
ORNL�TM������

Computer Science and Mathematics Division

Mathematical Sciences Section

PERFORMANCE MODELING FOR SPMD MESSAGE�PASSING

PROGRAMS

J�urgen Brehm y

Patrick H� Worley �

Manish Madhukar z

y University of Hannover� Institut f�ur Rechnerstruk�
turen und Betriebssysteme� Lange Laube �� �����
Hannover� Germany

� Oak Ridge National Laboratory� Mathematical Sci�
ences Section� P� O� Box 	��
� Oak Ridge� TN ��
���
����

z Computer Science Department� Vanderbilt Univer�
sity� Box ����� Station B� Nashville� TN ��	��

Date Published
 June� ����

Research was supported by the Mathematical� Information and Compu�
tational Sciences Division of the O�ce of Computational and Technology
Research Program� O�ce of Energy Research� U�S� Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge� Tennessee ��
��

managed by
Lockheed Martin Energy Research Corp�

for the
U�S� DEPARTMENT OF ENERGY

under Contract No� DE�AC�����OR		���

Contents

� Introduction �
	 PerPreT �
	�� Overview �
	�	 Application description �
	�� System description �

� Intel Paragon �

� PSTSWM �
� Modeling PSTSWM �	
��� Parameters �	
��	 Computation model ��
��� Communication model ��

� Experiments �

��� Phase model validation ��
��	 Optimal aspect ratio � 		
��� Optimal parallel algorithm � 	�
��� Runtime predictions � 	�
��� Model accuracy requirements � 	�

� Conclusions � 	�

 Acknowledgements � 	

� References � 	

� iii �

PERFORMANCE MODELING FOR SPMD MESSAGE�PASSING

PROGRAMS

J�urgen Brehm

Patrick H� Worley

Manish Madhukar

Abstract

Today�s massively parallel machines are typically message�passing systems consisting

of hundreds or thousands of processors� Implementing parallel applications e�ciently in

this environment is a challenging task� and poor parallel design decisions can be expensive

to correct� Tools and techniques that allow the fast and accurate evaluation of di�er�

ent parallelization strategies would signi�cantly improve the productivity of application

developers and increase throughput on parallel architectures�

This paper investigates one of the major issues in building tools to compare paral�

lelization strategies� determining what type of performance models of the application code

and of the computer system are su�cient for a fast and accurate comparison of di�erent

strategies� The paper is built around a case study employing the Performance Prediction

Tool �PerPreT	 to predict performance of the Parallel Spectral Transform Shallow Water

Model code �PSTSWM	 on the Intel Paragon�

PSTSWM is a parallel application code that was designed to evaluate di�erent par�

allel strategies for the spectral transform method as it is used in climate modeling and

weather forecasting� Multiple parallel algorithms and algorithm variants are embedded in

the code� PerPreT uses a relatively simple algebraic model to predict execution time for

SPMD �Single Program Multiple Data	 parallel applications� Applications are modeled

through parameterized formulae for communication and computation� where the parame�

ters include the problem size� the number of processors used to execute the program� and

system characteristics �e�g�� setup times for communication� link bandwidth� and sustained

computing performance per processor	�

In this paper we describe performance models that predict the performance of the

di�erent algorithms in PSTSWM accurately enough to allow them to be compared� es�

tablishing the feasibility of such a demanding application of performance modeling� We

also discuss issues in generating and validating the performance models� emphasizing the

practical importance of tools such as PerPreT in such studies�

�� Introduction

Advances in microprocessor technology and interconnection networks have made it possible

to construct parallel systems with a large number of processors �e�g�� Cray Research T�D�

IBM SP	� Intel Paragon� workstation networks running PVM�� Unfortunately� the application

programs developed for conventional sequential systems or for pipelined supercomputers do not

automatically run e�ciently on these systems� There are few tools to support the development

of parallel programs� and the performance of parallel programs is strongly dependent on the

parallel programming skills of the application developer�

Before writing a program� the developer must identify a parallelization strategy� In most

cases there are many options for distributing the data and tasks onto the processors� These

options often have widely varying performance characteristics that are functions of numerous

system and program parameters� and it can be di�cult to predict a priori which options are

best� Accurate prediction of the performance trade�o�s of alternative strategies and of how

the performance will change as program parameters change would greatly bene�t program

developers�

As an example� several parallelization strategies have been proposed for global atmospheric

circulation models that use the spectral transform numerical technique ��
�� These codes have

strict performance requirements� being used for weather forecasts or for long term climate

simulations� and even small improvements in performance can be signi�cant� Researchers have

demonstrated empirically the performance of one or two strategies ���� ���� ����� ����� �	���

�	��� �	��� or have made qualitative or asymptotic comparisons between strategies using simple

performance models ���� �
�� ����� but this work only establishes the feasibility of the di�erent

approaches� To accurately compare the di�erent strategies� researchers at Argonne National

Laboratory and Oak Ridge National Laboratory developed the Parallel Spectral Transform

Shallow Water Model �PSTSWM�� Multiple parallel algorithms and algorithm variants are

embedded in PSTSWM� allowing good algorithms to be identi�ed from empirical studies� The

results of the studies using PSTSWM have been extremely useful ���� ���� however� PSTSWM

took over two years to develop and the experiments required to identify the best algorithms

are time consuming� We hope that performance models would be simpler to adapt to proposed

changes in the application codes and could be used to quickly examine the e�ect of running on

new machines or with di�erent problem or machine parameters�

Several approaches for the modeling of parallel systems have been presented that use Markov

models or Petri nets ����� �	��� �	��� Unfortunately� it is di�cult to apply these approaches to

massively parallel systems

� The graphical representation required by these approaches is very complex for systems

with hundreds or thousands of processors�

� 	 �

� The parallel application description required is very detailed�

� The resulting systems of equations de�ning the models are large and expensive to solve�

Applications for massively parallel systems typically use the single program multiple data

�SPMD� programming model and are loosely synchronous ���� For such programs� simpler

modeling techniques utilizing algebraic abstractions of the application and computer system

can often be used without a signi�cant loss of accuracy �	�� These techniques make it feasible

to model architectures with thousands of processors and the resulting models can be evaluated

quickly�

Recent research utilizing algebraic performance models includes ���� �	��� and �		�� These

papers focus on tools or methodologies� many of them language or system speci�c� that auto�

matically generate performance models from source code and user input� The paper by Sarukkai

et� al� �		� on a methodology and toolkit for the scalability analysis of message�passing parallel

programs has similarities with our research� but our concerns are somewhat di�erent� We are

primarily interested in investigating the accuracy of algebraic performance models� We want to

identify what types of models can be used when modeling full application codes in the context

of comparing parallelization strategies� In earlier work we found that the di�erent phases of a

parallel code place both implementation and performance constraints on each other� and that

evaluation of kernels in isolation can be misleading� especially in a prototyping environment�

We feel that it is still an open question as to how to model full application codes� How complex

must a model be to be su�ciently accurate� How can a model be validated and the model

accuracy determined� How does the accuracy of a model �scale� with the number of processors�

problem size� and other program and system parameters� The comparison of parallelization

strategies is also an interesting application of modeling� It is a strict test in that it requires

multiple accurate models� but also requires only relative accuracy� The goal is �fairness� in the

models for the di�erent strategies�

In this paper we show that a reasonably accurate prediction of performance measures is

possible without requiring detailed application and system characterizations� We describe a

case study employing algebraic models to predict the performance of the Parallel Spectral

Transform Shallow Water Model code �PSTSWM� on the Intel Paragon� We use these models

to determine which parallel algorithm options are optimal for a given problem size and number

of processors� We determine the error in our predictions empirically� We concentrate on

the feasibility of such an approach for comparing parallelization strategies We do not address

directly how to generate accurate models before the application code has been written� but the

results do provide guidance on how accurate the models need to be�

This research was possible only because of the prior existence of a number of tools
 PSTSWM�

PICL� and PerPreT� PSTSWM is a convenient testbed for such studies� PICL �Portable Instru�

Figure �
 PerPreT Modules

mented Communication Library� was used to collect the performance data needed to construct

and to validate the performance models ��	�� ����� PerPreT �Performance Prediction Tool� was

used to de�ne and evaluate the performance models �	�� All three tools are available via the

World Wide Web from the following locations

PerPreT
 http���www�irb�uni�hannover�de�ebrehm�publications
PICL
 http���www�epm�ornl�gov�picl

PSTSWM
 http���www�epm�ornl�gov�chammp�pstswm

The remainder of this paper is organized as follows� x	 is a description of how to use

the performance prediction tool PerPreT� x� is a brief description of the Intel Paragon� x�

is a description of the PSTSWM code and of the di�erent parallelization strategies� x� is a

description of the parameterized PerPreT formulae for PSTSWM� x� is a description of the

modeling experiments and an analysis of the results� x� is a discussion of our conclusions and

some ideas for future work�

�� PerPreT

���� Overview

The high�level modules of PerPreT �i�e�� application description� system description� communi�

cation library� analytical model� are outlined in Fig� �� PerPreT uses parameterized system and

application descriptions� Both the system and application descriptions are split into parameter�

ized communication and computation descriptions� The system and application descriptions are

kept independent of each other� Thus� applications are modeled on di�erent systems without

the need of de�ning new application descriptions�

� � �

An SPMD application is reduced to formulae for computation �number of arithmetic state�

ments� and communication �calls to the communication library�� The problem size for an

application and the number of processors used to execute the SPMD program are free parame�

ters� For modeling complex codes such as PSTSWM� PerPreT supports splitting the code into

di�erent computation phases according to their performance behavior� If extra operations for

parallel computing are necessary �e�g�� copy operations to prepare for communication�� such

extra phases can also be modeled with their performance characteristics�

PerPreT uses the system description parameters in Fig� � and a communication library to

model the communication and computation behavior of the target architecture� The sustained

MFlop�s �millions of �oating point operations per second� rates and the rates used for extra

phases �e�g�� copy rates� are the only system variables that sometimes change with di�erent

applications or with di�erent phases of a single application� More details on PerPreT can be

found in �	��

���� Application description

In many massively parallel systems� each processor has direct access only to its own local

memory� The communication between di�erent processors is realized using message passing�

Even on parallel architectures that directly support a global address space� message passing

is a popular programming paradigm� both for portability and for e�ciency� �Message passing

is often e�cient because it is a convenient �discipline� for dealing with the nonuniform access

behavior inherent in any scalable memory system��

Code for massively parallel systems is written primarily using the SPMD programming

model� In this model the same code is loaded on all execution units to perform the same or

similar tasks on di�erent sets of data� Synchronization and communication for the tasks are

done at the user level� At the system level� each processor executes its own code� Because

of data dependencies� the various tasks of an SPMD program may have to communicate dur�

ing execution� When using hundreds or thousands of processors� the parallel codes must be

fairly regular and well structured to avoid load balancing problems and remain deadlock free�

Often� the codes have alternating phases of communication and computation or� at least� dis�

tinct phases containing both communication and computation that are separated by logical

synchronization points�

In Fig� 	� an example SPMD program is outlined as a task graph� The circles represent the

computational tasks and the arrows represent communication between tasks� A computation

phase does not last longer than TCPi time units �i���	������ and a communication phase does

not last longer than TCMj time units �j���	������� The assumption is that TCPi and TCMj are

the maximum times for all tasks at levels i and j� respectively� In Fig� �� a possible mapping

Figure �
 Mapping of an SPMD program on � processors

� � �

of the tasks onto processors �P�����P�� is shown� The estimated communication time of this

mapping is
 X
j

TCMj ���

The estimated computation time is
 X
i

TCPi �	�

The total estimated execution time is

X
j

TCMj �
X
i

TCPi ���

If there is tight synchronization between phases� the measured execution time will be very

close to these estimates� However� many SPMD codes are only loosely synchronous� where

synchronization between phases is enforced only by the natural data dependencies and by the

explicit message passing used to satisfy these dependencies� For these codes� not all processors

necessarily execute the same phase at the same time� If load imbalances at each phase are not

all assigned to the same processors� then the use of maximumphase costs cause an overestimate

of the total execution time� Such behavior can also be modeled in PerPreT� at the cost of more

complexity in the models� In our experience and in the experiments described in this paper�

the simple maximum phase cost model is su�ciently accurate� and is used exclusively in this

paper�

For more general task graphs the number of subtasks per level� and thus the number of

arrows per level� is not necessarily constant� Data parallelism often results in one subtask

per processor for some of the levels� and the number of processors is a natural parameter

in the communication and computation models� The problem size is the second parameter

used� Clearly� the times TCPi �determined by the number of statements to be executed� and

TCMj �determined by the message length� depend on these parameters� but the formulae for

communication ��� and computation �	� are valid independent of the number of processors and

the problem size�

���� System description

Communication� In most existing message�passing systems� the time required for each

point�to�point communication request can be divided into the �ve phases outlined in Fig� ��

Depending on the message�passing protocol� one or more of the phases may or may not exist� For

instance� transputers use synchronous message passing where the messages are copied directly

from the user space on one processor to the user space on another processor� In this case it

T�
 Send setup time� This time is needed for communication between the sender�s commu�
nication unit and the sender�s user process to initialize message bu�ers and to transfer
control of the transmission to the communication unit�

T	
 Send copy time� In the case of an asynchronous message�passing protocol� the outgoing
message is often copied to a bu�er controlled by the communication unit�

T�
 Message transmission time� This time is required to copy the message from the sender�s
communication unit to the receiver�s communication unit�

T�
 Receive setup time� This time is needed for communication between the receiver�s user
process and the receiver�s communication unit� The receiver�s user process is informed
about the location of the message�

T�
 Receive copy time� In the case of an asynchronous message�passing protocol� the incom�
ing message is often copied from a bu�er controlled by the communication unit to the
receiver�s process space�

Figure �
 Message�Passing Communication

�
 �

is not necessary to copy the messages from user space to the communication bu�er and vice

versa� The PerPreT approach is general enough to model a wide variety of existing message�

passing protocols� The time for communication in a message�passing system normally follows

the simple formula
 Tc � T��T	�T��T��T� where Tc is the communication time� Some

of the phases �e�g�� T	� T�� T�� depend on the message size� If a complete system speci�cation

is available� these times can be used by the PerPreT communication library routines directly�

However� users often do not have access to a detailed speci�cation� The vendor provided times

tend to be �optimistic�� reporting best case times� These reported times may also be invalid

if third party or other nonnative communication routines are used� For instance� if a program

uses a portable communication library such as MPICH ���� or PICL ��	�� the times are slightly

higher because of the overhead of an additional software layer� The PICL message�passing calls

were used for this work� and the times T�����T� were determined by experimentation �	��� These

times are used as input parameters for the routines of the PerPreT communication library�

Computation� The computational behavior measured in MFlop�s of a single processor in

a multiprocessor often shows a wide variation for di�erent programs� Thus the performance

of the processor for the given program has to be determined in order to predict the execution

time of a program accurately� When the sequential or parallel code is available� PerPreT users

preferably run the code on one or a small number of processors and calculate the sustained

MFlop�s rate� If the code for an application is not available the PerPreT user has several

choices

� look at similar codes and take their performance characteristics�

� implement a small kernel to simulate the code�

� look at benchmarks that characterize the performance of the underlying hardware and

system software�

In the case of PSTSWM the code was split into several compute and copy phases� The

performance rate for each of these phases was determined from a set of runs of the program

on eight processors� as described in x��	� The assumption is that these values will prove to be

accurate enough for experiments when more than eight processors are used� The validity of

this assumption is examined in x��

�� Intel Paragon

The Paragon XP�S MP system is a distributed memory multiprocessor in which the �nodes�

are connected via a two�dimensional mesh interconnection network� Each node in the mesh

� � �

consists of three processors� two of which are dedicated to computation while the third is

normally dedicated to communication� The communicationprocessor is responsible for handling

the messages generated by the node and the messages passing through the node� Processors

and memory in a node are interconnected by a ��� MB�sec bus� and each link in the node

interconnection network has a peak unidirectional bandwidth of 	�� MB�sec�

There are three types of nodes � service� compute� and I�O� The service nodes host appli�

cation control processes� compute nodes are assigned to parallel applications and dedicated to

computations� and the I�O nodes provide the interface between the machine and RAID disks�

The node interconnection network uses wormhole routing� The messages travel in the horizon�

tal direction �rst and then in the vertical direction� Due to wormhole routing� communication

latency is e�ectively distance independent�

The XP�S ��� MP at Oak Ridge National Laboratory consists of ��	� compute nodes in

a �� row by �� column rectangular mesh� Each processor is a ��MHz i
��XP� and all of the

nodes have at least ��MB of �local� memory� In addition� there are � service nodes and �	�

I�O nodes� each connected to a ��
 GB RAID disk� At the time of these experiments� the

system software was release ��� of OSF�

In our experiments� of the three processors in a compute node� one was used for computation�

one was used for communication� and one was left idle� Using the second computation processor

did not improve performance for PSTSWM due to the nature of the memory accesses� For the

rest of the paper we will refer to a node in the XP�S ��� as a processor�

�� PSTSWM

PSTSWM is a message�passing parallel program that solves the nonlinear shallow water equa�

tions on a rotating sphere using the spectral transform method� PSTSWM is written in For�

tran �� with VMS extensions and a small number of C preprocessor directives� Message passing

is implemented using MPI ����� PICL ��	�� PVM ����� or native message�passing libraries� with

the choice being made at compile time� Optional performance instrumentation is implemented

using the PICL trace and pro�le collection interface� PICL was used in the work described

here� to collect performance data� but PICL simply represents a thin layer over the native NX

message passing on the Intel Paragon�

The shallow water equations in the form solved by the spectral transform method describe

the time evolution of three state variables
 vorticity� divergence� and a perturbation from an

average geopotential� The velocities are computed from these variables� PSTSWM advances

the solution �elds in a sequence of timesteps� During each timestep� the state variables of the

problem are transformed between the physical domain� where the physical forces are calculated�

and the spectral domain� where the terms of the di�erential equation are evaluated� The

� �� �

�� Evaluate non�linear product and forcing terms�

	� Compute forward Fourier transform of non�linear terms�

�� Compute forward Legendre transforms�

�� Advance in time the spectral coe�cients for the state variables�

�� Evaluate sums of spectral harmonics� simultaneously calculating the horizontal ve�
locities from the updated state variables�

�� Compute inverse Fourier transform of state variables and velocities�

Figure �
 Outline of a single timestep of PSTSWM�

physical domain for a given vertical level is a tensor product longitude�latitude grid� The

spectral domain for a given vertical level is the set of spectral coe�cients in a truncated spherical

harmonic expansion of the state variables�

Transforming from physical coordinates to spectral coordinates involves performing a real

fast Fourier transform �FFT� for each line of constant latitude� followed by integration over

latitude using Gaussian quadrature �approximating the Legendre transform �LT�� to obtain the

spectral coe�cients� The inverse transformation involves evaluating sums of spectral harmonics

and inverse real FFTs� The basic outline of each timestep is described in Fig� �� For more details

on the steps in solving the shallow water equations using the spectral transform algorithm

see �����

The parallel algorithms in PSTSWM are based on decompositions of the physical and spec�

tral computational domains over a logical two�dimensional processor mesh of size PX � PY�

Initially� the longitude dimension of the physical domain is decomposed over the processor

mesh row dimension and the latitude dimension is decomposed over the column dimension�

Thus� FFTs in di�erent processor rows are independent� and each row of PX processors col�

laborates in computing a �block� of FFTs� Similarly� the Legendre transforms in di�erent

processor columns are independent� and each column of PY processors collaborates in com�

puting a �block� of Legendre transforms� The computation of the nonlinear terms at a given

location on the physical grid is independent of that at other locations� The spectral domain

decomposition is a function of the parallel algorithm used� In this version of PSTSWM� all

computations on the spectral �grid� are likewise independent� Parallel e�ciency is determined

solely by the e�ciency of the parallel algorithms used for the FFT and LT transforms and by

any load imbalances caused by the choice of domain decomposition�

Two classes of parallel algorithms are available for each transform
 distributed algorithms�

using a �xed data decomposition and computing results where they are assigned� and trans�

pose algorithms� remapping the domains to allow the transforms to be calculated sequentially�

These represent four classes of parallel algorithms
 distributed FFT�distributed LT� transpose

� �� �

FFT�distributed LT� distributed FFT�transpose LT� and transpose FFT�transpose LT�

PSTSWM provides many parallel algorithms for each of the parallel algorithm classes �����

In these experiments� we restrict ourselves to one transpose algorithm �for both FFT and LT��

one distributed FFT algorithm� and two distributed LT algorithms� comprising the best parallel

algorithms on the Intel Paragon� These algorithms are brie�y described below�

Transpose� Assume that the transpose algorithm involves Q processors and that each

processor contains D data to be transposed� Then every processor sends approximately

D�Q data to every other processor� for a total of ��Q� messages and a total per processor

volume of ��D��

Distributed FFT� Assume that the distributed FFT algorithm involves Q processors

and that each processor containsD data to be transfomed� Then each processor exchanges

D�	 data with its neighbors in a logical �log�Q��dimensional hypercube� for a total of

��logQ� messages and a total per processor volume of ��D logQ��

Distributed LT� Assume that the Legendre transform is parallelized over Q processors

and that each processor will contain D spectral coe�cients when the transform is com�

plete� Then the per processor communication costs for the two distributed LT algorithms

can be characterized by

� ��Q� messages� ��DQ� total volume

� ��logQ� messages� ��DQ� total volume

respectively� The ��Q��step algorithm works on a logical ring� each processor communi�

cating only with its two neighbors� The ��logQ��step algorithm uses the same commu�

nication pattern as the distributed FFT algorithm�

These parallel algorithms for the FFT and LT generate the six parallel algorithms for the

spectral transformmethod listed in Tab� �� There are many implementationvariants possible for

DH
 distributed FFT � ��logQ��step distributed LT

DR
 distributed FFT � ��Q��step distributed LT

DT
 distributed FFT � transpose LT

TH
 transpose FFT � ��logQ��step distributed LT

TR
 transpose FFT � ��Q��step distributed LT

TT
 transpose FFT � transpose LT

Table �
 Candidate PSTSWM parallel algorithms

each of these algorithms� distinguished� for example� by the choice of communication protocol

� �	 �

and the mapping of logical processors to physical processors� For these experiments� we use

those implementations that have proven most e�cient on the Intel Paragon� For details on the

di�erent implementation options� see �����

PSTSWM is an interesting case study in modeling for many reasons� It has numerous dis�

tinct phases� each with its own computation and communication rates and patterns� It has

�static� load imbalances that change with the choice of parallel algorithm and logical proces�

sor mesh� It requires signi�cant global communication during each timestep� divided into two

collective operations that access the processors in di�erent ways� Finally� PSTSWM is a rep�

resentative member of an important class of simulation models� In these studies� our goal is to

build models that are accurate enough to indicate which parallel algorithm is most e�cient for

a given problem size and number of processors on a given multiprocessor�

�� Modeling PSTSWM

Assume that communication costs are negligible or scale linearly with the computation costs�

Assume further that the computation rate varies in the same way across all algorithms as a

function of the number of processors and of the problem size� Then a simple computational

complexity analysis is su�cient to choose between the alternative parallel algorithms� If these

assumptions do not hold or if runtime estimates are also needed� then we must determine both

the computation and communication costs for a range of numbers of processors and of problem

sizes�

In earlier research� we showed that di�erent logical phases of a code may need to be modeled

individually �	
�� Each phase has its own computation rate� depending on the amount of

computation and the amount and pattern of memory accesses� As the number of processors

and problem size change� the percentage of time spent in each phase changes� This changes

the overall computation rate� In the following� we identify and construct models for important

phases� For brevity� we present only the phase models for algorithm TH� Models for the other

parallel algorithms are given in Tab� ����� in the appendix�

���� Parameters

PerPreT expects one formula for the computation and one formula for the communication

as input� These formulae use the number of processors and the problem size as parameters�

For PSTSWM� the problem is specifed by
 parameters
 DT� TAUE� MM� NN� KK� NLAT� NLON�

NVER� and by the speci�cation of initial data and forcing function� The data and forcing

function speci�cation is �xed in these experiments and the following performance models are

� �� �

speci�c to the particular test case�� representing the calculation of solid body rotation steady

state �ow �	��� DT is the length of the timestep and TAUE is the duration of the model run

in simulated time� Thus� TAUE�DT is the number of timesteps in the simulation� For these

experiments the number of timesteps is �xed at ��
� MM� NN� and KK determine which spectral

coe�cients are generated� We use the common choice of MM � NN � KK� which implies that

MM � � Fourier coe�cients are retained from the Fourier transform and �MM � ���MM � 	��	

spectral coe�cients are used in the spectral representation� NLAT� NLON� and NVER de�ne the

tensor�product physical grid of size NLON � NLAT � NVER� These values are also a function

of MM when the computational complexity is minimized subject to satisfying an anti�aliasing

condition� The number of processors used is speci�ed by the logical processor mesh PX� PY�

The costs associated with each phase of PSTSWM are functions of the domain decomposi�

tion relevant to the phase� There are two decompositions of the physical domain �longitude �

latitude � vertical levels�

� NLLON P� NLLAT P� and NLVER P� denoting the number of local longitudes� latitudes� and

vertical levels assigned to a given processor during physical domain computations�

� NLLON F� NLLAT F� and NLVER F� denoting the number of local longitudes� latitudes� and

vertical levels assigned to a given processor during the Fourier transform phases�

one decomposition of the Fourier domain �wavenumber � latitude � vertical levels�

� NLMM S� NLLAT S� and NLVER S� denoting the number of local wavenumbers� latitudes� and

vertical levels assigned to a given processor during the Legendre transform phases�

and one decomposition of the spectral domain �spectral coe�cients � vertical levels�

� NLSP S� NCSP S� and NLVER S� denoting the number of spectral coe�cients assigned to a

single processor and to a single column of processors� respectively� during computations

in the spectral domain�

The values for these �� parameters are functions of MM� NN� KK� NLAT� NLON� NVER� PX� PY� and

the parallel algorithm being used� The values for parallel algorithm TH are as follows

NLLON P � dNLON�PXe NLLAT P � 	 � dNLAT��	 � PY�e NLVER P � NVER

NLLON F � NLON NLLAT F � 	 � dNLAT��	 � PY�e NLVER F � dNVER�PXe

NLMM S � MM� �� NLLAT S � 	 � dNLAT��	 � PY�e NLVER S � dNVER�PXe

NCSP S � �MM� 	��MM� ���	 NLSP S � NCSP S

�Most of the other test cases di�er only in calculation of the nonlinear terms� and only one phase model
would need to be changed when changing cases�

� �� �

The values for the other � algorithms are listed in Tab� �� in the appendix� These are maximum

values across all processes� and load imbalance enters via the �oor and ceiling functions in the

expressions� The load imbalance varies with logical grid aspect ratio and parallel algorithm�

and between the di�erent computational domains�

���� Computation model

PerPreT requires a simple algebraic expression for the number of arithmetic statements exe�

cuted by each processor� If this number varies for di�erent processors� the maximum is used�

To implement di�erent models for di�erent phases� a separate algebraic expression is generated

for each phase� The computation model for the entire program is a weighted sum of the phase

expressions� where the weights are the computation rates associated with the di�erent phases�

We include phases that involve only copying� In parallel codes� copying is often a signi�cant

cost� For example� for the transpose�based parallel algorithms the indices of the �eld arrays

must be in a di�erent order for the transposition than for the computation� This requires an

explicit copy before and after the communication phases�

The following phase computation models for parallel algorithm TH were derived from the

source code and are of two types
 number of �oating point computations and number of bytes

copied� For the purposes of these experiments� we limited ourselves to �simple� models that an

industrious application developer would be willing to generate� Some phases are interleaved in

time even for a single timestep� and a given phase model represents the sum of all calls to the

relevant code during one time step� Later we will examine whether this number of phases is

necessary or su�cient�

The phase models come in two forms
 one�parameter �single rate� and two�parameter mod�

els� All of the phases show some performance sensitivity to problem size and aspect ratio� but

many of the computational phases are relatively insensitive and a single rate is su�cient� �We

examine accuracy issues in detail in x��� The variations in the rates in Tab� 	 between di�erent

phases arise from di�erent access patterns to and from memory� and from di�ering amounts of

computation per memory access�

In contrast� rates for phases with low computation to memory access ratios� like copy phases�

vary signi�cantly with aspect ratio and problem size� With a few exceptions� this variation is

approximated reasonably well with the following two�parameter model
 a rate for the total

number of operations and a rate for the number of times that the inner loop is executed� The

form of these models was derived empirically� but one justi�cation is that it takes into account

the additional cost of crossing cache and page boundaries when accessing memory�

The phases requiring two�parameter models and the rates for all models were determined

empirically� Timings were taken from a series of
�processor runs using two di�erent problem

� �� �

Phase Model Rate
���a � ��b�

physical domain computation
� �	 � NLLON P � NLLAT P � NLVER P ��

forward FFT
	 d�PX� ���PXe � �	 � NLLAT P � NLVER P � �a� b � NLLON P� ���� � 	����
� d�PX� ���PXe � �	 � NLLAT P � NLVER F � �a � PX� b � NLLON F� ����� � 	����
� 	� � NLLAT F � NLVER F � NLLON F � �a� b � log��NLLON F���� ���
 � 	����
� �� � NLLAT F � NLVER F � �a � b � NLLON F��� ���� � ���	�
� ��� � NLLAT F � NLVER F � �a � b � NLLON F��� ����� � ���
�

forward LT
� �PY� �� � � � NLVER S � NCSP S�PY ���
�� �� � NLVER S � NLMM S � NLLAT S ����
�� ��� � NLLAT S� �� � NCSP S � NLVER S ����

spectral domain computation
�	 �� � NLSC S � NLVER S ����

inverse LT
�� �� � NCSP S � NLVER S ���
�� ��� � NCSP S� �� � NLMM S� � NLLAT S � NLVER S �	�

�� �� � NLLAT F � NLVER F � �a � b � �NLLON F�	� NLMM S� �		�� � ���
�

inverse FFT
�
 �� � NLLAT F � NLVER F � �a � b � NLLON F��� �
�
 � 	����
�� �� � NLLAT F � NLVER F � �a � b � NLLON F�	� �	�
 � �
���
	� �	��	� � NLLAT F � NLVER F � NLLON F � �a � b � log��NLLON F���� ���
 � 	����
	� d�PX� ���PXe � 	� � NLLAT F � NLVER F � NLLON F ���	
		 d�PX� ���PXe � 	� � NLLAT F � NLLON P � �a � PX� b � NLVER P� ����	 � �
���

Table 	
 Computational models and MFlop�s or MByte�s rates for algorithm TH

� �� �

Phase Description
physical domain computations

� nonlinear terms
forward FFT

	 copy before transpose or copy before distributed computation
� copy in transpose
� distributed computation
� sequential forward FFT
� copy before communication for complex�to�real extraction
� extract the real transform from the complex transform

forward LT

 copy before transpose
� copy inside transpose or summation inside distributed vector sum
�� forward LT preprocessing
�� forward LT computation

spectral domain computation
�	 time update

inverse LT
�� inverse LT preprocessing
�� inverse LT computation
�� copy before transpose
�� copy inside transpose
�� zero truncated coe�cients

inverse FFT
�
 convert real transform data into complex transform data
�� copy after conversion
	� sequential inverse FFT
	� copy before transpose or copy before distributed computation
		 copy inside transpose
	� distributed computation

Table �
 Computation phase descriptions for all parallel algorithms�

� �� �

sizes� �	 bit precision� and all possible aspect ratios ��x
� 	x�� �x	�
x��� For one�parameter

models we use the maximum observed rates� This avoids contamination from atypical rates

arising from ine�cient memory alignments or poor cache performance� For the two�parameter

models we use typical or median values� giving preference to rates for the smaller problem

when there is a signi�cant discrepancy� The intent is to better capture the behavior when

extrapolating to larger numbers of processors� If a rate for a phase showed variation but

could not be accurately �t with the type of two�parameter models described above� we use a

one�parameter model�

Interactions with the memory hierarchy are major determiners of computation and copy

rates� and these change in a phase as the problem and algorithm parameters vary� Even one�

parameter phase models that are highly accurate for the
�processor calibration runs will be

valid only for a range of problem and machine parameters� Consequently� there will be errors in

the rates when extrapolating� and scalability will be a problem even in a phase model approach�

Algebraic models that take into account memory access patterns are possible� but such models

are unlikely to be developed by an application programmer and are not discussed here� Our

hope is that the range of validity of the rates is large enough or that the degradation a�ects all

phases in a similar enough way that the algorithm comparisons will be reasonably accurate�

���� Communication model

PerPreT requires a high�level description of the communication in a parallel program� For

PSTSWM� communication models are required for the two parallel FFT and for the three

parallel LT algorithms� The detailed models are given in Tab� �� The comm�mess length�

function in Tab� � returns the time needed for one communication between two processors of

the multiprocessor� The parameter mess length is the message length in bytes� Contention

for bandwidth and other network resources and distance in the network are ignored in these

experiments� The models are parameterized solely by the number of messages and by the size

of each message for a given processor�

Note that the nature of the communication varies signi�cantly between the di�erent algo�

rithms� The distributed FFT and ��logQ��step distributed LT use a butter�y pattern in their

communication� In the transpose algorithm� each processor sends to every other processor�

using an exclusive�OR ordering to avoid some contention� In the ��Q��step distributed LT�

each processor sends and receives from only two other processors� and the two processors are

chosen to be neighbors in the physical network if possible� The ��Q��step distributed LT also

attempts to overlap the communication with computation� None of these di�erences are taken

into account in these models� although they could be� and this work also examines whether

more detailed models are needed� More detailed models of the communication cost are known

� �
 �

Direction Model
Distributed FFT

forward d�PX� ���PXe � �� � log��PX�� � comm ��	 � NLLAT P � NLVER P � dNLLON P�	e�
inverse d�PX� ���PXe � �� � log��PX�� � comm �	� � NLLAT P � NLVER P � dNLLON P�	e�

Transpose FFT
forward �PX� �� � comm ��	 � NLLAT P � NLVER F � NLLON P�
inverse �PX� �� � comm �	� � NLLAT P � NLVER F � NLLON P�

��Q��step distributed LT
forward �PY� �� � comm �	� � NLVER S � NLSP S�
inverse �PY� �� � comm �	� � NLVER S � NLSP S�

��logQ��step distributed LT

forward

log
�
PYX

i��

	 � comm
�

 � d� � NLVER S � NCSP S�	ie

�
inverse

Transpose LT
forward �PY� �� � comm ��� � NLLAT F � NLVER S � NLMM S�
inverse �PY� �� � comm ��� � NLLAT F � NLVER S � NLMM S�

Table �
 Communication models for forward and inverse transforms

to be necessary if poor communication algorithms or protocols are used� For example� a trans�

pose algorithm in which all processors send to processor �� then processor �� etc�� serializes the

communication� and the maximumper processor number of messages and message volume will

not represent the communication cost� The goal of the algorithm comparison is to compare

good parallel implementations� and we hope that more detailed communication models are not

necessary�

�� Experiments

The performance models described in the previous section and in the appendix are meant to

be simple enough to be generated by the application developer� yet accurate enough to be

used when scaling problem and machine parameters and when comparing alternative parallel

algorithms� The approach taken here has been to construct the application model from a set

of phase models�

In this section we begin by examining the accuracy of the individual phase models� We then

use the models to investigate the following performance questions

�� What is the best logical aspect ratio to use for a given parallel algorithm and for a given

number of processors�

	� What is the best parallel algorithm to use for a given number of processors�

�� How long will the application take to complete a run�

� �� �

Two problem sizes are investigated� denoted by T�	 and T
��

MM NN KK NLAT NLON NVER

T�	 �	 �	 �	 �� �	
 ��

T
�
�
�
� �	
 	�� ��

We discuss the phase model validation for algorithm TH and for three numbers of processors�

P �
� ��� �	
� For the three performance questions� we discuss P �
� ��� �	� ��� �	
�	�����	�

The optimal logical aspect ratio is determined for each parallel algorithm� The optimal parallel

algorithms are determined over all algorithms and aspect ratios� The estimation of runtimes is

discussed in terms of the optimal parallel algorithms�

Finally� we reexamine the models� evaluating the e�ectiveness and importance of the phase

model approach in being able to answer the stated performance questions�

	��� Phase model validation

The rates for the phase models were determined from data for
�processor experiments� as

described earlier� Table � indicates the maximum error in using these simple one� or two�

parameter models for a given phase over all possible aspect ratios� where the percentage absolute

error is de�ned by

��� � jpredicted time� true timej�true time � ���

Observations on the accuracy of the phase models follow�

�� The maximum errors for the
�processor runs used to determine the rates are small for

the most part� There are some phases for which the simple one� and two�parameter

models are not very accurate� These same phases also show poor accuracy for the ���

and �	
�processor runs�

	� Many of the models are not very accurate when scaling to �� and �	
 processors in the

worst case� What is not shown in this table is the range of validity across aspect ratio�

Most of the models are quite accurate for all but the extreme aspect ratios� The depen�

dence of the accuracy on aspect ratio can be inferred from Tab� �� where the percentage

error in the models is given for each aspect ratio in turn� The percentage error is de�ned

to be

��� � �predicted time� true time��true time � ���

Note that 	���processor results are included in Tab� � to provide additional information

on the scalability of the models� Results for P � ��� �	� ��	 are omitted because of space

limitations�

� 	� �

maximum percentage absolute error
T�	 T
�

Phase P �
 P � �� P � �	
 P �
 P � �� P � �	

� 	��	 ���� ���� ���� ���� ����
	 ��� ��� ��	 ��� ��� ���
� ��	 �	�� ���� ��
 ���	 ����
� ��� ���� ��� ��� ��� ���
� ��� ���� �	�� ��� ���� ����
� 	�� �	�� �	�� 	�� ���� ���

� ���� ���� ���� 	�� 	�	 ��

�� ���� �	�
 ���� ���� ���� ����
�� ��� 	��� 	��
 ��� 	��� 		�	
�	 ��� ��� 	�� ��� ��
 ���
�� ��� 	�� 	�� ��� ��� 	�	
�� ��� ���
�� ��� ���� �	��
�� ���
 ���� ����
�� ���� ����
�
 ��� 	��� ���� ��� 	
�� 	
�

�� ��
 �
�	 ���� 	�� �
�� ���

	� ���
��
�� ���
�	
�

	� ��	 ���� �
�� ���� ��� ���
	� ��� ��	 ��� ��
 ��� ���

sum ��	� ��� ���
�� 	�� ���� ���
FFT comm ���
 ���� ���� ���� ���� 	���
LT comm ��	 ���� ���� 	��� ���� ����

Table �
 Maximumpercentage absolute error in phase models over all aspect ratios for algorithm
TH�

� 	� �

T�	 T
�
Aspect Ratio Runtime ! error Runtime ! error

PX� PY �seconds� in model �seconds� in model

x� �	��
 ���� �
��
� ����
�x	 ���
� ���� ������ ����
	x� ����� �	�� �
���� ���	
�x

���� �	�
 �	��
� ���
��x� ����� ��� 		���� ����
�	x	 		��
 ���� ����
� ��	
��x� �	��� ���� ���	� ��	

x
 �	�
� ���� ����
 ���
�x�� ���
� ���� ����
 ���
	x�	 ����� ���	 ����� ����
�x�� ���	� ����
�	
x� ����� ���
 		���
 ����
��x	 	���� ��	 ��	��� ��

�	x� �	��� �	�� �
��� ��

��x
 ���	 ���� ���
� ���

x�� ���	 ���� ���	� ����
�x�	
��� ���� ����	 ����
	x�� ���
� ����
	��x� 	����� ����
�	
x	 	��
� ���� ����
� ����
��x� ����� �	�
 ����� ����
�	x
 ���� ���� �	��� ���	
��x�� ���� ����� ����� �
��

x�	 ���
 ����� 	���� �����
�x�� 	
��� ����	
	x�	

�x	��

Table �
 Runtime and model error for algorithm TH�

� 		 �

�� In general� the most inaccurate phase models are for those phases taking the least amount

of time� This is to be expected given the greater degree of sensitivity to overhead and

unpredictable memory access costs in short phases� This result is not directly observable

from Tab� �� but it can be inferred from the relatively good accuracy shown in the sum of

the phase computation models ��sum ��	��� and in the total time predictions in Tab� ��

�� Communication costs are not simple to separate from computation costs� The arrival

of messages while a process is in a computation phase causes an overestimate of the

computation cost and an underestimate of the communication cost� For completeness� we

have included what data we have on communication costs and estimated the error in the

models� but the accuracy of the communication models is best inferred from the accuracy

of the total time predictions in Tab� ��

�� While algorithm TH is not atypical� the accuracy of the models for the other algorithms

varies from that shown here� The appendix contains results corrresponding to Tab� � for

the other algorithms�

In summary� the individual phases are not always well modeled by using these simple per�

formance models� but the phase model approach appears to be quite accurate when modeling

the entire application�

	��� Optimal aspect ratio

The �rst performance question of interest for PSTSWM is how to allocate processors among the

di�erent parallel transforms to minimize execution time� i�e�� for a given number of processors�

what logical aspect ratio should be used� The relative accuracy of the execution time predictions

is important here� not the absolute accuracy� Table � describes the true and predicted optimum

for di�erent numbers of processors when they di�er� and the percentage loss from using the

model results� The loss is measured in the following way� Let PRED represent the predicted

optimal aspect ratio� Let OPT represent the true optimal aspect ratio� The percentage loss is

de�ned as

��� � �PRED true time � OPT true time���OPT true time� � ���

Only �� of the
� model predictions are incorrect� and only � of these result in errors in

runtime of more than �!� Performance on the Paragon is very consistent� but there is some

small variation between runs� The � cases in which the �error� is less than �! should probably

be considered correct�

What is not indicated in this table is how important it is to choose a good aspect ratio�

The worst case aspect ratios are as much as ten times worse than the best case� primarily

� 	� �

T�	 T
�
model experimental ! error in model experimental ! error in

Processors results results runtime results results runtime
DH �� errors�

�	 �x
 	x�� ��� �x
 �x

��	 ��x�	 �	x��
�� ��x�	 �	x�� ��	

DR �	 errors�
�	 �x�	 �x
 ��	 �x�	 �x�	
��	 ��x�	 �	x�� ���
 �	x�� �	x��

DT �no errors�
TH �	 errors�

�	 ��x	
x� ��	
x� ��x	 ���
TR �� errors�

�� �x�� �x� ��� �x�� �x��
�	 ��x	
x� 	��
x� �x
 ��	
�� ��x� ��x� ��x�
x
 ���

TT �� errors�
�� ��x� ��x� ��x� �x�� ���
�	 �x�	 �x
 ��� �x�	 �x�	
�� ��x�
x
 	�� ��x�
x
 ���
�	
 ��x

x�� ��� ��x

x�� 	��

Table �
 Error in choosing optimal aspect ratio from model results instead of experimentally�

re�ecting load imbalance� Tables �
�	� in the appendix contain more details on the sensitivity

of performance to aspect ratio�

Determining a good logical aspect ratio is important when implementing a parallel strategy�

A parallel code could incorporate the �exibility to change at least some of these parameters

at compile�time or runtime� in which case PerPreT simply makes this more convenient to

determine� This convenience should not be underestimated� Determining the optimal aspect

ratio experimentally requires access to the same number of processors as will be used in a

production run and numerous� possibly expensive� experiments�

	��� Optimal parallel algorithm

Determining the optimal parallel algorithm experimentally requires developing� tuning� and

evaluating multiple parallel implementations� This is much more time consuming than deter�

mining the optimal aspect ratio experimentally� and there is much to be gained from using

performance models to predict the optimal parallel algorithm� As before� relative accuracy in

the predicted execution times is what is important� Table
 indicates the true and predicted

optimal parallel algorithm for di�erent numbers of processors� and the percentage loss from

using the model�identi�ed algorithm� measured as in ���� The optimal aspect ratio was found

for each parallel algorithm before being compared with the other parallel algorithms� The

� 	� �

T�	 T
�
model experimental ! di�� in model experimental ! di�� in

Processors optimum optimum runtime optimum optimum runtime

 DR �x
 DR �x
 DT �x
 DR �x
 ��	
�� DT �x�� DT �x�� DT �x�� DR �x�� ��

�	 TR
x� TR
x� TR ��x	 TR �x
 ���
�� TR ��x� TR ��x� TR ��x� TR
x
 ���
�	
 TH ��x
 TR ��x
 ��� TT ��x
 TT
x�� 	��
	�� TH ��x�� TT ��x�� ��� TT ��x�� TT ��x��
��	 TH ��x�	 TH ��x�	 TT ��x�	 TT ��x�	

Table

 Error in choosing optimal algorithm from model results instead of experimentally�

model results use the model�determined optimal aspect ratios� The empirical results use the

experimentally�determined optimal aspect ratios�

The performance models correctly identify the optimal algorithm and aspect ratio in seven

out of fourteen cases� and the correct algorithm �if not the optimal aspect ratio� in ten of the

cases� The error in misidentifying the optimal algorithm was acceptable� especially for the

�scaling� examples� P �
� The performance sensitivity of choosing the wrong algorithm �but

with an optimum aspect ratio� is not as extreme as when choosing the aspect ratio� but worst

case errors range as high as
�!� Note that when considering a larger sampling of interesting

problem sizes� all of the parallel algorithms are optimal in some cases� It is not possible to

eliminate any of the parallel algorithms a priori�

	��� Runtime predictions

When allocating resources� it is important to know how long a parallel job will take to run on a

given number of processors� For example� runtime information is often required when submit�

ting batch requests� This type of prediction requires a certain degree of absolute accuracy� but

the degree needed is not great� �However� accurate predictions of runtime can be extremely

important in real�time environments��

Table � indicates how accurately the models predict the runtime for the model�determined

�optimal� parallel algorithms �to pick particular examples�� The percentage error is measured

as in ���� With possibly one exception� the accuracy of these predictions is adequate for the

determination of resource requirements� Note that similar accuracies hold for predicted speedup

and parallel e�ciency� The data indicate that model accuracy for problem size T�	 is not scaling

well beyond 	�� processors� at least for algorithm TH� However� the practical limit for T�	 is

��	 processors� and this degradation in accuracy is not signi�cant for this application code�

� 	� �

T�	 T
�
predicted ! error in predicted ! error in

Processors algorithm runtime prediction algorithm runtime prediction

 DR �x
 ���
 ���� DT �x
 �	��� �	�

�� DT �x�� ���� ���� DT �x�� 	���� �
��
�	 TR
x� 	��� 	�	 TR ��x	 ��
�� ���
�� TR ��x� �	�	 ��� TR ��x� ���� ���
�	
 TH ��x
 ��� ���� TT ��x
 ���� ���
	�� TH ��x�� ��� ����� TT ��x�� ���
 ��

��	 TH ��x�	 	�� �	��
 TT ��x�	 ��� ���

Table �
 Error in predicting runtime �seconds��

T�	 T
�
model experimental ! di�� in model experimental ! di�� in

Processors optimum optimum runtime optimum optimum runtime

 DT �x
 DR �x
 ��� DT �x
 DR �x
 ���
�� DT �x�� DT �x�� DT �x�� DR �x�� ��

�	 DT 	x�� TR
x� ���� DT 	x�� TR �x
 ����
�� DT �x�� TR ��x� 		�� TT ��x� TR
x
 ���
�	
 TT ��x
 TR ��x
 	�� TT ��x
 TT
x�� 	��
	�� TT ��x�� TT ��x�� TT ��x�� TT ��x��
��	 TR ��x�	 TH ��x�	 ���� TT ��x�	 TT ��x�	

Table ��
 Error in choosing optimal algorithm from complexity analysis instead of experimen�
tally�

	��� Model accuracy requirements

The previous results indicate that the accuracy of our phase model approach is adequate for

algorithm tuning and comparison for this case study� We next discuss whether a simpler model

might also su�ce�

There are numerous ways to simplify the current model� Here we consider only a few obvious

alternatives� First� we choose the optimal algorithm on the basis of arithmetic complexity alone�

ignoring copy phases� communication costs� and phase�dependent rates� �Including copy and

communication complexity would require some sort of rate estimation to weight the di�erent

components of the model��

Table �� indicates the true and predicted optimal parallel algorithms using this simpli�ed

model� and the percentage loss from using the model�identi�ed algorithm� These predictions

are not as good as those from using a phase model� Depending on the application� the size of

these errors may or may not be acceptable� But� since the error in the prediction is not known

in practice� the wide and unpredictable variation in the error is worrisome�

We can not predict runtimes from the complexity analysis alone� The next models we

� 	� �

consider use the sustained computation rate for an
�processor run for a given parallel algorithm

to weight the corresponding arithmetic complexity model� Unlike for the phase models� a

separate rate was determined for each problem size� Table �� indicates how accurately these

models predict the runtime for the above model�determined �optimal� parallel algorithms�

For this type of model to be accurate requires that either copy and communication costs are

negligible or they scale similarly with the computation costs� and that the rates are insensitive

to scaling� It is clear from Tab� �� that these conditions do not hold for PSTSWM�

T�	 T
�
predicted ! error in predicted ! error in

Processors algorithm runtime prediction algorithm runtime prediction
�� DT �x�� ���	 ���� DT �x�� 	���� ����
�	 DT 	x�� 	��
 �	��� DT 	x�� ����� �	���
�� DT �x�� ���� �	��� TT ��x� ���� ��
��
�	
 TT ��x
 ��� �	��� TT ��x
 	��� �����
	�� TT ��x�� ��� ��	�� TT ��x�� ���� �	��

��	 TR ��x�	 ��� ����� TT ��x�	 ��� �����

Table ��
 Error in predicting runtime �seconds� using complexity�based model�

Our �nal simpli�ed model includes terms for computation� copy� and communication costs�

but does not take into account phase�speci�c rates� Instead we use average copy and compu�

tation rates determined from the
�processor runs� As before� di�erent rates are used for each

parallel algorithm and problem size� Table �	 indicates how accurately this type of single�phase

model predicts the runtime for the phase model �optimal� parallel algorithms �to allow direct

comparison with the phase model results�� With the exception of predictions for T�	 for large

numbers of processors� the single�phase model is as accurate a predictor of runtime as is the

�multiple�� phase model� So the question arises whether a phase model is required as long as

the copy� computation� and communication costs are included in the model�

T�	 T
�
predicted ! error in predicted ! error in

Processors algorithm runtime prediction algorithm runtime prediction

 DR �x

��
 ��� DT �x
 ����� ���
�� DT �x�� ���� ��	 DT �x�� 	���� ����
�	 TR
x� 	��� ��� TR ��x	 ��
�
 ����
�� TR ��x� �	�� ��� TR ��x� ���� ��

�	
 TH ��x
 ��� ���	 TT ��x
 �	�� ���
	�� TH ��x�� ��
 ����� TT ��x�� ���� 	�	
��	 TH ��x�	 	�� ��	�� TT ��x�	 ��� ���

Table �	
 Error in predicting runtime �seconds� using single�phase model�

A phase model does not appear to be required for accurate performance prediction for

� 	� �

PSTSWM� However� we found the act of constructing the phase model to be necessary� The

error prone aspect of the phase model approach was in the generation of the phase model

expressions� These same expressions are needed in a single�phase model �or in a complexity

analysis�� The additional step of calculating rates and validating the individual phase models

also validates the expressions� Modeling phases can also identify performance �problems��

for example� code that is overly sensitive to aspect ratio due to compiler peculiarities� Using

average rates and a single�phase model removes the necessity of detailed pro�ling to determine

individual phase model rates� but makes it more di�cult to validate the model�

�� Conclusions

This case study demonstrates that relatively simple algebraic models can be used to construct

scalable performance models for use in algorithm tuning and comparison� These models can

be di�cult to generate and validate� but the phase model approach makes it feasible to do

so� In addition� constructing and modifying models and generating predictions were easy using

PerPreT� Note that our modeling �discipline�� used to limit the amount of work spent in

tuning the models� is somewhat arti�cial� Some restrictions are necessary for the study to

be meaningful� but there may be better ways of determining phase model rates than simply

running the full application for the target problem size on a small number of processors�

A phase model approach was useful in generating a performance model� but it may not

be necessary when �porting� the model to a new platform� As described earlier� single rates

for computation� copy� and communication phases may be su�cient when using the model for

predictions� In future work� we will examine this issue by repeating our evaluation studies on

the IBM SP	 and on the Cray Research T�D or T�E� The SP	 will be a particularly interesting

platform� communication costs are relatively high� and a simple communication model may not

be adequate�

It is clear that additional tools would be useful in generating performance models� For

example� interactive tools to aid the application expert in generating the models from the

source code �as in �		��� in devising experiments to determine rates and to validate models� and

in calling PerPreT to make predictions would have made this process much simpler� We do

not currently forsee tools that can generate performance models for complete application codes

automatically� except possibly in high�level language�speci�c environments as proposed in ���

and �	���

This study did not address the question of how to generate the models before generating

code� While our algebraic models were su�ciently accurate� a detailed complexity analysis

is a requirement for an accurate comparison� Many of the costs� for example� copy phases

and rates� may not be obvious until the design and implementation are fairly advanced� One

� 	
 �

possible approach is to generate a hierarchy of models� at each step eliminating obviously bad

parallel algorithms� The performance models of the remaining candidates would then be re�ned

�possibly simultaneously generating the code�� This is a big job in itself� and a sophisticated

prototyping environment would be very useful� We hope that our results on the advantages

and limitations of algebraic performance models will be useful in the design of such tools�

�� Acknowledgements

This research was supported by the U�S� Department of Energy under Contract DE�AC���

��OR		��� with Lockheed Martin Energy Research Inc� and by the Alexander von Humboldt

foundation� The Intel XP�S ��� MP Paragon operated by the Center for Computational

Science at ORNL is funded by the Department of Energy�s Mathematical� Information and

Computational Sciences Division of the O�ce of Computational and Technology Research�

	� References

��� S� R� M� Barros and T� Kauranne� On the parallelization of global spectral weather

models� Parallel Computing� 	� ������� pp� ����"�����

�	� J� Brehm� L� Dowdy� M� Madhukar� and E� Smirni� PerPreT � a performance

prediction tool� in Quantitative Evaluation of Computing and Communication Systems�

Lecture Notes in Computer Science ���� Springer� Heidelberg� �����

��� M� Calzarossa and G� Serazzi� Workload characterization � a survey� Proceedings of

the IEEE�
� ������� pp� ����"�����

��� D� Dent� A modestly parallel model� in The Dawn of Massively Parallel Processing in

Meteorology� G��R� Ho�man and D� K� Maretis� eds�� Springer�Verlag� Berlin� ����� pp� 	�"

���

��� T� Fahringer� Estimating and optimizing performance for parallel programs� IEEE Com�

puter� 	
 ������� pp� ��"���

��� I� Foster� W� Gropp� and R� Stevens� The parallel scalability of the spectral transform

method� Mon� Wea� Rev�� �	� ����	�� pp�
��"
���

��� I� T� Foster� B� Toonen� and P� H� Worley� Performance of parallel computers

for spectral atmospheric models� Tech� Report ORNL�TM"�	�
�� Oak Ridge National

Laboratory� Oak Ridge� TN� April ����� �also� J� Atm� Oceanic Tech� accepted��

� 	� �

�
� I� T� Foster and P� H� Worley� Parallelizing the spectral transform method� A com�

parison of alternative parallel algorithms� in Parallel Processing for Scienti�c Computing�

R� F� Sincovec� D� E� Keyes� M� R� Leuze� L� R� Petzold� and D� A� Reed� eds�� Society for

Industrial and Applied Mathematics� Philadelphia� PA� ����� pp� ���"����

��� � Parallel algorithms for the spectral transform method� Tech� Report ORNL�TM"

�	���� Oak Ridge National Laboratory� Oak Ridge� TN� May ����� �also� SIAM J� Sci�

Comput�� accepted��

���� U� G�artel� W� Joppich� and A� Sch�uller� Parallelizing the ECMWF�s weather fore�

cast program� The �D case� Parallel Computing� �� ������� pp� ����"��	��

���� G� A� Geist� A� L� Beguelin� J� J� Dongarra� W� Jiang� R� J� Manchek� and

V� S� Sunderam� PVM� Parallel Virtual Machine � A Users Guide and Tutorial for

Network Parallel Computing� MIT Press� Boston� �����

��	� G� A� Geist� M� T� Heath� B� W� Peyton� and P� H� Worley� PICL� a portable

instrumented communication library� C reference manual� Tech� Report ORNL�TM�������

Oak Ridge National Laboratory� Oak Ridge� TN� July �����

���� W� Gropp� E� Lusk� N� Doss� and T� Skjellum� A high�performance� portable imple�

mentation of the MPI message�passing interface standard� Tech� Report ANL�MCS�P����

�	��� Argonne National Laboratory� February �����

���� J� J� Hack and R� Jakob� Description of a global shallow water model based on the

spectral transform method� NCAR Tech Note NCAR�TN�����STR� National Center for

Atmospheric Research� Boulder� CO� February ���	�

���� P� Heidelberger and K� S� Trivedi� Analytic queuing models for programs with inter�

nal concurrency� IEEE Trans� Comput�� c��	 ���
��� pp� ��"
	�

���� T� Kauranne and S� R� M� Barros� Scalability estimates of parallel spectral atmo�

spheric models� in Parallel Supercomputing in Atmospheric Science
 Proceedings of the

Fifth ECMWFWorkshop on Use of Parallel Processors in Meteorology� G��R� Ho�man and

T� Kauranne� eds�� World Scienti�c Publishing Co� Pte� Ltd�� Singapore� ����� pp� ��	"�	
�

���� R� D� Loft and R� K� Sato� Implementation of the NCAR CCM� on the Connection

Machine� in Parallel Supercomputing in Atmospheric Science
 Proceedings of the Fifth

ECMWF Workshop on Use of Parallel Processors in Meteorology� G��R� Ho�man and

T� Kauranne� eds�� World Scienti�c Publishing Co� Pte� Ltd�� Singapore� ����� pp� ���"

����

� �� �

��
� B� Machenhauer� The spectral method� in Numerical Methods Used in Atmospheric

Models� vol� II of GARP Pub� Ser� No� ��� JOC� World Meteorological Organization�

Geneva� Switzerland� ����� ch� �� pp� �	�"	���

���� MPI Committee�MPI� a message�passing interface standard� Internat� J� Supercomputer

Applications�
 ������� pp� ���"����

�	�� M� Parashar and S� Hariri� Compile�time performance prediction of HPF�Fortran

�	D� IEEE Parallel and Distributed Technology� � ������� pp� ��"���

�	�� R� B� Pelz and W� F� Stern� A balanced parallel algorithm for spectral global climate

models� in Parallel Processing for Scienti�c Computing� R� F� Sincovec� D� E� Keyes� M� R�

Leuze� L� R� Petzold� and D� A� Reed� eds�� Society for Industrial and Applied Mathematics�

Philadelphia� PA� ����� pp� �	�"�	
�

�		� S� R� Sarukkai� P� Mehra� and R� J� Block� Automated scalability analysis of

message�passing parallel programs� IEEE Parallel and Distributed Technology� � �������

pp� 	�"�	�

�	�� E� Smirni and et� al�� Thread placement on the intel paragon� Modeling and experi�

menation� in Proceedings of the �rd International Workshop on Modeling� Analysis� and

Simulation of Computer and Telecommunication Systems �MASCOTS ���� IEEE Com�

puter Society Press� Los Alamitos� CA� January ����� pp� 		�"	���

�	�� A� Thomasian and P� F� Bay� Analytic queuing network models for parallel processing

of task systems� IEEE Trans� Comput�� c��� ���
��� pp� ����"�����

�	�� H� Wabnig and G� Haring� PAPS � the parallel program performance prediction toolset�

in �th International Conference on Modeling Techniques and Tools for Computer Perfor�

mance Evaluation� ����� pp� 	
�"����

�	�� D� W� Walker� P� H� Worley� and J� B� Drake� Parallelizing the spectral transform

method� Part II� Concurrency
 Practice and Experience� � ����	�� pp� ���"����

�	�� D� L� Williamson� J� B� Drake� J� J� Hack� R� Jakob� and P� N� Swarztrauber�

A standard test set for numerical approximations to the shallow water equations on the

sphere� J� Computational Physics� ��	 ����	�� pp� 	��"		��

�	
� P� H� Worley� Phase modeling of a parallel scienti
c code� in Proceedings of the Scalable

High Performance Computing Conference SHPCC��	� J� Saltz and R� Voigt� eds�� IEEE

Computer Society Press� Los Alamitos� CA� ���	� pp� �		"�	��

� �� �

�	�� P� H� Worley and J� B� Drake� Parallelizing the spectral transform method� Concur�

rency
 Practice and Experience� � ����	�� pp� 	��"	���

���� P� H� Worley and M� T� Heath� Performance characterization research at Oak

Ridge National Laboratory� in Parallel Processing for Scienti�c Computing� J� Dongarra�

P� Messina� D� C� Sorenson� and R� G� Voigt� eds�� Society for Industrial and Applied

Mathematics� Philadelphia� PA� ����� pp� ���"����

���� P� H� Worley and B� Toonen� A users� guide to PSTSWM� Tech� Report ORNL�TM"

�	���� Oak Ridge National Laboratory� Oak Ridge� TN� July �����

� �	 �

Appendix

DR DH DT TR TH TT

NLLON P
l
NLON
PX

m

NLLAT P 	 �
l
NLAT
	 � PY

m l
NLAT
PY

m
	 �
l
NLAT
	 � PY

m l
NLAT
PY

m

NLVER P NVER

NLLON F
l
NLON
PX

m
NLON

NLLAT F 	 �
l
NLAT
	 � PY

m l
NLAT
PY

m
	 �
l
NLAT
	 � PY

m l
NLAT
PY

m

NLVER F NVER
l
NVER
PX

m

NLMM S
l
MM� �
PX

m
MM� �

l
MM� �
PY

m

NLLAT S 	 �
l
NLAT
	 � PY

m
NLAT 	 �

l
NLAT
	 � PY

m
NLAT

NLVER S NVER
l
NVER
PY

m l
NVER
PX

m

NLSP S
l
NCSP S
PY

m
NCSP S

l
NCSP S
PY

m
NCSP S

NCSP S

DR� DH� DT �# � �� �
�
�MM� ��� PX �#

	

�

where # �
j
MM� �
PX

k

TR� TH
�MM� 	��MM� ��

	

TT
�MM� 	��MM� ��

	 � PY � �� � PX �$ � ���$�� � � �$

where $ � MM� �
	 � PY �

j
MM� �
	 � PY

k

Table ��
 Domain Decomposition Parameters

� �� �

Phase Model Rate
���a � ��b�

physical domain computation
� �� � NLLON P � NLLAT P � NLVER P ���

forward FFT
� d�PX� ���PXe � 	� � NLLAT P � NLVER P � �a
 b � NLLON P� ���� � �	���
	 d�PX� ���PXe � 	� � NLLAT P � NLVER F � �a � PX
 b � NLLON F� ����� � ���
�
� �� � NLLAT F � NLVER F � NLLON F � �a
 b � log��NLLON F���� �	�� � �����

� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
� ��� � NLLAT F � NLVER F � �a
 b � NLLON F��� ����� � �����

forward LT
� �PY� �� �
 � NLVER S � NCSP S�PY ���
��
� � NLVER S � NLMM S � NLLAT S ����
�� ��� � NLLAT S� �� � NCSP S � NLVER S ����

spectral domain computation
�� �	 � NLSC S � NLVER S ����

inverse LT
�	 �� � NCSP S � NLVER S ���
�� ��� � NCSP S
 �� � NLMM S� � NLLAT S � NLVER S ����
�� �� � NLLAT F � NLVER F � �a
 b � �NLLON F��� NLMM S� ����� � 	
���

inverse FFT
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � ���
�
�� ������ � NLLAT F � NLVER F � NLLON F � �a
 b � log

�
�NLLON F���� �	�� � �����

�� d�PX� ���PXe � �� � NLLAT F � NLVER F � NLLON F ����
�� d�PX� ���PXe � �� � NLLAT F � NLLON P � �a � PX
 b � NLVER P� ����� � ���
�

Table ��
 Computational models and MFlop�s or MByte�s rates for algorithms TR and TH

Phase Model Rate
physical domain computation

���a � ��b�
� �� � NLLON P � NLLAT P � NLVER P ���

forward FFT
� d�PX� ���PXe � 	� � NLLAT P � NLVER P � �a
 b � NLLON P� ���� � �	���
	 d�PX� ���PXe � 	� � NLLAT P � NLVER F � �a � PX
 b � NLLON F� ����� � ���
�
� �� � NLLAT F � NLVER F � NLLON F � �a
 b � log

�
�NLLON F���� �	�� � �����

� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
� ��� � NLLAT F � NLVER F � �a
 b � NLLON F��� ����� � �����

forward LT
� d�PY� ���PYe � 	� � NLLAT F � NLVER F � NLLON F
��
� d�PY� ���PYe �
� � NLVER S � NLMM S � �a � PY
 b � NLLAT S� ����� � ���
�
��
� � NLVER S � NLMM S � NLLAT S ����
�� �� � NLLAT S � NLVER S � NCSP S ����

spectral domain computation
�� �	 � NLSC S � NLVER S ����

inverse LT
�	 �� � NCSP S � NLVER S ���
�� ��� � NCSP S
 �� � NLMM S� � NLLAT S � NLVER S ����
�� d�PY� ���PYe � �� � NLLAT S � NLVER S � �a
 b � NLMM S� �
�� � �����
�
 d�PY� ���PYe � �� � NLLAT F � NLVER S � �a � PY
 b � �MM
 ��� ���� � ���
�
�� �� � NLLAT F � NLVER F � �a
 b � �NLLON F��� MM� ��� ����� � 	
���

inverse FFT
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � ���
�
�� ������ � NLLAT F � NLVER F � NLLON F � �a
 b � log

�
�NLLON F���� �	�� � �����

�� d�PX� ���PXe � �� � NLLAT F � NLVER F � NLLON F ����
�� d�PX� ���PXe � �� � NLLAT F � NLLON P � �a � PX
 b � NLVER P� ����� � ���
�

Table ��
 Computational models and MFlop�s or MByte�s rates for algorithm TT

� �� �

Phase Model Rate
physical domain computation

� �� � NLLON P � NLLAT P � NLVER P ���
forward FFT

� d�PX� ���PXe �
� � NLLAT F � NLVER F � �a
 b � NLLON F� ���� � ���	�
� �� � NLLAT F � NLVER F � NLLON F � log��PX� ���
� �� � NLLAT F � NLVER F � NLLON F � �a
 b � log

�
�NLLON F���� �	�� � �����

� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
� ��� � NLLAT F � NLVER F � �a
 b � NLLON F��� ����� � �����

forward LT
� �PY� �� �
 � NLVER S � NCSP S�PY ���
��
� � NLVER S � NLMM S � NLLAT S ����
�� ��� � NLLAT S� �� � NCSP S � NLVER S ����

spectral domain computation
�� �	 � NLSC S � NLVER S ����

inverse LT
�	 �� � NCSP S � NLVER S ���
�� ��� � NCSP S
 �� � NLMM S� � NLLAT S � NLVER S ����
�� �� � NLLAT F � NLVER F � �a
 b � �NLLON F��� NLMM S� ����� � 	
���

inverse FFT
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � ���
�
�� ������ � NLLAT F � NLVER F � NLLON F � �a
 b � log��NLLON F���� �	�� � �����
�� d�PX� ���PXe � �� � NLLAT F � NLVER F � �a
 b � NLLON F� �
�� � �����
�	 ������ � NLLAT F � NLVER F � NLLON F � log

�
�PX� ���

Table ��
 Computational models and MFlop�s or MByte�s rates for algorithms DR and DH

Phase Model Rate
physical domain computation

� �� � NLLON P � NLLAT P � NLVER P ���
forward FFT

� d�PX� ���PXe �
� � NLLAT F � NLVER F � �a
 b � NLLON F� ���� � ���	�
� �� � NLLAT F � NLVER F � NLLON F � log

�
�PX� ���

� �� � NLLAT F � NLVER F � NLLON F � �a
 b � log
�
�NLLON F���� �	�� � �����

� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
� ��� � NLLAT F � NLVER F � �a
 b � NLLON F��� ����� � �����

forward LT
� d�PY� ���PYe �
� � NLLAT F � NLVER F � �a
 b � NLMM S� ���� � �����
� d�PY� ���PYe �
� � NLVER S � NLMM S � �a � PY
 b � NLLAT S� ����� � ���
�
��
� � NLVER S � NLMM S � NLLAT S ����
�� �� � NLLAT S � NLVER S � NCSP S ����

spectral domain computation
�� �	 � NLSC S � NLVER S ����

inverse LT
�	 �� � NCSP S � NLVER S ���
�� ��� � NCSP S
 �� � NLMM S� � NLLAT S � NLVER S ����
�� d�PY� ���PYe � �� � NLLAT S � NLVER S � �a
 b � NLMM S� �
�� � �����
�
 d�PY� ���PYe � �� � NLLAT F � NLMM S � �a � PY
 b � NLVER F� ���� � �����
�� �� � NLLAT F � NLVER F � �a
 b � �NLLON F��� NLMM S�� ����� � 	
���

inverse FFT
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � �����
�� �� � NLLAT F � NLVER F � �a
 b � NLLON F��� ���� � ���
�
�� ������ � NLLAT F � NLVER F � NLLON F � �a
 b � log

�
�NLLON F���� �	�� � �����

�� d�PX� ���PXe � �� � NLLAT F � NLVER F � �a
 b � NLLON F� �
�� � �����
�	 ������ � NLLAT F � NLVER F � NLLON F � log

�
�PX� ���

Table ��
 Computational models and MFlop�s or MByte�s rates for algorithm DT

� �� �

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��	
�� ��
� ��

�� �
�
�x� ��

�
 ��
� ���
�� �
�
�x� �	
�� ��
� ���
	� �
�
�x� �

�	 ��
	 �
�
�
 �
�
	�x� � � ��

�	 �
�

�x� ��
�� �
� ��
		

�
�	x� ��
�� ��
� ��
�� �
�
�x� �	
�� �

� ��

� �
�
�x�	 ��
�� �

	 ��
�	 �
	
�x
� ��
�� �	

 ��
�� �
	
�x	� � � ��
�� ��
�
���x� � � � �
	�x� � � �

�
 �
�

�x� ��
��

� ��
	
 �
�
�	x� �
�
 ��
� ��
�� ��
�
�x�	 �
�� ��
�
�
�� �
�
�x
� �
�� ��
� ��
�
 ��
�
�x	� � � ��
�� ��
�
��	x� � �
���x� � �
	�x� � ��
�� �
	

�x� 	
�� ��
� ��
�� ��
�
�	x�	 �
�� ��
� ��
�� ��
�
�x
� 	
�	 ���
� ��
�� ��
�
�x	� �
�
�� ���
�
�x��� � �
�x��	 � �

Table �

 Runtime and model error for algorithm DH�

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��	
�� ��
� ���
�� �
	
�x� ��

�� ��
� ���
��

�
�x� ��
	� ��
� �	�
��

�
�x� ��
�
 ��
� ���
�� �
�
	�x� � � ��

�� �
�

�x� ��
�� �
� �	
�	

�
�	x� ��
�� ��
� �	
	
 �
�
�x� ��
�� ���

 ��
�� �
�
�x�	 ��
�� ���
	 ��
�
 �
�
�x
� ��
�� ���

 ��
	� �
�
�x	� � � ��
�� �
�
���x� � � � �
	�x� � � ��
	� �
�

�x� ��
�
 �	
� ��

� �

�	x� ��
�� ���
� ��
�
 ��
�
�x�	 ��
�
 ���
� ��
�� ��
�
�x
� ��
�� ���
� ��
�� ��
�
�x	� � � ��
�
 ��
�
��	x� � �
���x� � �
	�x� � ��
	� ��
�

�x� �
�� ���
� �	
	� ���
�
�	x�	 �
	
 ���
� ��
�� ���
�
�x
� �
�	 ���
� �	
�� ���
�
�x	� �
�
	� ��	
�
�x��� � �
�x��	 � �

Table ��
 Runtime and model error for algorithm DR�

� �� �

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��	
�� ��

 ���
	� �
�
�x� ���
�� ��
� �
�
�� �
�
�x� ���
�� ��
� ���
	� ��
	
�x� �	
�� ��
� �
�
�� ��
�
	�x� � � ���
�	 �

�x� ��
�� ��
� ��
�� 	
	
�	x� ��
��

� ��
�
 �
�
�x� �	
�� ��
� ��
�� �
�
�x�	 ��
	� ��
� 	�
�� ��
�
�x
� ��
�� ��
� ��

	 ��
�
�x	� ��
�	 ��
� ���
�� ��
�
���x� � � � �
	�x� � � ��
�� �

�

�x� ��
�� �

 ��
�� �
�
�	x� �
	� ��

�
�

�
�x�	 �
	� �

�
	
		 ��
�
�x
� ��
�� ��
� ��
�� ��
�
�x	� �	
�� ��
� ��
�
 ��
	
�x��� � � ��

�� ��
�
��	x� � �
���x� � �
	�x� � ��
�� ��

�x� 	

� �
� �

�� �
�
�	x�	 �
�� ��

 ��
	� ��
�
�x
� 	
�� ��
� ��
�� �

�
�x	� �
�	 �

� �

�� ��

�x��� � ��
�� ���
�
�x��	 � �

Table 	�
 Runtime and model error for algorithm DT�

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��
�� ��
� ���
�
 ��

�x� ��
�� �

� ���
�� �

�
�x� ��
	� ��
� ���

� �

�
�x� �

	� ��
� ���
�� �
�
	�x� ��
�� �
	 ��	

� ��
�

�x� ��
�� ��
	 ��

�� �
�
�	x� ��
�	 ��
� 	�
�� �
�
�x� ��
�� �

 	�

� �
�
�x�	 �

�� �

� 		
�� �
	
�x
� �	
�� �	
� �	
�� ��
�
�x	� � � ��
�
 ��
�
���x� �	
�� ��
� ���
�� ��
�
	�x� �

�
 �
� ���

 �
�

�x� ��
�� ��

 ��

� �
�
�	x� �
�� ��
�
�
�� �
�
�x�	 �
�� ��
�
�
�� ��
�
�x
� �
�� ��
��
�
�� �

�
�x	� � � ��
�� ��

��	x� � ���
�� �

	
���x� ��
�
 ��
� ��	
�� ��
	
	�x� �

�� ��
� ��
	� ��

�x� �
�� ��
�
�
�� �

�
�	x�	 �
�� ���
� ��
�� ��
�
�x
� �
�� ��	

 ��
�� ���
�
�x	� � ��
�� ���
�
�x��� � �
�x��	 � �

Table 	�
 Runtime and model error for algorithm TH�

� �� �

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��
�� ��
� ���
�� ��
�
�x� ��

� ��
� ���
�
 �

�
�x� ��
�� ��
� ��	
	� ��
�
�x� ��
�� ��
� ��

�	 �
�
	�x� ��
�� �
	 ��	

	 ��
�

�x� ��
�� �
� ��

�� �
�
�	x� ��
�� �
� ��
�� �

�x� ��
�	 �
� ��
�� 	
	
�x�	 �

�� ��
� 	�
�	 	
�
�x
� �	
�� ��
� ��
�
 �

�x	� � � �

�� �
�
���x� �	
	� ��
� ���
�� ��
	
	�x� ��
�� �
� ���
�� �
�

�x� ��
�� �
� �	
	� �
�
�	x� 	
�	 �

� ��
�� 	
�
�x�	 �
�� ��
�
�
�
 	
�
�x
� �
�� ��

	
��

�x	� � � �	
�� ��
�
��	x� � ���

� �

�
���x� ��
�� �
� ��	
	
 ��
	
	�x� ��
�� �
� ��

�

�

�x� �
�� ��
� ��
�� �
�
�	x�	 �
�
 ��
� �	
��

�
�x
� �
	� ���
� ��
�� ��
�
�x	� � ��
�
 ��
�
�x��� � �
�x��	 � �

Table 		
 Runtime and model error for algorithm TR�

T�� T��
Aspect Ratio Runtime � error Runtime � error

PX � PY �seconds� in model �seconds� in model
�x� ��
�� �	
� ���
�� ��
	
�x� ���
�
 ��
� ���
�� ��

�x� ���
�� ��
� ��

�� �

	
�x� ��
�� ��
� ��

�� �
�
	�x� ��
�� ��
� ���
�� ���
�

�x� ��

� �
� ��	
�� �	
�
�	x� ��
�� �
� 	�
�� ��
�
�x� ��
	� 	
� 	�
�� �
�
�x�	 ��
�� �
� 	�
�� �
�
�x
� ��
�� �
� 	�
�� �
�
�x	� ��
�� �

� 	�
�	 ��
�
���x� �	
	� ��
� ���
�� ���
�
	�x� ��
�� �
� ���
�� ��
�

�x� ��
�� �
� ��
�
 �
�
�	x� �
�� �
�
�
�� �
�
�x�	 �
�� �
� ��
�� ��
�
�x
� �
�	 �

�

� ��

�x	� ��
�� ��
�
�
�� 	
�
�x��� � � �

�� ��
�
��	x� � ���
�� ���
�
���x� ��

� 	
� �
�
�� ��
�
	�x� �

�� �
� 	�
�� ��
�

�x� �
�� �
�
�
	�

�	x�	 �

 �

 �	
�
 �
	
�x
� �
�� ��
� �	
�
 �
�
�x	� 	
�� �
� ��
�

�x��� � ��
�� ��
�
�x��	 � �

Table 	�
 Runtime and model error for algorithm TT�

