio, but worst case errors range as high as
85%. Note that when considering a larger
sampling of interesting problem sizes, al of
the parallel agorithms are optimal in some
cases. It isnot possible to eliminate any of the
parallel algorithmsa priori.

T42 T85
model experimental | %diff. in model experimental %diff in
Procs. optimum optimum runtime || optimum optimum runtime
8 DR 1x8 DR 1x8 DT 1x8 DR 1x8 6.2
16 DT 1x16 DT 1x16 DT 1x16 DR 1x16 1.8
32 TR 8x4 TR 8x4 TR 16x2 TR 4x8 15
64 TR 16x4 TR 16x4 TR 16x4 TR 8x8 0.3
128 TH 16x8 TR 16x8 11 TT 16x8 TT 8x16 25
256 TH 16x16| TT 16x16 37 TT 16x16| TT 16x16 -
512 TH 16x32| TH 16x32 TT 16x32| TT 16x32 -
Tab. 6.20. Error in choosing optimal ag. from model results instead of experimentally

190

Analytical Performance Modeling for Massively Parallel Systems

Runtime predictions

When allocating resources, it is important to
know how long a parallel job will take to run
on a given number of processors. For exam-
ple, runtime information is often required
when submitting batch requests. This type of
prediction requires a certain degree of abso-
lute accuracy, but the degree needed is not
great. (However, accurate predictions of runt-
ime can be extremely important in real-time
environments). Tab. 6.21. indicates how ac-

curately the models predict the runtime for
the model-determined "optimal" parallel a-
gorithms (to pick particular examples). The
percentage error is measured as in (4). With
possibly one exception, the accuracy of these
predictions is adequate for the determination
of resource requirements. Note that similar
accuracies hold for predicted speedup and
parallel efficiency.

T42 T85
predicted | %error in predicted | %errorin
Procs. algorithm runtime [prediction || algorithm runtime | prediction
8 DR 1x8 79.8 -1.6 DT 1x8 426.6 -28
16 DT 1x16 40.9 -6.6 DT 1x16 206.9 -84
32 TR 8x4 23.0 22 TR 16x2 118.6 0.7
64 TR 16x4 12.2 17 TR 16x4 60.6 4.3
128 TH 16x8 6.7 -54 TT 16x8 31.6 45
256 TH 16x16 4.0 -111 TT 16x16 16.8 1.8
512 TH 16x32 2.6 -278 TT 16x32 9.7 -58
Tab. 6.21. Error in predicting runtimes (seconds)

M odel accuracy requirements

The previous results indicate that the accura-
cy of the phase model approach is adequate
for agorithm tuning and comparison for this
case study. Next it is discussed whether a
simpler model might also suffice. There are
numerous ways to simplify the current mod-
el. Here, only afew obvious aternatives are
considered. Firgt, the optimal agorithm is
chosen on the basis of arithmetic complexity
aone, ignoring copy phases, communication
costs, and phase-dependent rates. (Including
copy and communication complexity would

require some sort of rate estimation to weight
the different components of the model.)

Tab. 6.22. indicatesthe true and predicted op-
timal parallel algorithmsusing thissimplified
model, and the percentage loss from using the
model-identified algorithm. These predic-
tions are not as good as those from using a
phase model. Depending on the application,
the size of these errors may or may not be ac-
ceptable. But, sincetheerror in the prediction
is not known in practice, the wide and unpre-
dictable variation in the error is worrisome.

Application Examples 191
T42 T85
model experimental | %diff. in model experimental %diff. in
Procs. optimum optimum runtime || optimum optimum runtime
8 DT 1x8 DR 1x8 6.6 DT 1x8 DR 1x8 6.3
16 DT 1x16 DT 1x16 - DT 1x16 DR 1x16 18
32 DT 2x16 TR 8x4 17.3 DT 2x16 TR 4x8 10.9
64 DT 4x16 TR 16x4 22.3 TT 16x4 TR 8x8 7.5
128 TT 16x8 TR 16x8 2.7 TT 16x8 TT 8x16 25
256 TT 16x16| TT 16x16 - TT 16x16| TT 16x14 -
512 TR 16x32| TH 16x32 45.1 TT 16x32] TT 16x37 -
Tab. 6.22. Error in choosing optimal agorithm from complexity
analysisinstead of experimentally

Runtimes cannot be predicted from the com-
plexity analysis alone. The next models con-
sidered use the sustained computation rate for
an 8-processor run for a given parallel ago-
rithm to weight the corresponding arithmetic
complexity model. Unlike for the phase mod-
els, a separate rate was determined for each
problem size. Tab. 6.23. indicates how accu-
rately these models predict the runtime for

the above model-determined "optimal" paral-
lel algorithms. For this type of model to be
accurate reguires that either copy and com-
munication costs are negligible or they scale
similarly with the computation costs, and that
the rates are insensitive to scaling. It is clear
from Tab. 6.23. that these conditions do not
hold for PSTSWM.

T42 T85

predicted | %error in predicted | %errorin

Procs. algorithm runtime [prediction || algorithm runtime | prediction
16 DT 1x16 41.2 -6.3 DT 1x16 205.3 -9.1
32 DT 2x16 20.8 -211 DT 2x16 103.3 -20.9
64 DT 4x16 10.6 -274 TT 16x4 50.6 -18.6
128 TT 16x8 55 -230 TT 16x8 25.7 -151
256 TT 16x16 30 -320 TT 16x16 131 -20.8
512 TR 16x32 16 -56.1 TT 16x32 6.9 -331

Tab. 6.23. Error in predicting runtime (seconds) using complexity based model

Our final simplified mode! includestermsfor
computation, copy, and communication
costs, but does not take into account phase-
specific rates. Instead average copy and com-
putation rates determined from the 8-proces-
sor runs are used. As before, different rates
are used for each parallel algorithm and prob-

lem size. Tab. 6.24. indicates how accurately
this type of single-phase model predicts the
runtime for the phase model "optimal" paral-
lel agorithms (to alow direct comparison
with the phase model results). With the ex-
ception of predictionsfor T42 for large num-
bers of processors, the single-phase model is

192 Analytical Performance Modeling for Massively Parallel Systems

as accurate a predictor of runtime as is the
(multiple-) phase model. So the question aris-
es whether a phase model is required aslong
as the copy, computation, and communica-
tion costs are included in the model. A phase
model does not appear to be required for ac-
curate performance prediction for PSTSWM.
However, the act of constructing the phase
model was necessary. The error prone aspect
of the phase model approach was in the gen-
eration of the phase model expressions.
These same expressions are needed in asin-

gle-phase model (or in a complexity analy-
sis). The additional step of calculating rates
and validating the individual phase models
also validates the expressions. Modeling
phases can also identify performance "prob-
lems', for example, code that is overly sensi-
tive to aspect ratio due to compiler peculiari-
ties. Using average rates and a single-phase
model removes the necessity of detailed pro-
filing to determine individual phase model
rates, but makes it more difficult to validate
the model.

T42 T85

predicted | %error in predicted | %errorin

Procs. algorithm runtime [prediction || algorithm runtime | prediction
8 DR 1x8 79.8 -16 DT 1x8 426.6 -2.8
16 DT 1x16 40.9 -6.6 DT 1x16 206.9 -84
32 TR 8x4 23.0 22 TR 16x2 118.6 0.7
64 TR 16x4 12.2 17 TR 16x4 60.6 4.3
128 TH 16x8 6.7 -54 TT 16x8 31.6 45
256 TH 16x16 4.0 -111 TT 16x16 16.8 18
512 TH 16x32 2.6 -278 TT 16x32 9.7 -5.8

Tab. 6.24. Error in predicting runtime (seconds) using single phase model

Summary PerPreT

193

‘ Real System based ‘

‘ Benchmarking ‘

‘ Low level (hw)
‘ Kernels
‘ Applications
‘ Suitess

6.4. Summary PerPreT

For performance modeling with deterministic
modeling techniques as described in this sec-
tion, the system load or the system architec-
ture, or both, are represented through a mod-
el.

Workload System
Model | > Model
Workload System
Real Real

Fig. 6.25. Performance modeling

Deterministic models to analyze the perfor-
mance of systems are cheaper and more effi-
cient than performance measurement, be-
cause the implementation of parallel work-
loads and the monitoring of the workload

Performance Ana

Model based

S
| Sochasic |
‘ A
r Simulation || Analyt. System
‘ Queueing Theory ‘ nula ‘ M)(l)de?\(ng
Petri Nets
workload model Perpre

execution on multiprocessors is a time con-
suming task.

Any representation of reality through models
is an abstraction of reality and thus, suffersa
loss of accuracy. The more detailed and the
more complex a model is, the smaller these
losses might be. It is important to make rea-
sonable assumptions regarding the structure
and detail of the models. The art of modeling
isto find the perfect trade-off between need-
ed accuracy and degree of abstraction.

In contrast to the stochastic modeling tech-
niques presented in the previous section, Per-
PreT includes a detailed, scalable, parame-
trized modeling of the workload. The work-
load description is also independent of the
system description and vice versa. Thus, each
workload description and each system de-
scription can be combined to run perfor-
mance prediction experiments. Since prob-
lem size and numbers of processors used to
execute the workload are parametersin both,
the workload and system description, series
of experiments with varying processor num-

194 Analytical Performance Modeling for Massively Parallel Systems

ber or varying problem sizes can be carried
out for one workload model and one system
model.

In terms of efficiency, the experiments can
help to find:

- the optimal aspect ratio of a processor con-
figuration,

- theoptimal processor topology for an appli-
cation,

- the optimal parall€lization strategy,

- the optimal number of processorsfor agiv-
en problem size,

- the optimal problem size for a given num-
ber of processors.

For the system designer, PerPreT can be help-
ful to:

- identify system bottlenecks,

- determine optimal system parameters (such
as setup times, bandwidth, arithmetic per-
formance) for given workloads

- build fictive systems by varying the system
parameters and evaluate their behavior.

Additionally, PerPreT descriptions of work-
loads combined with PerPreT system de-
scriptions can be used as benchmarksto com-
pare systems facing particular workloads.

In summary, PerPreT isatool to tune parallel
applications and compare systems. Unlike
some other modeling techniques, PerPreT
can also be used for massively paralel sys
tems running complex real applications.

The graphical user interface and its graphical
output features make is easy to use. A de-
scription of the PerPreT software is given in
the next section.

— fnformation about xPerPreT r -

er Performance Prediction Tool for XWindows
rel (Version 1.1, last update in May 1998)

For copies of the actual version of this prograrmm
and further information please contact:

Dr. Juergen Brehm

Institut fuer Rechnerstrukiuren und Belriebssysteme
Lange Laube 3

30159 Hannover

Germany

) 9

Phone:
[+49) (0) 511 =762 - 9734

D;

Email
brehm@irb uni-hannover de

World Wide Web
http:favew uni-hannover.def~brehm

P

(Quit)

7. The Per PreT Software

This section describes the PerPreT software tions running on message passing multipro-
which can be used to execute performance cessor systems. The software is freely avail-
prediction experiments for parallel applica= able by contacting the address given above.

PerPreT |

R Performance Prediction Tool
(Ver 1.1 for XWindowsiXView 3.0+)

[Institut fuer
Fechnerstrukturen
und Betriehssysteme

1
fannwer
A

Application System
Description: Description: Experiments:

(Change Computation) {[Change Computation) (warying Processor Number)

{Change Communication) { Change Communication J { Varying Problemsize)]

Load Current Compare Data:

Exnple:_ Exanple:
euan
Matrix Mutiplication Compare Phases:

Current Comments:

Application Computation Computation for hatrix Hukjpication
Application Commurication: Communication for hatrix Mukiplcation
System Computation: Parallel_arix_ultiplication_on_Paragon
System Communication: Paragon

Fig. 7.1.PerPreT main window

PerPreT is implemented using the C-Pro- a C-Compiler. PerPreT can be executed in
gramming language [Ker88] and can thusbe ASCII mode using menus. If an X-Windows
run on any hardware platform equipped with environment with XView libraries is avail-

196

The PerPreT Software

able, the graphical user interface of PerPreT
makes it easier to run experiments using dif-
ferent application and system descriptions.

Starting PerPreT opens the main windows as
shown in Fig. 7.1. This window reflects the
PerPreT structure and modules which are Ap-
plication Description, System Description,
Run Experiments, Compare Data, and Com-
pare Phases. Each of these modulesisimple-
mented through one or more subwindows de-
scribed in the rest of this section. Additional-
ly, PerPreT includes aset of example applica-
tions (Conjugate Gradient, FFT, Matrix
Multiplication, Red-Black Relaxation,
PSTSWM) and example system descriptions
(nCUBE/2, INTEL Paragon).

Application Description 197
7.1. Application Description
7.1.1. Computation Description (without phases) plstin

Following the SPMD programming model as
described in the previous section, the compu-
tation description of an application for Per-
PreT can be derived calculating the sum for
the number of statements which have to be
executed. The term statements may refer to
arithmetic statements for numerical applica-

tions, to instructions, or to transactions for
data base applications. If in a computation
phase of the SPMD application the number of
statements to be executed differs for some
processors, the maximum number istaken for
the PerPreT formula.

— Application:

Application

hange Computation Formula r

Computation Formula:

Computation Filename: application/stataments.comp,

Current Formula:

time = st / 1flop

st += (S+d_p_sized*2*d_p_size/d_n_procs+2*d_n_procs;

Current Comment: Computation for Conjugate Gradient

New Formula:

s
time = st 7 1f1

£ += (5+d_p_size)*2*d_p_size/d_n_procs+2*d_n_procs;
op;

New Comment: Computation for Conjugate Cradient

Fig. 7.2. PerPreT application computation description window

The PerPreT application computation de-
scription subwindow is shown in Fig. 7.2. It
can be activated using the Change Computa-

tion button of the PerPreT main window. The
application description files are stored in a
subdirectory application of the PerPreT main

198

The PerPreT Software

directory, the default filename for the appli-
cation computation description is state-
ments.comp.

The upper part of the window showsthe com-
putation description formula. It is expressed
in C-program statements. The variables st
(for number of statements), d_p_size (for
problem size), d_n_procs (for number of pro-
cessors), time (for time in seconds) and Iflop
(for node performance) are of data type dou-
ble and predeclared in the PerPreT environ-
ment. The variables st and time are result
variables for the experiment output and ini-
tiglized with the value zero, the variables
d_p_size, d_n_procs, and Iflop are runtime
variables and predefined for every experi-
ment.

To form avalid PerPreT formulato describe
the computation behavior of an application, a
sequence of C-statements containing the pre-
defined variablesis used. It is possible to de-

7.1.2. Computation Description (with phases)

Complex applications like the PSTSWM
code might consist of several computation
phases with significantly different perfor-
mance for the target node. If these phases are
of different weight for the execution time and
if these phases do not scale equivalent with
the problem size parameters, using a mean
value to describe the system computation
performance is not enough to achieve accu-
rate predictions. In that case, it is possible to
use morethan asingle variableto describethe
computation performance for a given prob-
lem size. The two-dimensiona data array
mflop[index] [phase] is a predefined variable
of type double which may be used to store
performance measures. Thisdata array is au-

clare additional variables if necessary. As a
result of the computation description formu-
la, the variable st should contain the total
number of statements that have to be execut-
ed and the variable time is the value of the
variable st divided by the value of the vari-
ablelflop. The derivation of thelflop valueis
described in section 7.3.1.

The PerPreT application computation de-
scriptionsfor all examples (Conjugate Gradi-
ent, FFT, Matrix Multiplication, Red-Black
Relaxation, PSTSWM) are automatically
|oaded with the examples.

The lower part of the subwindow shown in
Fig. 7.2. can be used to change existing de-
scriptions to new descriptions and store them
using new filenames or to overwrite existing
descriptions. Each description can be
equipped with a comment which is also
stored in the description file.

Application
Description:

Change Computation
Change Communication

tomatically initialized using the system com-
putation description (compare section 7.3.2.).
Fig. 7.3. shows a small fraction of the
PSTSWM computation description. The Per-
PreT predefined variables st and time are
used as before, the variable flop contains dif-
ferent values for different computation phas-
esand isthusinitialized for each phase using
the mflop data array.

Application Description

199

/* calculate RHS */

st *= TIME_STEP; Iflop = mflop[pc][i]; pc++;
time += st/ Iflop;

/* sequential forward FFT - phase 5 */

/* cost of first step of sequential forward block fft */

Iflop = mflop[pc][i]; pc++; time += st / Iflop;

st=NLLON_PHY * NLLAT_PHY * NLVER_PHY * 12;

st=(8* NLLAT_FOU * NLVER_FOU * NLLON_FOU/4 * 10);

st *= TIME_STEP; Iflop = mflop[pc][i]; pct++; time += st/ Iflop;

/* cost of remaining steps of sequential forward block fft */

st=(8* NLLAT_FOU * NLVER_FOU * NLLON_FOU/4 * Id (int_nlon/4) *10);

Fig. 7.3. Extract of PSTSWM computation description

st *=TIME_STEP;

7.1.3. Communication Description

The communication phases of an SPMD pro-
gram result in the PerPreT communication
description. The PerPreT communication li-
brary offers several functions to estimate the
timing of typical communication patterns.
The communication library functions use the
PerPreT system description to calculate the
time estimates. For communications which
involve all processors, the runtime parameter
number of processors is used by these func-
tions. The currently implemented communi-
cation functions are:

communicate

The function communicate(bytes) calculates
the timing of a node to node communication.
The parameter bytes is used for al functions
of the PerPreT communication library. It con-
tains the amount of data which has to be
transferred from sender node to receiver
node. The result of the function communi-

Application
Description:

Change Computation
Change Communication

cate(bytes) is the estimated time in seconds
for a communication of length bytes from
sender node to receiver node.

exchange

The function exchange(bytes) calculates the
timing of a node to node data exchange. A
pair of nodes send and receive the same
amount of data (message length is given by
parameter bytes) from each other. The result
of the function exchange(bytes) is the esti-
mated time in seconds for this operation.

simple_bcast

The function simple_bcast(bytes) calculates
thetiming of abroadcast operation. One node
sends a message of length bytes to al other
nodes. The function simple bcast(bytes)
mimics a simple broadcast scheme which as-
sumes that the sender node sends the messag-
es sequentially to al receiver nodes. The re-

200

The PerPreT Software

sult of the function simple_bcast(bytes) isthe
estimated time in seconds for this operation.

simple_collect

The function simple_collect(bytes) calculates
the timing of a collect operation. All nodes
send a message to one target node. The func-
tion simple_collect(bytes) mimics a simple
collect scheme which assumes that the target
node sequentially receives the message from
all sender nodes. The result of the function
simple_collect(bytes) is the estimated time in
seconds for this operation.

tree bcast

The function tree_bcast(bytes) calculates the
timing of a broadcast operation. One node
sends a message of length bytes to al other
nodes. The function tree_bcast(bytes) mim-
ics a broadcast scheme which assumes that
the sender node starts sending the messages
using a binary tree topology. In a binary
broadcast tree, each node waits until a mes-
sage arrives from its father node and then
sends the message to its two son nodes. Com-
pared with the simple bcast function, the
number of steps for the broadcast operation
decreases from O(nprocs) to O(ld(nprocs)),
with nprocs = number of processors. There-
sult of the function tree_bcast(bytes) is the
estimated time in seconds for this operation.

tree_collect

The function tree_collect(bytes) calculates
the timing of a collect operation. All nodes
send a message to one target node. The func-
tion tree collect(bytes) mimics a collect
scheme which assumes that the messages are
sent to the target node using a binary tree to-
pology. In a binary collect tree, each node
waitsuntil it getsthe messages of itstwo sons
and then sends to message to its father. The
target node is the root of the binary tree. The
result of the function tree_collect(bytes) is
the estimated time in seconds for this opera-
tion.

butterfly

The function butterfly(bytes) calculates the
timing for a data exchange of messages with
length bytes between all processors. The
function butterfly(bytes) assumes a message
exchange using a butterfly network topology.
The result of the function butterfly(bytes) is
the estimated time in seconds for this opera-
tion.

The PerPreT application communication de-
scription subwindow is shown in Fig. 7.4. It
can be activated using the Change Communi-
cation button of the PerPreT main window.
The application description files are stored in
a subdirectory application of the PerPreT
main directory, the default filename for the
application communication description is
statements.comm.

The upper part of the window showsthe com-
munication description formula It is ex-
pressed in C-program statements. The vari-
ables bytes (for message lengths in number of
bytes), d p_size (for problem size),
d_n_procs (for number of processors), and
comm _time (for time in seconds) are of data
type double and predeclared in the PerPreT
environment. The variable comm time is a
result variable for the experiment output and
initialized with the value zero, the variables
d_p_size and d_n_procs are runtime vari-
ables and predefined for every experiment.

To form avalid PerPreT formula to describe
the communication behavior of an applica-
tion, a sequence of C-statements containing
the predefined variables and the functions of
the PerPreT communication library are used.
It is possible to declare additional variablesif
necessary. At the end, the variable
comm _time should contain the estimated ex-

Application Description

201

ecution time for the communication opera-
tions for the experiment.

Application Communication Formula:

Communication Filename: application/staterments.comm,

[Application: Change Communication Formula

Current Formula:

comm_time += tree_bcast(d_p_size*data_type_sizel;
comm_time += tree_bcast(data_type_size);

comm_time += tree_hcast{data_type_sizel;

comm_time += tree_collect(d_p_size*data_type_sizel;
comm_time += tree_collect(data_type_size);
comm_time += tree_collect(data_type_sizel;

Current Comment: CG — Communication for Tree Broadcast

New Formula:

comm_time +

tree_hcastid_p_size*data_type_size);
comm_time i

tree_bcast(data_type_size):
tree_bcast{data_type sizel;

<omm_time H
comm_time tree_collect(d_p_size*data_type_sizel;
comm_time += tree_collect(data_type_size);

comm_time += tree_collect(data_type_sizel;

New Comment: CG — Communication for Tree Broadecast

Fig. 7.4. PerPreT application communication description window

The PerPreT application communication de-
scriptionsfor all examples (Conjugate Gradi-
ent, FFT, Matrix Multiplication, Red-Black
Relaxation, PSTSWM) are automatically
|oaded with the examples.

The lower part of the subwindow shown in
Fig. 7.4. can be used to change existing de-
scriptions to new descriptions and store them
using new filenames or to overwrite exiting
descriptions. Each description can be
equipped with a comment which is also
stored in the description file.

202

The PerPreT Software

7.2. Application Examples

The PerPreT software package includes ap-
plication descriptions for aset of example ap-
plications (Conjugate Gradient, FFT, Matrix
Multiplication, Red-Black Relaxation,
PSTSWM). The two versions of the Conju-
gate Gradient algorithm and the Matrix Mul-
tiplication algorithm are explained in sections
6.3.2. and 6.3.1. respectively. The Red-Black

Load
Example:

Gauss Seidel Relaxation agorithm is ex-
plained in section 4.2.2.4 and the different
versions of the PSTSWM algorithms are de-
scribed in section 6.3.3.1. The FFT agorithm
is a simple paralel two-dimensional Fast
Fourier transformation with butterfly com-
munication pattern.

Load

Example:
CC_SIMPLE
Matrix Multiplication

FFT
RELAX

SwC >

load balancing / phase output »
load balancing / no phase output >
no load balancing / phase output »
no load balancing / no phase output »

FFT-Dist/LT Ring

Fig. 7.5. PerPreT application examples

FFT-Dist/LT Butterfly
FFT-Dist/LT Transpose
FFT-Transpose/LT Ring
FFT-Transpose/LT Butterfly
FFT-Transpose/LT Transpose

Using the pull down menu from the PerPreT
main window the application descriptions for
the examples can be loaded for two different
multiprocessors, namely nCUBE/2 and IN-
TEL Paragon. The user can easily add system
descriptions to run the experiments for other
machines (compare Fig. 7.6.). Using the oth-
er button from the Load Example menu the
Select Configuration Files subwindow is ac-
tivated. The application descriptions for com-
putation and communication are stored in
separate files (default subdirectory applica-
tion). These files can be loaded together with
the files containing the system communica-
tion and computation descriptions (default
subdirectory system).

User Defined Configuration -

Select Configuration Files:

Application Description:
Communication:
application/staterments.cormr,

Computation:
application/statements.comp

System Description:

Communication:
system/comm.perf.

Computation:
system comp.perf

Fig. 7.6. Load user defined examples

System Description 203
7.3. System Description
7.3.1. Computation Description (without phases) Descption:

The PerPreT description of the computation
performance of a system is stored in a file
(default subdirectory system, default filena-
me comp.perf). The first line of the file con-
tainsacomment, the second line the data type
of the problem to be solved, the rest of the
lines contain information on the system per-
formancefor different problem sizes. If asys-
tem's computation performance for an appli-

cation is independent of the problem size for
the application, only one lineis needed to ex-
press the expected system performance for
this application. If a system's performance
varies with the problem size, each line fol-
lowing the first two lines can contain a prob-
lem size and the corresponding performance.
The different problem size lines have to be
ordered from smallest to largest.

System

Computation Filename: system/comp.perf,

[System: Change Computation Formula rr

Computation Description:

Current Formula:

100000.0 2.36

Current Comment: Parallel_Matrix_Multiplication_on_Paragon

New Formula:

doubTe

100000.0 2.36

New Comment: Parallel_Matrix_Multiplication_on_Paragon

Fig. 7.7. PerPreT system computation description window

204

The PerPreT Software

The upper part of the system computation de-
scription subwindow (compare Fig. 7.7.)
which is activated by the Change Computa-
tion button of the system description in the
main window shows the currently loaded
computation description. For editing purpos-
es this description is copied to the lower part

7.3.2. Computation Description (with phases)

Complex applications like the PSTSWM
code might consist of several computation
phases with significantly different perfor-
mance for the target node. If these phases are
of different weight for the execution time and
if these phases do not scale equivalently with
the problem size parameters, building amean
value to describe the system computation
performance is not enough to achieve accu-
rate predictions. In that case, it is possible to
use a different system computation descrip-
tion format which supports variable computa-
tion phase rates (compare section 7.1.2.).

The system computation description window
for phase rates is outlined in Fig. 7.8. As be-
fore, the upper half of the window contains
the currently loaded system computation de-
scription file which can be changed through
editsin the lower half of the subwindow. The
format of the description file is different us-
ing phases, thefirst line contains the datatype
of the problem to be solved, the second linea
input parameter identifier. The rest of the
lines contain two performance numbers for a
phase and a comment which can be used to
identify the phase. The resulting computation
descriptioniswrittento anew fileif thegiven
filename is changed or the currently loaded
file is overwritten if the filename stays un-
changed.

of the window. Changes to the comment, the
data type and the computation performance
data.can now be modein the lower part of the
window. The resulting computation descrip-
tioniswrittento anew fileif thegivenfilena
me is changed or the currently loaded file is
overwritten if the filename stays unchanged.

System
Deseription:

Change Computation
Change Communication

System Description

205

— stem:

System

Computation Filename: system/comp.perf,

hange Computation Formula r

Computation Description:

Current Formula:

float

TAS:

4.800 3.977 pht
8.200 3.377 cph2a
22.30 3.977 cphzh
1.000 3.000 cph3
7.500 5.000 phd
3.800 3.000 phsa
24.00 5.818 phSh
4.000 5,000 cphGa
15.20 5.000 cpheb
10.40 5.435 ph?a
19.80 5.435 ph?h
1.000 2.000 cphg
4.200 2.000 cph3a

[0

Current Comment: SWC_on_Paragon

New Formula:

Float
Tea:

4.800 3.977 pht

8.200 2.977 cph2a
22.30 3.977 cphzb
1.000 3.000 cph3
7.500 5.000 ph4

3.800 3.000 phSa
24.00 5.818 phSh
4.000 5.000 cphéa
15.20 5.000 cphgh

4.200 3.000 cphda

New Comment: SWC_on_Paragen

Fig. 7.8. PerPreT system computation description window (phase oriented)

7.3.3. Communication Description

The PerPreT description of the communica
tion performance of a system is stored in a
file (default subdirectory system, default file-
name comm.perf). The first line of the file
contains the bandwidth for copy operations
from the main memory of thetarget systemto
a communication buffer. This bandwidth is
given in MBytes/second. For some systems

System
Description:

Change Computation
Change Communication

which support direct memory access(DMA)
for the communication units, this parameter
is ignored. The second line of the file con-
tains the bandwidth for copy operations from
communication buffer to the main memory of
the target system. This bandwidth isalso giv-
en in MBytes/second and unnecessary for
systems with DMA of the communication

206

The PerPreT Software

units. The next lines describe the timing for
sending messages. Each line consists of six
values. The first, third and fifth value are
message |length parameters, the second value
is the setup time for sending a message asso-
ciated with the preceding message length, the
fourth value is the setup time to receive a
message with the preceding message length,

and the sixth value is the bandwidth to trans-
fer a message with the preceding message
length from sender node to receiver node.
Using the Change Communication button
from the system description menu of themain
window, the subwindow shownin Fig. 7.9. is
opened.

System

[System: Change Communication Formula rr

Communication Description:

Communication Filename: system/cornrn.perf,

Current Formula:

WUUU
100450100850100400

(Imn|

500.0 45.0 500.0 85.0 EEI[I.EI 40.0

1000.0 45.0 1000.0 95.0 1000.0 40.0
2000.0 45.0 2000.0 95.0 2000.0 40.0
3000.0 45.0 2000.0 95.0 3000.0 40.0
4000.0 45.0 4000.0 95.0 4000.0 40.0
5000.0 45.0 5000.0 95.0 5000.0 40.0
EO00.0 45.0 BO0C0.0 95.0 6000.0 40.0
7000.0 45.0 7000.0 95.0 7000.0 40.0
EUUU 045.0 BUUU EI 95 EI EUUU U 40.0
0.0 45.0 9 040.0
WDDDD 0 45.0 1DDDD D 35 D WDDDD 0 40.0

100.0 45.0 100.0 95.0 100.0 40.0
500.0 45.0 500.0 95.0 S00.0 40.0
1000.0 45.0 1000.0 95.0 1000.0 40.0
2000.0 45.0 2000.0 95.0 2000.0 40.0
3000.0 45.0 3000.0 55.0 3000.0 40.0
4000.0 45.0 4000.0 95.0 4000.0 40.0
5000.0 45.0 S000.0 95.0 5000.0 40.0
E000.0 45.0 6000.0 95.0 B000.0 40.0
7000.0 45,0 7000.0 95.0 7000.0 40.0
8000.0 45.0 @000.0 95.0 3000.0 40.0
5000.0 45.0 3000.0 55.0 3000.0 40.0
10000.0 45.0 10000.0 85.0 10000.0 40.0 =
Current Comment: Paragon
New Formula:
WEIEI 1]

00.0
100450100350100400
100.0 45.0 100.0 85.0 100.0 40.0

New Comment: Paragen

Fig. 7.9. PerPreT system communication description window

As before, the upper half of the window con-
tains the currently loaded system communi-
cation description file which can be changed
through editsin the lower half of the subwin-
dow.

Experiments 207
7.4. Experiments
7.4.1. Experimentswith Varying Processor Number e—

(Varying Problemsize)

The parameterized PerPreT application and
system description are now used to execute
performance prediction experiments. Two
kinds of experiments are possible, either the
problem size is fixed and the number of pro-
cessors are varied or vice versa. The Run Ex-
periment subwindow for varying processor
number is activated using the Varying Pro-
cessor Number button of the PerPreT main
window.

Fig. 7.10. shows the subwindow to control
experimentswith varying processor numbers.
The upper half of thiswindow is used for the

scale parameters. The menu First Processor
inputs the smallest number of processors to
be used to execute the experiment, the menu
Last Processor inputs the largest number of
processors. The Processor Increment menu
inputs a linear processor increment if a posi-
tive number is given or an exponential incre-
ment if anegative number isgiven. Inthe ex-
ample of Fig. 7.10. experimentsfor 1, 2, 4, 8,
16, 32, 64, 128, and 256 processors are car-
ried out using problem size 1024 from the
Problem size menu.

[Run Experiment with Varying Processor Number rr

Varying Processor Number

Speedup estimation for a mp system with the following parameters:

First Processor: 1 [§¥] Problem size:

LI lozq, [4¥]
Processor Increment: =2 &
(=2=exp2, ~10=exp 10)

Last Processor: 256 [4]¥]

Gnuplot datafile: gnuplots/anup.data
(¥ all Times
[¥ terminal

(¥ Lines

Curve to plot:
Gnuplot output:
Linestyle:

Communication performance file: system/comm.perf
Computation performance file: system/comp.perf

Data Type: double

Fig. 7.10. PerPreT experiment window (varying number of processors)

The Execute button starts the experiments for
varying processor number. For each number
of processors the total execution time, the
communication time, and the computation
time are calculated using the problem size,

the application description and the system de-
scription. Fig. 7.11. shows the resulting out-
put table. The first column contains the num-
ber of processors, the second column the
communication time, the third column the

208

The PerPreT Software

computation time, the fourth column the total
execution time. Using the total execution
time for a single processor run, the perfor-

mance measures speedup and efficiency
(compare columnsfive and six) can be calcu-
lated for each processor number.

Resultsfrom Varying Processor Number
Result Table 1:
v PIOCS <...oe ion Total_Time SpeedupEfficiency
=
1 0.000000 4,900916 4.900916 1.00 1.000 ;“;
2 0.013557 2.450465 2.464022 1.99 0.994 i
4 0.020648 1.225247 1.245894 3.83 0.983 -t
8 0.027739 0.E12651 0.6403380 7.ES 0.957
16 0.034830 0.306391 0.341211 14,36 0.8989
32 0.041921 0.153302 0.195223 25.10 0.785
64 0.045012 0.076874 0.125686 38.93 0.608
128 0.056103 0.038884 0.054387 51.60 0.403
258 0.063134 0.020335 0.08352% 58.87 0.223
o
Fig. 7.11. PerPreT experiment table window (varying number of processors)

The middle section of the Run experiment
subwindow in Fig. 7.10. determines the gnu-
plot output parameters. Gnuplot is a com-
mand-line driven interactive function plot-
ting utility for UNIX, MSDOS, and VMS
platforms. The software is copyrighted but

freely distributed™. It was originally intended
asagraphical program which would allow vi-
sualization of mathematical functions and da-
ta. Gnuplot supports many different types of
terminals, plotters, and printers (including
many color devices, and pseudo-devices like
LaTeX) and is easily extensible to include
new devices. Gnuplot handles both curves (2

1. Gnuplot isavailable at ftp.dartmouth.edu,
directory /pub/gnuplot

dimensions) and surfaces (3 dimensions). For
2-d plots, there are many plot styles, includ-
ing lines, points, lineswith points, error bars,
and impulses (crude bar graphs). Graphs may
be labeled with arbitrary labels and arrows,
axes |abels, atitle, date and time, and akey.

The results of an experiment are written to
files. Using a gnuplot command file, the re-
sults can be visualized. The default gnuplot
command file created by PerPreT is in the
subdirectory gnuplots, the filename is gn-
up.data. Thisfilename can be changed by the
user. The first gnuplot parameter Curve to
plot contains the following options:

Experiments

209

all Times

Execution Time

Communication Time

Computation Time

Speedup curve

Efficiency

All times means that the plot contains the
curves for communication, computation and
total execution time. The options Execution
Time, Communication Time, and Computa-
tion Time select the corresponding curve to
plot. Instead of the absolute time plots, the
relative performance measures Speedup and
Efficiency can a so be plotted using the corre-
sponding options. The Gnuplot subwindow
inFig. 7.12. is activated through the plot but-
ton of the Result table subwindow, in this ex-
ampleit shows an All Times plot.

Gnuplot offers various output formats. Per-
PreT users can select one of the following op-
tions:

¥ terminal

mif

postscript

Gnuplot offers various line styles. PerPreT
users can select one of the following:

Lines

Points

Impulses

Steps

Linespoints

-— G
Timesin sec All Timesfor Problemsize 1024

8

Exec. Time

4 Comm. Time

Comp. Time
2
1
05
0.25
0.125
0.0625
0.03125
0.015625
0.0078125

1 2 4 8 16 32 64 128 256
Processors
Fig. 7.12. PerPreT gnuplot window (varying number of processors)

Complex applications like PSTSWM which
use several parameters to describe the prob-
lem size can be controlled through a dightly
different Run Experiment subwindow dis-
playedinFig. 7.13. Instead of one number for
the problem size, an input data filename is

given. The file contains all relevant problem
Size parameters.

210

The PerPreT Software

Run Experiment with Varying Processor Number

Varying Processor Number
Speedup estimation for a mp system with the following parametars:

First Processor: (2] SWC Input Data:
Last Processor: (¥ 128 3 -params_swe 185
Processor Increment: EXP 2 M: 85
collect Phase Info: [yes PH_Q: 7] 16
Show Different Proc.Part: [¥] yes PH_NP: [¥] B
Phase Rates: [individual
Gnuplot datafile: gnuplots/gnup.data,

Curve to plot: [¥] All Times

Gnuplot output: (¥ ¥ terminal

Linestyle: (¥ LUines

Filter Option: [¥] Best Execution Time

Communication performance file: system/comm.perf
Computation performance file: system/comp.perf
Data Type: float

Fig. 7.13. PerPreT-PSTSWM experiment window (varying number of processors)

The resulting output table:

esultsfrom Varying Pro Number

Result Table 1:

e PrOCS ..o i .. Total Time ... <. Efficieney ...
1 0.000000 3208.571642 3208.571642 1.00 1.000
2 33.154756 1778.032953 1811.187709 1.77 0.886
112 7.013710 1615.251173 1622.264883 1.98 0.983
4 24.934107 892, 331102 917.265208 3.50 0.874
%2 20.114473 894.499153 13626 3.91 0.877
x4 10.571524 818.530333 162463 3.87 0.967
2 14.703856 449.480176 454.1838% £.91 0.864
42 14.288521 448.906889 462.195410 6.93 0.8EE
2x4 13.642491 452,732252 466.374743 6.88 0.860
1x8 12.433284 420, 253845 432.633129 7.4z 0.927
16 8.217158 228.094713 236.271871 13.58 0.843
8x2 8.360842 226.110757 234.471538 13.88 0.855
4und 9.012488 227.194782 236.207270 13.58 0.849
2x8 10.496287 231.848314 242.344601 13.24 0.827
%16 13. 554605 221.034238 234.648303 13.67 0.855
32 8.953784 219.677039 228.838823 14.03 0.439
1682 4.802086 114, 712691 119.514777 26.85 0.839
Bxd 5.235494 114.426047 119.661542 26.81 0.838
48 B.464724 116.338485 122.803210 26.13 0.816
2x16 9.104625 121.406345 130.510963 24.58 0.768
1x32 14.475145 121.511524 135.986669 23.59 0.737
64 10. 056856 216.088023 226.144879 14.19 0.222
32R2 5.415319 110.523854 115.933173 27.67 0.432
1644 3.140260 58.041680 61.181940 52.44 0.813
818 3.763308 58.583571 62.346878 51.46 0.804
418 5.372283 60.910336 66.282613 43.41 0.756
2032 8.771674 BE. 185360 74.957034 42.81 0.669
1x64 15.778748 71.721114 87.499862 36.67 0.573
128 12.056913 215.493157 227.550070 14.10 0.110
6412 6.447695 108.729348 115.177041 27.86 0.218
32rd 3.688796 55.947261 59.636058 53.80 0.420

Fig. 7.14. PerPreT-PSTSWM experiment table (varying number of processors)

Experiments

211

For applications which use various topolo-
gies for one number of processors, the gnu-
plot output optionsinclude one additiond fil-
ter menu:

Best Execution Time

Best Communication Time

Best Computation Time

Plot all results

Best Execution Time plots one curve for the
best execution time for each number of pro-
cessors. It is aso possible to filter for Best
Communication Times or Best Computation
Times. ThePlot all resultsoption resultsinan
interval for each of the times and each num-
ber of processors (compare Fig. 7.16.), since
the various topol ogies for one number of pro-
cessors result in different times.

- G
Timesin sec Best Execution Times
4096
Exec. Time
Comm. Time
Comp. Time
1024 \ P
256
~
S
64 SN
16
4
1
1 2 4 16 32 64 128
Processors

Fig. 7.15. PerPreT-PSTSWM gnuplot window (varying number of processors)

nuplot
Timesin sec All Times
4096
Exec. Time
Comm. Time -
1024 Comp. Time -
256 + l _
64
16 .
i
4
1
1 2 4 16 32 64 128

Processors

Fig. 7.16. PerPreT-PSTSWM gnuplot window (varying number of processors)

212

The PerPreT Software

7.4.2. Experimentswith Varying Problem Size A—

Besides predicting execution time, speedup,
and efficiency for a varying number of pro-
cessors, it is aso important to consider these
performance measures for varying problem
sizes. Fig. 7.17. showsthe subwindow to con-

Varying Pracessor Nurmber
Varying Problemsize

trol experimentswith varying problemsize. It
is activated using the Varying Problemsize
button of the PerPreT main window. The
number of processors can be arbitrarily cho-
sen, but it isfixed during the experiments.

Largest Problemsize:

(~2=exp2, —10=exp 10}

Gnuplot datafile:

Computation performance file:

Data Type: double

Varying Problemsize

Speedup estimation for a mp system with the following parameters:

Smallest Problemsize: 54, [&7¥]

1024 [4]9]

problemsize Increment: 64 [a]¥]

gnuplots/anup.data

Curve to plot
Gnuplot output [¥] ¥ terminal
Linestyle

Communication performance file: system/comm.perf

Processor #: B4 [a1¥]

(¥ all Times

(¥ Lines

system/comp.perf

Fig. 7.17. PerPreT experiment window (varying problem size)

The menu Smallest Problemsize inputs the
smallest valuefor aproblem sizeto be used to
execute the experiment, the menu Largest
Problemsize inputs the largest problem size
value. A series of experiments is conducted
with problem sizes varying from the smallest
to the largest value using the increment given
by the Problemsize Increment. A linear incre-
ment is used if a positive number is present,
an exponential increment if a negative num-
ber is used. In the example of Fig. 7.17. ex-
periments for problem sizes varying from 64
to 1024 using a 64 increment are carried out
for afixed number of 64 processors.

As before the gnuplot output options can be
used to determine the performance measure

to be plotted (Curve to plot), the output
format (Gnuplot output) and the line style
(Linestyles).

The default files for the system description
are in the subdirectory system. They are
comm.perf for communication description
and comp.perf for system description. These
files contain the parameters for computation
and communication performance. Varying
these parameters using different files offersa
new way to compare systems. The files can
easily be changed by using the Communica-
tion performance file or Computation perfor-
mance file menu.

Theresulting output table for Fig. 7.17. is:

Experiments

213

— tsfrom Varying
Result Table 2:
v P1DI SIZE Total_TimeSpeedupEfficiency

B4 0.006580 0.000619 0.007193 2.85 0.045

128 0.003403 0.001535 0.010344 7.24 0,113

192 0.012238 0.003047 0.015284 11.51 0,180

256 0.015067 0.005153 0.020220 15.37 0.240

320 0.017895 0.007856 0.025751 18.78 0.294

384 0.020724 0.011153 0.031878 21.80 0,341
448 0.023553 0.015047 0.038533 24,45 0.382

512 0.026382 0.013535 0.045917 26.81 0.419

576 0.029211 0.024€19 0.053823 28.92 0.452

E40 0.032039 0.030298 0.062337 30.80 0.491

704 0.034868 0.036572 0.071440 32.50 0.508

768 0.037697 0.043442 0.081133 34.03 0.532

832 0.040526 0.050307 0.031433 35.43 0.554

236 0.043354 0.058367 0102322 36.70 0.573

360 0.046183 0.067623 0.113808 37.86 0.592
1024 0.049012 0.076874 0.125886 38.93 0.608

=

Fig. 7.18. PerPreT experiment table window (varying problem size)

Theresulting plot for varying problem size:

Timesin sec
0.14

All Times for 64 Processors

0.12

0.1

0.08

0.06

0.04

0.02

Exec. Time
Comm. Time
Comp. Time

0 100

300 500

700
Problemsize

900

1100

Fig. 7.19. PerPreT experiment gnuplot (varying problem size)

214 The PerPreT Software
7.5. Validation
7.5.1. CompareModel and Experimental Data Compae Data:

The PerPreT example applications (Conju-
gate Gradient, FFT, Matrix Multiplication,
Red-Black Relaxation, PSTSWVM) were also
run on NCUBE/2 or INTEL Paragon or on
both machines. The execution time, commu-
nication time and computation time was mea-

Experiment vs. Model

sured and the data were collected. These re-
sults can be compared against actual model
predictions using the Compare Experiment
vs. Model Data subwindow. It can be activat-
ed using corresponding button in the PerPreT
main window.

List Exp. Files
Input Model Data
List Model Files

— Compar e Experiment vs. Model Data rr

Compare Model and Experiment Data

Experimental Data File:
Bx eriments/exg‘gara‘swc.tr‘taﬁ

Model Data File:
gnuplots/med. dat

Gnuplot Output:

%11 Terminal postscript

Gnuplot x—axis:

| log 10 | log 2 | linear | exp 10 | exp 2 |

Gnuplot y—axis:

| log 10 | log 2 | linear | exp 10 | exp 2 |

Gnuplot linestyle:

[y [

Ll

7y

Compare with ...

total experiment times

Fig. 7.20. PerPreT validation window

The compare button of the validation win-
dow starts a comparison of the data given in
the Experimental Data File against the data
given in the Model Data File. The output of
this operation is another subwindow as
shown in Fig. 7.21. It contains the validation
table. Each row of the table contains a com-
parison for one experiment. The first column
shows the number of processors used for the
experiment, the second column shows the
time predicted by PerPreT, the third column
shows the time measured on the real system,

the fourth column shows the difference be-
tween measured and predicted time in sec-
onds, and the last column shows the differ-
ence between measured and predicted timein
percent.

The middle part of the PerPreT validation
window allows to determine output format
(postscript, mif, X11) of plotsthat can be dis-
played for the comparisons. Besides the line
style, it isalso possible to select axiswith ex-
ponential increment.

Validation

215

[Results from Comparing Model vs. Experimental Data rr
Result Table 3:
SN oLy [T (LT IV 1 LY (1T e 1) (1 [1) [p——
8 464.183631 482, 253000 -18. 069163 -3.75
4x 2 463.135410 474.175000 -10.973530 -2.32
2% 4 486.374743 476.592000 -10. 217257 -2.14
1% 8 432.599129 413.238000 19.461129 4.7
64 226.144679 226.451000 -0. 306121 -0.14
32w 2 115.939173 114.010000 1.929173 1.69
165 4 61.181340 58.206000 2.975940 511
62 8 62.346078 58.012000 4.334078 7.47
4% 16 66.262619 61.562000 4.720619 7.67
2% 32 74.357034 70.744000 4.213034 5.98
1% B4 87.499862 84.818000 2.681862 3.18
128 227.550070 227.255000 0.295070 0.13
G4 2 115.177041 112.501000 2.676041 2.38
32w 4 59.636058 56.740000 2.836058 5.10
16x 8 32.1068064 29.958000 2.148084 717
8z 16 33.870985 31.504000 2. 366986 7.51
4% 32 36.305204 36.742000 1.643204 4.47
22 B4 47.965101 47.693000 0.272101 0.57
14128 no experimental data available
=
Fig. 7.21. PerPreT validation table

Depending on the experiment and the avail-
able timings, total execution times, commu-
nication times, or computation times can be
compared. The Compare with popup menu
from the validation window offers these op-
tions:

total experiment times

communication times

computation times

communication phase 1

communication phase 2

The upper part of the PerPreT validation win-
dow (compare Fig. 7.20.) allowsto select the
files containing the data of the real and model
experiments. Using the Input Exp. Data but-
ton or the Input Model Data button opens an-
other subwindow (compare Fig. 7.22.) which
alowstoinput result datato bestoredinfiles.
These results can than be used for compari-
sons. TheList Exp. Filesand List Model Files
buttons of the validation window activate
subwindows which show all existing files
containing datafrom experimentsonreal sys-

tems (compare Fig. 7.23.) or previously run
prediction experiments (compare Fig. 7.24.).

Input Measur ements "

Input Measurements:

19
8 482.253

[T 10

g 413.238
64 226.451
B4 114.010
B4 58.206
B4 58.012
64 B1.562
B4 70,744
B4 84.818
128 227.255
128 112.501
128 56.740
128 28.958
128 31.504
128 36.742
128 47.693
128 -1.0

19
B8 14.433

Meas. datafile: gxperiments/exp.paraswectrt8s,

Fig. 7.22. PerPreT input measurement data

By clicking on the corresponding filenames
the files are selected for comparison. After

216 The PerPreT Software
comparison, the results are displayed in the
output table of Fig. 7.21. Using the plot but-
ton of this figure, a gnuplot subwindow with - List Mod. Files -
aplot of the resultsis activated. Model Files
[@nuplots/meod.cgs512.ncube i
gnuplots/mod.cgs512.para =

— [REISTREIES rr
Experimental Files

[experiments/exp.dat §=
=

sxpariments/exp ncube.cgs. 1024
experiments/exp.ncube.cgs. 128
experiments/exp.ncube.cgs.256
experiments/exp.ncube.cgs.512
experiments/exp.ncube.cgt 1024
experiments/exp.ncube.cgt 128
experiments/exp.ncube.cat. 256
sxperiments/exp.ncube.cgt512
experiments/exp.ncube. mms. 256
experiments/exp.ncube.mms.64
experiments/exp.ncuberb, 1024
experiments/exp.ncuberb.256
experiments/exp.para.cgs.1024
experiments/exp para.cgs.128
sxperiments/exp para.cgs.256
experiments/exp.para.cgs.512
experiments/exp. para.cgt. 1024
experiments/exp.para.cot 128
experiments/exp.para.cat. 256
sxperiments/exp. para.cgt512
experiments/exp.para.mms.256
experiments/exp.para.mms.64
experiments/exp.pararb 1024
experiments/exp.pararb.256
experiments/exp.paraswedh.t42
experiments/exp.para.swe db.t85
experiments/exp.paraswedr.t42
sxperiments/exp.para.swc dr.t8s
experiments/exp.parasw dti42
sxperiments/exp. para.swe dt.t8s
experiments/exp.para.swcth.t42
experiments/exp.para.swctht8s
experiments/exp parasworna 2
experiments/exp. paraswotrtas

Fig. 7.23. PerPreT experimental datafile selecti

7.5.2. CompareModel and Experimental Phases

Complex applications like PSTSWM might
require a computation description consisting
of different phases with different perfor-
mance characteristics (compare section
6.3.3.1). For the modeling of PSTSWM a
graphical interface for validation of comput-
ing phases was implemented. This interface
can also be adapted for other applications us-
ing computation phases for the PerPreT mod-
el.

gnuplots/mod.cgt512.ncube
gnuplots/mod.cgtS12.para
gnuplots/rmod.dat
gnuplots/mod. mmm256.ncube
gnuplots/mod.mmm256.para
gnuplots/mod.rb1024.ncube
gnuplots/mod.rb1024.para
gnuplots/mod.rb256.ncube
gnuplots/mod.rb256.para
gnuplots/mod.trmp.dat

Fig. 7.24. PerPreT model datafile selection

Gompare Phases:

Experiment vs. Model

PSTSWM assumes an array configuration of
the processors. The phase validation subwin-
dow as shown in Fig. 7.25. alows to select
the processor whose data are to be validated.
The selection can be one of the corner proces-
sorsor al four of them. The model datafrom
the last experiment are the compared against
data from a data base containing all
PSTSWM results. The compare button of the
phase validation window activates the sub-
window containing a phase validation table

Validation

217

as shown in Fig. 7.26. If experimental phase
data are available they are compared with the
model data phase by phase. Sums of the ex-
perimental data and the model data are

formed and compared at the bottom of the ta-
ble. The communication model results are
also compared with experimental results.

mpar e Experiment vs. Model Phases

Compare Model and Experiment Phases

Phase Processor Selection: EEEEE

Experimental Phase Data:
Model Phase Data:

Fig. 7.25. PerPreT phase validation window

The resulting validation table:

m Resul Table 4:

=1
Collected phase info for: 8216 Processors |
Conpared to experiment processor in upper right position (1
[+
' Model ' Experinent
! - =» #Bytes !- H - =M

Pha. ! #Statem. ! MFLOP/s secs. ! secs. MFLOR/s!

10 53084161 4.80 ! 1.108 1.

21 -141557761 -19.91 ! 0711t 0.

3! -14155776¢ -20.81 ¢+ 0.BBO ! O,

4! to0.00t 0,000 % D,

5! 619315200 13.64 ! 4.540 ! 4,

E ! -70778881 -14.35 ! 0.433 0.

7! 159252481 19.23 ! 0.828 ! 0.

8! to-1.00 0.000 ¢ 0.

9! g 0,000t 0,000 % D,

10! 45453158 4.40 0 1,033 ! 1.

o 3065088 10.00 ¢ 0.807 ! 0.

12 ! 856539361 15.00 ! 5.710 ¢ 5.

13 ! ES70721 11.50 ! 0.057 ! 0.

14 ! 137369520 F.00 b 1,962 0 2.

15! 919883520 12.80 ¢ 7,187 ! B,

16 ! too0.00t 0.000 % 0.

17 ! or 0.00 ¢ 0.000 ¢ 0.

18 ! -29030401 -35.33 ! 0.082 ! 0.

19! fo0.00r 0000 % D,

20 ! 77414400 19.69 ! 0,393 ! 0.

21! -8847360 -17.66 ! 0.500 ! 0.

22 1 387072000 13.64 ! 2.838 ! 2.

23 ! -88473601 -10.20 ! 0.887 ! 0.

24 ! -98473600 -11.54 ¢ 0.V ! 0.

25 ! ot 0.000t 0,000 % 0.
Cale: 335260533t 12.62 ! 26.561 ! 25.701 ! 13.04 3.35
Copy: B48345600 15.81 ! 4,101 ! 3.481 1 18.63 17.82
Sum: ! ! 30.862 ! 29.182 ! 5.07
Communication:
FFT_commu @ Model 1.117 E=periment 1.068 Diff 4.63%
LT_commu : Model 2.091 Experiment 0.982 Diff 112.96%
Total times: Model 33.871 Experiment 31,232 Diff 8.45%

=

Fig. 7.26. PerPreT phase vaidation table

218

The PerPreT Software

7.6. Summary PerPreT Software

The benefits of using PerPreT for perfor-
mance prediction experiments have been
summarized at the end of the previous chap-
ter. This chapter described how to get and
how to use PerPreT. Through the graphical

interface it is easy to use and for UNIX/SO-
LARIS like platforms makefiles are avail-
able. PerPreT can be downloaded free of
charge after contacting the author:

Lange Laube 3
30159 Hannover
Germany

Phone:

Email:

World Wide Web

& :5D)

— Information about xPerPreT N

er Performance Prediction Tool for XWindows
Fel (Version 1.1, last update in May 1998)

For copies of the actual version of this programm
and further information please contact:

Dr.Juergen Brehm
Institut fuer Rechnerstrukturen und Betriebssysteme

(+48) (0) 511 - 762 - 9734
brehm@irb uni-hannover de

hitp: e uni-hannover.def~brehm

—

Quit

Fig. 7.27. PerPreT contact information

Benchmarking

Low level (hw)
Kernels

Applications
Suitess

Performance Analys's

i Simulation || Analyt. System
QueuemgTheory‘ Al H M%desl}/ng ‘
Petri Nets 17
wor I?I%a%grlr(f odel PerPreT

8. Open Problemsin Performance Analysis

8.1. Parallel Applicationswith Irregular Topologies

The starting point of the development of Per-
PreT was that the existing modeling tech-
niques are too complex to be applied to mas-
sively parallel systems. PerPreT solved this
problem for SPMD applications. To describe
parallel applications that do not follow the
SPMD programming model (e.g. paralel
branch and bound problems, parallel adaptive
methods) is an open problem. Models with
stochastic workloads could be integrated in
PerPreT and then be used for an evaluation of
non SPMD programs. The results of models
with stochastic workloads are statistical by
nature, i.e. single runs of a parallel program
cannot be modeled or evaluated in detail.

Another problem are paralel applications
with irregular communication topologies. In
these cases, it is not easy or even impossible
to find aformula needed for the PerPreT ap-
plication communication description.

Simulation based techniques might be able to
handle the problems non deterministic pro-
gram behavior and irregular communication
topology, but the complexity (runtime of the
simulation programs, size of traces) for mas-
sively paralel systemswill still be too high.

The question is, whether it makes senseto try
to model these kind of applications on mas-
sively parallel systems. Even for running the
real application onthereal system, theresults

220

Open Problems in Performance Analysis

are often not reproducible (because of com-
munication race conditions).

8.2. Workstation Clusters

The existence of fast communication devices
(high speed ethernet, SCI-cards) made it pos-
sible to use workstation clusters as multipro-
cessor systems. Communication libraries as
PICL, MPI or PVM transform a workstation
cluster to a virtual multiprocessor. The mod-
eling of such a system causes new problems
compared with the modeling of atightly cou-
pled system. The nodes of aworkstation clus-
ter usually are heterogeneous in the sense of
the processors, the memory capabilities, the
communication hardware, and sometimes the
machines of ones cluster run different operat-
ing system. From the modeling point of view
it is no longer possible to describe all the
nodes of the system by one set of hardware
parameters, but each node has its own set of
parameters. The interconnection network

might also be heterogeneous depending on
the locality and communication hardware of
the nodes. Last but not least, the behavior of
a paralel application running on a worksta-
tion cluster depends on the load of the nodes
which are multiuser time shared systems.
Thisisthe main reason why SPMD programs
will usually run with low efficiency on these
systems. Instead of data parallel applications
atask partitioning strategy can lead to better
results. The granularity of parallelism must
be coarse because of the relatively high and
unpredictable communication latency of a
workstation cluster. In summary, the model-
ing of aworkstation cluster used as multipro-
cessor is an open problem which will be hard
to solve.

8.3. Performance Analysis of Software

The question of the system under test is dis-
cussed in chapter 2.2.4. For the application
developer, the system under test consists of
compiler, operating system and hardware.
The performance of an application onthe sys-
tem under test depends on all these compo-
nents. The results usually do not show where
the losses of efficiency occur. If the real per-
formance is compared with the theoretically
available performance, the difference usually
tendsto be rather large, especialy in the case
of multiprocessor systems. Different sources
for the loss of efficiency can be identified:

- Parallelization strategy:

Isan optimal parallelization of the tasksim-
plemented, or do load imbalances cause
losses of efficiency? I's the mapping of the
task onto the system optimal ?

- Compiler:
Is the resulting machine code optimized
(especially for vector or super scalar archi-
tectures)?

- Operating system:
Is the potential performance of the inter-
connection network hardware optimally
used?

For the user, it isalmost impossible to identi-

fy the quantities of efficiency loss for the re-

Embedded Control Systems

221

spective sources. In general a system under
test as described in Fig. 2.9.ais used. Com-
pared with the system under test in Fig. 2.9.b
the performance will show large differences.
The fast growing speed of the systems more
than equalizes the inefficiency of the soft-

ware, but the question “Do | really need a450
MHz Pentium 1l microprocessor and 128
MByte of main memory to write aletter using
aword processing program?‘ should be dis-
cussed more seriously in the future.

8.4. Embedded Control Systems

Large networks of embedded control systems
are of growing importance. More demanding
applications, greater functionality of hard-
ware and system software and the usage of
distributed subsystems, require an analysisin
each stage of development. In [BMS97] an
approach to simulate the behavior of embed-
ded control systems is presented. The main
advantage of this simulator called ClearSim
which is based on execution and event driven
methods is the high simulation speed. The
components of the system supported by the

ClearSim modeling and simulation method
are application processes, RTOS (rea time
operating system), processor, periphera de-
vices, communication links, and the physical
environment. The ClearSim approach is
promising, but extensions have to be made to
proveitsusability for modern microprocessor
architectures. Hardware features such as
pipelining, caches, and branch prediction
have to be included in the processor model.
More details on ClearSim can be found in
[BMS97].

8.5. Summary Open Problems

Due to the complexity of modern hardware,
the importance of modeling and simulation
techniques will grow. The whole spectrum
from real system based techniques such as
benchmarking to model based techniques us-
ing stochastic or deterministic approaches
will be necessary to keep the pace of the hard-
ware development of the last decades.

9. References

[Amd67] G.M.Amdahl: Validity of the Sngle-
Processor Approach to Achieving Large Scale
Computing Capabilities, in AFIPS Conference
Proceedings, vol. 30, pp. 483-485, AFIPS Press,
Reston, Va. 1967

[Bai90] D. H. Balley: FFT's in External or
Hierarchical Memory, Journa of Supercompu-
ting 4 (1), pp. 23-35, March 1990

[Baiol] D. Bailey et. a.: The NAS Parallel
Benchmarks, International Journa of Supercom-
puter applications, Vol. 5, No. 3, pp. 63-73, 1991

[Bai94] D. Bailey et. a.: The NAS Parallel
Benchmarks, RNR Technica Report RNR-94-
007, March 1994

[Bai9s] D. Bailey et. a.: The NAS Parallel
Benchmarks 2.0, Report NAS-95-020, December
1995

[Bar93] T. Kauranne and S. R. M. Barros:
Scalability estimates of parallel spectral at-
mospheric models, in Parallel Supercomputing in
Atmospheric Science: Proceedings of the Fifth
ECMWF Workshop on Use of Parallel Proces-
sorsin Meteorology, G.-R. Hoffman and T. Kau-
ranne, eds., World Scientific Publishing Co. Pte.
Ltd., Singapore, 1993, pp. 312-328.

[Bar94] S.R. M. Barrosand T. Kauranne: On
the parallelization of spectral weather models,
Parallel Computing, 20 (1994), pp. 1335-1356.

[Bea76] R. Beam, R. Warming: An Implicite
Finite Differnec Algorithm for Hyperbolic Sy-
stems in Conservative Law Form, Journa on
Computational Physics, 22:87, 1976

[Ble9l] G. E. Bleloch et. a.: A Comparison
of Sorting Algorithms for the Connection Machi-
ne CM-2, Proceedings of the Symposium on Par-
allel Algorithmsand Architectures, pp. 3-16, July
1991

[BMS97] J. Bruns, C. Miiller-Schloer, S.
Scherber: Workstation-based HW/SW-Cosimula-
tion for the Performance Analysis of Embedded
Control Systems, Processdings APS 97, Koblenz,
1997

[Bra77] Achim Brandt: Multi-Level Adaptive
Solutions to Boundary-Value Problems, Mathe-
matics of Computation 31 (138), pp. 333-390,
1977

[Bregd]] J. Brehm et. a.: A Multiprocessor
Communication Benchmark, User’s Guide and
Machine Evaluation, AbschluRbericht des ES-
PRIT/OMI Projektes Benchmarking - No. 6271,
Institut fir Rechnerstrukturen und Betriebssyste-
me, Universitdt Hannover 1994

224

References

[Bre95] J. Brehm et. a: PerPreT - A Perfor-
mance Prediction Tool for Massively Parallel Sy-
stems, Lecture Notes in Computer Science 977,
Springer Verlag, Heidelberg 1995

[Bregg] J. Brehm, P. Worley, M. Madhukar:
Performance Modeling for SPMD Message-Pas-
sing Programs, Concurrency: Practice and Expe-
rience, Vol. 10(5), pp. 333-357, John Wiley,
April 1998

[Cas95] Castelli, G., Ragazzini, G.: EOS A
Real Time Operating System Adapts to Applicati-
on Architectures, IEEE Micro - Specia Issue on
Embedded Control System, Oct 1995, pp. 41-49

[Chr86] Z. Christdis: Hydrodynamic Mesos-
cale Modeling of Atmospheric Transport and
Pollutant Deposition in the Vicinity of a Lake,
PhD thesis, Atmospheric and Oceanic Science
Department, University of Michigan, Ann Arbor,
1986

[Chr87] Z.Christdis, V. Sonnad: Parallel im-
plementation of a Pseudospectral Method on a
Loosely Coupled Array of Processors, IBM
Kingston, Technical Report KGN-143, 1987

[CMS93] Miiller-Schloer, C., Spitzkowsky, J.:
Verhaltensvorhersage fur parallele Programme
durch ausfuhrungsgesteuerte Smulation, Proc.
Arbeitsplatzrechensysteme (APS) 93, VDE Ver-
lag, 1993, p. 11

[CMS97] C. Miller-Schloer: Hochleistungs-
rechner, Skript zur Vorlesung Hochleistungs-
rechner/Parallelrechner, Ingtitut fur Rechner-
strukturen und Betriebssysteme, Lange Laube 3,
30159 Hannover, 1997

[Cur84] J. Curry et. d.: Order and Disorder
in Two- and Three Dimensional Bemard Convec-
tion, Journal on Fluid Mechanics, 174:1, 1984

[Den68] P. J. Denning: The Working Set for
Program Behavior, Communications of the
ACM, 11(5), pp. 323-333, 1968

[Den78] P.J. Denning, J. P. Buzen: The Ope-
rational Analysis of Queueing Network Models,
Computing Surveys, Vol. 10, No. 3, pp. 225-261,
September 1978

[Den90] D. Dent: A Modestly Parallel Model,
in The Dawn of Massively Parallel Processing in

Meteorology, G.-R. Hoffman and D. K. Maretis,
eds., Springer-Verlag, Berlin, 1990, pp. 21-31.

[DNS95] T.A.Diep, C. Nelson, J.P. Shen: Per-
formance Eval uation of the Power PC620 Micro-
architecture, Proc. 22nd. International Symposi-
um on Computer Architecture, Santa Magherita
Ligure, Italy, pp.163-174, 1995

[Don79] Jack Dongarra et. d.: LINPACK -
User’s Guide, SIAM, Philadelphia, PA, 1979.

[Don97] Jack Dongarra: Performance of Va-
rious Computers Using Standard Linear Equati-
ons Software, ORNL report, CS-89-85, June
10th, 1997.

[Dup87] M. Dupuis, J. Watts: Towards Ef-
ficient Parallel Computation of Correlated Wave
Functions - Implementation of the Two-Electron
Integral Transformation on the LCAP Parallel
Supercomputer, IBM Kingston Technical REport
KGN-100, 1987

[Dup88] M. Dupuis et. a.: HONDO Version
7.0 Documentation, IBM Kingston Technical Re-
port KGN-169, and Quantum Chemistry Program
Exchange Bulletin 8:2, 1988

[Far95] T. Fahringer: Estimating and optimi-
zing performance for parallel programs, |IEEE
Computer, 28 (1995), pp. 47-56.

[Fos92] I. Foster, W. Gropp, and R. Stevens:
The parallel scalability of the spectral transform
method, Mon. Wea. Rev., 120 (1992), pp. 835-
850.

[Fos93] |. T. Foster, and P. H. Worley: Paral-
lelizing the spectral transform method: A compa-
rison of alternative parallel algorithms, in Paral-
lel Processing for Scientific Computing, R. F.
Sincovec, D. E. Keyes, M. R. Leuze, L. R. Pet-
zold, and D. A. Reed, eds., Society for Industrial
and Applied Mathematics, Philadelphia, PA,
1993, pp. 100-107.

[Fos94] |. T. Foster, and P. H. Worley: Paral-
lel algorithms for the spectral transform method,
Tech. Report ORNL/TM-12507, Oak Ridge Na-
tiona Laboratory, Oak Ridge, TN, May 1994.

[Fos95] I. T. Foster, B. Toonen, and P. H.
Worley: Performance of parallel computers for
spectral atmospheric models, Tech. Report

References

225

ORNL/TM-12986, Oak Ridge Nationa Labora-
tory, Oak Ridge, TN, April 1995.

[GEN91] C.A. Addison, V.S. Getov, A.J.G.
Hey, R.W. Hockney and |.C. Wolton: The GENE-
S S Distributed-memory Benchmarks, Computer
Benchmarks, J.J. Dongara & W. Gentzsch (Eds),
Advances in Parallel Computing, Vol 8, Elsevier
Science Publications, BV (North Holland), Am-
sterdam, The Netherlands, p 257 - 271, 199

[Gre87] Ledlie Greengard: The Rapid Eva-
luation of Potential Fields in Particle Systems,
ACM Press, 11987

[Gol83] GeneH. Golub et a.: Matrix Com-
putation, North Oxford Academic, Oxford 1983

[Gol90] Goldsmith, D.: Tango Introduction
and Tutorial, Technical Report CSL-TR-90-410,
Computer Science Laboratory, Stanford Univer-
sity, Jan. 1990

[Got88] T. Gottschak: Concurrent Multiple
Target Tracking, Proceedings of the Third Confe-
rence on Hypercube Concurrent Computers and
Applications, ACM, New York, 1988

[Gus88] John L. Gustafson: Reevaluating
Amdahl’s Law, Communications of the ACM,
Vol. 31, No. 5,pp. 532-533, May 1988

[Gus9l] J. Gustafson, D. Rover, S. Elbert, and
M. Carter: SLALOM: The First Scalable Super-
computer Benchmark, Parallelogram, February
1991

[Gus92] . Gustafson: The Consequences Of
Fixed Time Performance Measurement, Procee-
dings of the Twenty-Fifth Hawaii International
Conference on system Sciences, Voal. Ill,
Kauai, Hawaii, January 7-10, 1992

[Hac92] J.J. Hack and R. Jakob: Description
of a global shallow water model based on the
spectral transform method, NCAR Tech Note
NCAR/TN-343+STR, Nationa Center for At-
mospheric Research, Boulder, CO, February
1992.

[Hei83] P. Heidelberger and K. S. Trivedi:
Analytic queuing modelsfor programswith inter-
nal concurrency, |IEEE Trans. Comput., c-32
(2983), pp. 73-82.

[Har94] Glnter Haring, Harad Wabnig:
PAPS- The Parallel Program Performance Pre-

diction Toolset, Proceedings of the 7th Int. Conf.
on Modelling Techniques and Tools for Compu-
ter Performance Evauation, LNCS 794, pp. 284-
304, Springer Verlag, 1994.

[Har95] Gunter Haring, Gabriele Kostis:
Workload Modeling for Parallel Processing Sy-
stems, Proceedings of the 3rd I nternationa Work-
shop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems
(MASCOTS 95), |IEEE Computer Society Press,
pp. 8-12, Durham, NC 1995.

[Her90] Herring, C.: ModSm: A New Object-
Oriented Smulation Language, Proc. SCS Multi-
conference on Object-Oriented Simulation, Jan.
1990, pp. 55-60

[HSA91] P.Hanrahan, D. Salzman, L. Aupper-
le: A Rapid Hierarchical Radiosity Algorithm,
Proceedings of SIGGRAPH, 1991

[Jaiol] R. Jain: The art of Computer Systems
Performance analysis, John Wiley, New York,
1991.

[Jad89] Jade Simulations International
Corp.: Sm++: A Discrete-Event Smulation Lan-
guage. Release 2.0, Cagary, Jade Simulations
Int., 1989

[Jam83] A. Jameson: Solution of the Euler
quations for a Two-Diemsional Transonic Flow
by a Multigrid Method, Applied Mathematics and
Computations, 13:327, 1983

[Kat96] Ralf Kattner: Smulationsbasierte
Optimierung statischer paralleler Ablaufe, VDI
Fortschrittberichte, Reihe 20, Nr. 217, VDI Ver-
lag 1996

[Ker88]/ B.W. Kernighan; D. M. Ritchie: The
C Programming Language, Prentice-Hall, 1988

[Kel76] T.W. Keller: Computer System Mo-
dels with Passive Resources, Ph.D. Dissertation,
University of Texas at Austin, 1976

[Kos95] G. Kostis: Workload Modeling for
Parallel Processing Systems, Dissertation, Uni-
versity of Vienna, Austria, 1995

[Laz84] E. D. Lazowska et. a.: Quantitative
System Performance: Computer System Analysis
using Queueing Network Models, Englewood
Cliffs, NJ, Prentice Hall, 1984.

226

References

[Lies6] G. Lie, E. Clementi: Molecular Dy-
namics Smulation of Liquid Water withan abin-
itio Flexible Water-Water Interaction Potential,
Physical Reviews, A33:2679, 1986

[Lin85] David Gelernter: Parallel Pro-
gramming in LINDA, Technical Report 359, Yale
University Department of Computer Science, Jan.
1985

[Lin98] C. Lindemann: Performance Model-
ling with Deterministic and Stochastic Petri Nets,
John Wiley and Sons, ISBN 0471976466, 1998

[Lit61] J. D. C. Littlee A Proof of the
Queueing formula L = | W, Operations Research,
Vol. 9, pp. 383-387, 1961

[Mar84] M. Ajmone Marsan, G. Babo, G.
Conte: A Class of Gereralized Sochastic Petri
Nets for the Performance Analysis of Multipro-
cessor Systems, ACM Transactions on Compu-
ting Systems, 2, pp.93-122, 1984

[Mar87] M. Ajmone Marsan, G. Chiolaz On
Petri Nets with Deterministic and Exponentially
Distributed Firing Times, in: Advances in Petri
Nets, Lecture Notes in Computer Science 266,
pp. 146-161, Springer 1987

[Mar95] M. Ajmone Marsan et. a.: Modeling
with Generalized Sochastic Petri Nets, John Wi-
ley & Sons, 1995

[Meh94] Panka Mehraet. a.: A Comparison
of Two Model-Based Performance Prediction
Techniques for Message Passing Parallel Pro-
grams, Proceedings of the ACM Sigmetrics Con-
ference on Measurement and Modeling of Com-
puter Systems, Nashville, TN, May 1994.

[Men94] D. A. Menasce, V. Almeida, L. W.
Dowdy: Capacity Planing and Performance Mo-
deling: From Mainframes to Client-Server Sy-
stems, Prentice Hall, New Jersey, 1994

[MNS86] E.A.McNair, C. H. Sauer: Elements
of Practical Performance Modeling, Prentice
Hall, 1986

[Mol82] M. K. Molloy: Performance Analysis
Using Sochastic Petri Nets, | EEE Transaction on
Computers, 31, pp. 913-917, 1982

[MPI94] MPI Committee, MPI: a message
passing interface standard, Internat. J. Super-
computer Applications, 8 (1994), pp. 165-416.

[MPI95] Message Passing Interface Forum:
MPI - A Message Passing Interface Standard,
Postscript document available through http://
www.mcs.anl.gov/mpi/index.html, University of
Tennessee at Knoxville, 1995

[MPI96] W. Gropp, E. Lusk, N. Doss, and T.
Skjellum: A high performance, portable imple-
mentation of the MPI message-passing interface
standard, Tech. Report ANL/MCS-P567-0296,
Argonne National Laboratory, February 1996.

[Nag75] L. Nagel: SPICE2 - A Computer Pro-
gram to Smulate Semiconductor Circuits, Me-
morandum ERL-M520, Electronics research La-
boratory, College of Engeneering, University of
Cdlifornia, Berkeley, 1975

[NAS93] D.H. Bailay et. a.: NAS Parallel
Benchmarks Results, Parallel and Distributed
Technology, Val. 1, IEEE, February 1993.

[New83] R. Newton, S. Vincentelli: Relaxati-
on Based Circuit Smulation, |EE Transation on
ED, ED-30:9:1184, 1984

[Mis86] Misra, J.: Distributed Discrete Event
Smulation, Computing Surveys, vol. 18, no. 1,
March 1986, pp.39-65

[NiL92] J. Nieh, M. Levoy: Volume Rendering
on Scalable Shared-Memory MIMD Architectu-
rea, Proceedings of the Boston Workshop on Vo-
lume Visualization, October 1992

[Noo85] A. Noor, J. Peters: Model Size Redu-
citon Techniques for the Analysis of Symmetric
Anisotropic Structures, Eng. Comp., 2:4:285,
1985

[Ott87] S. Otto et. al.: Lattice Gauge Theory
Benchmarks, Caltech report, C3P-405R, 1987

[Par94] D. Walker et d.: Public International
Benchmarks for Parallel Computers, Report of
the ParkBench Committee, available on www: ht-
tp:/lwww.epm.ornl.gov/~walker/report.html.

[Par96] M. Parashar and S. Hariri: Compile
time performance prediction of HPF/Fortran
90D, |EEE Parallel and Distributed Technology,
4(1996), pp. 57-73.

[Para92] M. T. Heath; J. E. Finger: Para-
Graph: A Tool for Visualizing Performance of

References

227

Parallel Programs, User Guide, Oak Ridge Na
tional Laboratory, Oak Ridge, October 1992

[Pat92] Peter G. Harrison, Naresh M. Patel:
Performance Modelling of Communication Net-
works and Computer Architectures, Addison-
Wesley Publishing Company, 1992

[PCB94] D. Kuck et. a: The PERFECT Club
Benchmarks: Effective Performance Evaluation
of Supercomputers, CSRD report available at
ftp://csrd.uiuc.edu/pub/CSRD_Reports/

July, 1994

[Pel93] R. B. Pelz and W. F. Stern: A balan-
ced parallel algorithmfor spectral global climate
models, in Parallel Processing for Scientific Com-
puting, R. F. Sincovec, D. E. Keyes, M. R. Leuze,
L.R. Petzold, and D. A. Reed, eds., Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, 1993, pp. 126-128.

[Pet62] C. A. Petri: Communication with Au-
tomatas, Ph.D thesis, Universitaet Bonn, Germa-
ny, 1961

[Pet81] J. L. Peterson: Petri Net Theory and
the Modeling of Systems, Prentice Hall, Engle-
wood Cliffs, N.J. 1981

[PICL90] P.H.Worley et. d.: PICL - A Porta-
ble Instrumented Communication Library, Tech-
nical Report, ORNL/TM-1130, Oak Ridge Natio-
nal Laboratory, Oak Ridge, July 1990.

[Poi93] L. Pointer: Performance Evaluation
for Cost-Effective Transformations, Report 2,
Technical Report #964, Center for Supercompu-
ter Research and Development (CSRD), Urbana
Champaign, 1993, CSRD report available at
ftp://csrd.uiuc.edu/pub/CSRD_Reports

[Presg] H. Presset. al.: Numerical Recipesin
C - The Art of Scientific Comptuing, Cambridge
University Press, New Y ork 1988

[Pul85] T. Pulliam, J. Steger: Recent Impro-
vements in Efficiency, Accuracy, and Conver-
gence for Implicite Approximate Factorization
Algorithms, AIAA-85-0360 23rd Aerospace Sci-
ence Mesting, January 14-17, Reno, Nevada,
1985

[PVM94] G. A. Geist, A. L. Beguelin, J. J.
Dongarra, W. Jiang, R. J. Manchek, and V. S.
Sunderam, PVM: Parallel Virtual Machine - A

Users Guide and Tutorial for Network Parallel
Computing, MIT Press, Boston, 1994.

[Res89] M. Reshef, D, Kessler: Practical Im-
plementation of Three-Dimensional Post-Stack
Depth Migration, Geophysics, March 1989

[RSG93] E. Rothberg, J. Singh, A. Gupta:
Working Set, Cache Sizes, and Node Granularity
Issues for Large Scale Multiprocessors, Procee-
dings of teh 20th International Symposium on
Computer Architecture, pp. 14-25, May 1993

[Sar95] S. R. Sarukkai, P. Mehra: and R. J.
Block: Automated scalability analysis of messa-
ge-passing parallel programs, |EEE Parallel and
Distributed Technology, 3 (1995), pp. 21-32.

[Saw87] K. Swamy, E. Clementi: Hydration
Structure and the Dynamics of B- and Z-DNA in
th ePresence of Counterionsvia Molecular Dyna-
mics Smulations, IBM Kingston Report KGN-
94, 1987

[Sch93] T. Schlemeier: Entwicklung eines
Generators fur parallele Benchmarkprogramme,
Diplomarbeit IRB, Lange Laube3, 30159 Hanno-
ver, 1993

[Sel80] J. Sela: Spectral Modeling at the Na-
tional Meterological Center, Monthly Waether
Revies, 180:279, 1980

[Sel82] J. Sela: The NMC Spectral Model,
NOAA Technical Report NWS 30, May 1982

[Ser93] Maria Calzarossa, Giuseppe Serazzi:
Workload Characterization - A Survey, Procee-
dings of the IEEE, 81(8), pp. 1136-1150, August
1993.

[Sev81] K. C. Sevcik, |. Mitrani: The Distri-
bution of Queing Network Sates at Input and
Output Instants, Journal of the ACM, Vol. 28,
No. 2, pp. 358-371, April 1981

[SGL94] J.P.Singh, A. Gupta, M. Levoy: Par-
allel Visualization Algorithms: Performance and
Architectural Implications, |IEEE Computer27
(7), pp. 45-55, July 1994

[Smi95] E. Smirni et. a.: Thread Placement
onthelntel Paragon: Modeling and Experimena-
tion, Proceedings of the 3rd International Work-
shop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems

228

References

(MASCOTS 95), |IEEE Computer Society Press,
pp. 226-231, Durham, NC 1995.

[SPEC95] R.Giladi, N. Ahituv: SPEC asa Per-
formance Evaluation Measure, Computer, Vol.
28, Nr. 8, pp. 33-42, August 1995

[Spi93] Spitzkowsky, J., Mller-Schloer, C.,
Semipessimistic Prediction of Parallel Program
Behaviour, European Simulation Symphosium
(ESS) 93, Oct. 1993, pp. 25-28

[SPL91] J. P. Singh, W. Weber, A. Gupta
SPLASH: Sanford Parallel Applications for
Shared-Memory, Computer Architecture News,
vol. 20, no. 1, pages 5-44, 1991

[SPL95] S.C.Woo, M. Oharg, E. Torrie, J.P.
SIingh, A. Gupta: The SPLASH-2 Programs; Cha-
racterization and Methodological Considerati-
ons, Proceedings of the 22nd Annual Internatio-
nal Symposium on Computer Architecture, pp.
24-36, June 1995

[Sym78] F.JW. Symons. Modeling and Ana-
lysis of Communication Protocols Using Numeri-
cal Petri Nets, Ph.D. Dissertation, University of
Essex, Great Britain, 1978

[Tho86] A. Thomasian, Paul F. Bay: Analytic
Queueing Network Models for Parallel Proces-
sing of Task Systems, IEEE Transaction on Com-
puters, Vol. C-35, No.12, December 1986.

[Trig2] K. S. Trivedi, P. Heidelberger:
Queueing Network Models for Parallel Proces-
sing with Asynchronous Tasks, |EEE Transac-
tions on Computers, Vol C-32, pp.15-31, January
1982.

[uns7] A.V. Aho, J. E. Hopcraft, J.D. Ull-
man: Data Structures and Algorithms, Addison
Wesley, 1987

[Ver87] M. K. Vernon, J. Zarhojan, E. D. L&
zowska: A Comparison of Petri Nets and
Queueing Network Models, Proc. 3rd. Internatio-
nal Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, Pa-
ris France, pp.181-192, 1987

[Wab94a] H. Wabnig, G. Haring: Performance
Prediction of Parallel Systemswith Scalable Spe-
cifications - Methodology and Case Sudy, Pro-
ceedings of the ACM Sigmetrics Conference on

Measurement and Modeling of Computer Sy-
stems, pp. 288-289, Nashville, TN, 1994.

[Wab94b] H. Wabnig and G. Haring, PAPS -
the parallel program performance prediction
toolset, in 7th International Conference on Mode-
ling Techniques and Tools for Computer Perfor-
mance Evaluation, 1994, pp. 284-304.

[Wal92] D.W. Walker, P. H. Worley, and J.
B. Drake, Parallelizing the spectral transform
method. Part 11, Concurrency: Practice and Expe-
rience, 4 (1992), pp. 509-531.

[Wei88] Reinhold Weicker: Dhrystone: a
synthetic systems programming benchmark, SIG-
PLAN Notices, Vol. 23 No. 8, 1988

[Wil92] D. L. Williamson, J. B. Drake, J. J.
Hack, R. Jakob, and P. N. Swarztrauber, A stan-
dard test set for numerical approximations to the
shallow water equations on the sphere, J. Compu-
tational Physics, 102 (1992), pp. 211-224.

[Wor90] P. H. Worley and M. T. Heath: Per-
formance characterization research at Oak Ridge
National Laboratory, in Parallel Processing for
Scientific Computing, J. Dongarra, P. Messina,
D. C. Sorenson, and R. G. Voigt, eds., Society for
Industrial and Applied Mathematics, Philadel-
phia, PA, 1990, pp. 431-436.

[Wor92a] P. H. Worley: Phase modeling of
parallel scientific code, in Proceedings of the
Scalable High Performance Computing Confe-
rence SHPCC-92, J. Sdtz and R. Voigt, eds,,
IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 322-327.

[Wor92b] P.H.Worley and J. B. Drake: Paral-
lelizing the spectral transform method, Concur-
rency: Practice and Experience, 4 (1992), pp.
269-291.

[Wor94] P. H. Worley, |. T. Foster:Parallel
Spectral Transform Shallow Water Model: A
Runtime-Tunable Parallel Benchmark Code, Pro-
ceedings of the SHPCC' 94, IEEE Computer So-
ciety, pp. 207-214, 1994

[Wor95] P. H. Worley and B. Toonen: A
user's guide to PSTSWM, Tech. Report ORNL/
TM-12779, Oak Ridge National Laboratory, Oak
Ridge, TN, July 1995.

10.I ndex

A
Abbreviations
Accuracy
Aggregate
Application
-pardlel
Aspect ratio

B

Bandwidth

Benchmark
-ADM
-application
-Barnes
-BDNA
-Cholesky

-compact application

-DYFESM
-FFT
-FLO52Q
-FMM
-generator
-GENESIS

-HPF Compiler

-kernel
-LINPACK
-LOOP
-low level
-LU

9

126, 190
123

10, 163
10

182, 187

60, 160, 206

68

-MDG
-MG3D
-multiprocessor
-NAS Paréllel
-OCEAN
-PARKBENCH
-PERFECT Club
-program
-Radix
-SLALOM
-SPEC77
-SPICE
-SPLASH-2
-test
-TRFD
-Volrend
-Water-Nsquared
-Water-Spatial

BLAS

Bus

Butterfly

C
Communicate
Communication
-library
-pattern
Complement
Configuration

199

58, 162
165, 199
199

124

230

Index

-logical 58, 60, 62

-physical 59, 60, 62
Conjugate Gradient Method 168,171, 196,

202, 214

Cray 68
Cray T3D 62
Customer 40
D
Deadlock 39, 89
Decomposition 179
Definitions 9,13
Description

-application 161, 163, 171, 180, 197

-communication 172,199, 205

-computation 197, 198, 203

-system 160, 203
Dhrystone 24, 26, 27, 31
Dimension 58
DMA 158, 205
E
Efficiency 17,126, 168, 174
Equation

-flow balance 45, 48, 49, 108

-global balance 42

-linear 45, 64

-linear system 42
Evaluation

-triangle 22
Exchange 199
F
FCFS 40
FESC 123
FFT 67, 74, 178, 196, 202, 214
Finite state diagram 41
Functional model 39
G
Gaussian Elimination 64,171
Graph 12
H
Hierarchy 123
HPF 73
Hypercube 58, 60
|
IBM SP2 68

INTEL Paragon

60, 104, 160, 196

Interconnection network

K
Kernel

L
Legendre transform
Link
LINPACK
Little'sLaw
Load balance
LOOP

-benchmark

M
Markov
-analysis
-chain
-diagram
-model
-process
Matrix multiplication
MEIKO
M essage passing 56,
MFLOPS 2, 1
MIMD
MIPS
Model
-approximate
-baseline
-birth-death
-calibrated
-communication
-computation
-decomposition
-error
-generalized birth-death
-prediction
-programming
-workload
Monoprocessor
MPI 56, 61
Multiprocessor 2,1
Multiprogramming

163, 196

N

nCUBE

nCUBE/2 58
Notation

Number of processors

105

10

178
60, 121

47
179

64, 163

41

41

41

44,50

41

, 202, 214
104

, 104, 159
0, 64, 159
1,355
2,10, 159

44
44

41, 45

44

158

159

124

44

49

44

161

161

10

8, 73, 178
0, 56, 104
39

104

, 160, 196
9

168

Index

231

P
ParaGraph
Parallelism
PARKBENCH
Passive center
PDE
Performance
-analysis
-bottleneck
-data base
-evaluation
-measure
-model
-modeling
_peak
-prediction
-relative
-simulation
PerPreT
-software
Petri Net
PICL
Problem size
Process
-birth-death
-discrete-state
-Markov
Processor
Program Task Graph
Programming Model
PSTSWM
PTG
PVM

Q
Queue
-length
-mean length
Queueing
-discipline
-network
-networks (extended)
-system

R
Rate
-arrival
-departure
-service
Red-Black Relaxation

87,93
55

73
122
74

2

56

30

11,23

15, 46, 52, 121
39, 44, 51
2,3,103

11

11

16

2,351

155, 163, 195
195

39, 155

56, 60, 87, 93, 159, 160, 163, 178
67, 68, 78, 92, 167, 175, 184

41
41
41
10
12
155

74,178, 196, 202, 214

12,161, 171
73,178

15
48, 50
47

40

40, 106
121
106

40, 106, 124
124

40, 106

196, 202, 214

Response time 39
Round robin 40
S
Scal ahility 64
Scaleup 18
Service
-center 40, 49, 123
-rate 49
-station 40
SGI Power Challenge 68
Shared memory 56, 104
SIMD 1
Simple_bcast 199
Simple_collect 200
Simulation 51
SPEC
-CFP95 33
-chem96 82
-CINT95 33
-fp_rateds 34
-fpo5 34,35
-hpc96 81
-int 10
-int_rate95 34
-int95 34,35
-rate 10, 35
-ratio 34
-seis96 82
Speedup 16
SPMD 155, 161, 197
State
-space diagram 49
Station 40
Steady state probability 41, 43, 46
Strategy
-common queue 111
-next queue 116
-random queue 108
-shortest queue 113
Synchronization 121, 161
System
-batch 40
-description 158
-design 38
-interactive 15, 40, 47
-linear 42
-loosely coupled 105
-massively parallel 11,57, 64, 84, 105,

155

232

Index

-message passing
-shared memory
-simulator
-tightly coupled
-under test (SUT)

T

55
55,121
51

104

21, 38,80

Throughput 15, 39, 41, 43, 45, 46, 48, 106

Time
-communication
-computation
-execution
-overhead
-response
-service
-setup
-synchronization
-total execution
-waiting

Token

Topology
-2D-array
-3D-array
-3D-torus
-array
-butterfly

13,162
14,162
13,162

14

15, 45, 47, 48, 50, 106

47
160
14

14

14, 47
122

60
58
62
58
162

-hypercube 58, 104
-mesh 60, 104, 179
-ring 58
-torus 58
TPS 2,10
Tree_bcast 200
Tree collect 200
U
Utilization 15, 39, 41, 43, 45, 46, 48, 50, 107
\Y
Validation 169, 176
Vectorization 29
W
Whetstone 28
Workload 10, 23, 39, 64
-batch 104
-parallel 104
-synthetic 23
-terminal 104
-transaction 104
X
XView 195
X-Windows 195

