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Abstract

Today’s massively parallel machines are typically message passing systems consisting of hun-
dreds or thousands of processors. Implementing parallel applications efficiently in this environ-
ment is a challenging task. The Performance Prediction Tool (PerPreT) presented in this paper
is useful for system designers and application developers. The system designers can use the tool
to examine the effects of changes of architectural parameters on parallel applications (e.g., re-
duction of setup time, increase of link bandwidth, faster execution units). Application developers
are interested in a fast evaluation of different parallelization strategies of their codes. PerPreT
uses a relatively simple analytical model to predict speedup, execution time, computation time,
and communication time for a parametrized application. Especially for large numbers of proces-
sors, PerPreT’s analytical model is preferable to traditional models (e.g., Markov based ap-
proaches such as queueing and Petri net models). The applications are modelled through param-
eterized formulae for communication and computation. The parameters used by PerPreT include
the problem size and the number of processors used to execute the program. The target systems
are described by architectural parameters (e.g., setup times for communication, link bandwidth,
and sustained computing performance per node).
Keywords: workload modeling, performance evaluation, performance prediction

1. Introduction

Advances in microprocessor technology and interconnection networks have made it
possible to construct parallel systems with a large number of processors (e.g., INTEL
Paragon, nCUBE Hypercubes, CM-5, multitransputer systems, workstation networks
running PVM). Unfortunately, the application programs developed for conventional se-
quential systems or for pipelined supercomputers do not automatically run on these sys-
tems. There are few good compilers for efficient automatic parallelization of programs.
There are also few useful tools to support the development of parallel programs. Before
writing a program, the developer must identify a parallelization strategy. In many cases
there are different options on how to distribute data and tasks onto the processors. Be-
cause it is too time consuming and expensive to implement several alternatives, it
would be helpful for the programmer to be able to accurately predict the performance
trade-offs of alternative strategies without resorting to implementation and measure-
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ment. In the past, several approaches for the modeling of parallel systems using formal
methods such as Petri nets or Markov models have been presented [Tho86], [Tri82],
[Laz84], [Wab94], [Har94,95]. These approaches result in accurate models for the ex-
ecution of tasks on parallel systems. Unfortunately, it is difficult to apply these methods
to massively parallel systems for several reasons:
- The graphical representation of systems with hundreds or thousands of processors

that would be needed for these approaches is too complex.
- The application description and the mapping of the applications onto the processors

is too detailed.
- The resulting systems of equations from the Markov or Petri net models are too

large to be solved efficiently.
PerPreT takes advantage of the fact that typical applications for massively parallel sys-
tems use the single program multiple data (SPMD) programming model. In this paper
we show that SPMD programs allow simplifications. Abstractions of the application
and system to be modeled can be made without a significant loss of accuracy for pre-
dicted values of speedup, communication time, computation time, and execution time.
These simplifications make it possible to consider architectures with thousands of pro-
cessors. The resulting analytical model of message passing architectures can be evalu-
ated quickly and is the main advantage of PerPreT compared to Markov or Petri net
model based approaches.
One disadvantage of PerPreT is the lack of modeling low level hardware features such
as network contention. This requires a more detailed description of the hardware and
the operating system. These features can be modeled using Petri nets or queueing net-
work models. Another disadvantage is that non SPMD applications cannot be modeled
using PerPreT. In these cases, the conventional approaches are more appropriate.

Fig. 1. The Modules of PerPreT

In Figure 1, the high-level modules of PerPreT (i.e., application description, system de-
scription, communication library, analytical model) are outlined. PerPreT uses param-
eterized system and application descriptions. The problem size for an application and
the number of processors used to execute the SPMD program are free parameters.
Therefore, PerPreT models a variety of alternative systems and applications. The sys-
tem and application descriptions are kept independent of each other. In the case of com-
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Fig. 3. Mapping of an SPMD program on 6 nodes
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Fig. 2. SPMD Program Task Graph
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plex node processor architectures, the sustained MFLOP/s (millions of floating point op-
erations per second) rate is the only system variable that sometimes changes with differ-
ent applications. PerPreT uses the system description parameters in Figure 1 and a
communication library to model the communication and computation behavior of the
target architecture. An SPMD application is reduced to formulae for computation (num-
ber of arithmetic statements) and communication (calls to the communication library).
The rest of the paper is organized as follows. In Section 2, the application description
and the programming model used for massively parallel systems are motivated and ex-
plained. Section 3 outlines the system description. PerPreT is described in Section 4.
Case study applications that validate the usefulness and accuracy of PerPreT are present-
ed in Section 5. Conclusions and future work are outlined in Section 6.

2. Application Description

2.1. Programming Model

In many massively parallel multiple instruction multiple data (MIMD) systems, each ex-
ecution unit (i.e., processor) has direct access only to its own local memory. The com-
munication between different execution units is realized using message passing.
Code for massively parallel systems is primarily written using the SPMD programming
model [Ser93]. In this model the same code is loaded on all execution units to perform
the same task on different sets of data. Synchronization and communication of the tasks
are done at the user level. At the system level, each processor executes its own code. Be-
cause of data dependencies, the various tasks of an SPMD program may have to com-
municate during execution. In the case of up to several thousands of processors, the par-
allel codes have to be regular and well structured to avoid load balancing problems and
remain deadlock free. Often, the codes have alternating phases of communication and
computation.



In Figure 2, a typical SPMD program is outlined as a task graph. The circles represent
the computational tasks and the arrows represent communication between tasks. A
computation phase does not last longer than TCPi time units (i=1,2,..,7) and a commu-
nication phase does not last longer than TCMj time units (j=1,2,..,6). The assumption is
that TCPi and TCMj are the maximum times for all tasks at levels i and j, respectively. In
Figure 3, a possible mapping of the tasks onto processors (P1,..,P6) is shown. An upper
bound for the estimated communication time of this mapping is: (1)

An upper bound for the estimated computation time is: (2)

Thus, an upper bound for the total estimated execution time is: (3)

In Section 5, several case study applications show that the measured execution time is
close to this upper bound. For more general task graphs the number of subtasks per lev-
el, and thus the number of arrows per level, is not necessarily constant. The data paral-
lelism often results in one subtask per processor for some of the levels. Thus, using the
number of processors as a parameter for communication and computation is a natural
consequence of the implemented space sharing allocation policy on these machines.
The problem size is the second parameter used. Clearly, the times TCPi (determined by
the number of statements to be executed) and TCMj (determined by the message length)
depend on these paramters, but the formulae for communication (1) and computation
(2) are independent of the number of processors and the problem size. Communication
phases can be divided into global communications, where all execution units participate
and local communications, where only a portion of the execution units participate. Typ-
ically, global communications are either:
- broadcasts, where one processor broadcasts data to all other processors (e.g., CM1

and CM3 in Figure 3),
- global collects, where one processor collects data from all other processors (e.g.,

CM2 and CM6 in Figure 3),
- butterfly communication where all processors exchange data using a butterfly net-

work configuration pattern, or other regular patterns.
Typical local communications are point to point, where one processor sends or receives
data to or from a subset of the processors (e.g., CM4 and CM5 in Figure 3).

2.2. Parameters

As outlined, parallel SPMD applications running on multiprocessor systems are char-
acterized by their problem size and the number of allocated processors as input param-
eters. Examples can be found in [LOOP94], [PAR94], [NAS93]. Most multiprocessor
architectures are scalable and are sold in different configurations. The problem size is
an important parameter, because some machines do not support virtual memory
(e.g.,Transputer systems, nCUBE/2). If virtual memory is available, swapping should
be avoided because it can significantly impact the performance of a parallel application.
PerPreT needs one formula for the computation and one formula for the communication
of a parallel application as input. These formulae use the number of processors and the
problem size as parameters. In the following sections it is demonstrated how to build
these formulae using an example application.
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2.3. Communication

PerPreT is equipped with a library to model typical local and global SPMD communi-
cations. Routines exist for several common communication patterns to compute the
time required to perform such communication. The routines use the message size in
bytes, the number of allocated processors, the problem size, and the system type as input
parameters. To date, the message passing protocol and the interconnection network of
two system types, the Intel Paragon and the nCUBE, have been implemented. The struc-
ture of PerPreT allows the user to add defined system configurations. To model an
SPMD program, PerPreT requires a high level communication description of the paral-
lel program. This description can be derived in several ways. It can be given as a task
graph, as a LOOP language construct, or as a user defined description:

Using Task Graphs
The task graph of Figure 4 shows an SPMD version of a Conjugate Gradient (CG)
Method. N represents the problem size and P represents the number of allocared pro-
cessors. The circles contain the number of floating point operations performed by the
specific subtask. The values at the arrows represent the number of data items that have
to be transmitted. If a circle is empty, then no floating point operations have to be per-
formed. The phases of the CG-SPMD program are:
CP1: Distributed computation of a scalar-vector product. 2N/P statements are execut-

ed per processor.

CM1: Global collect of a distributed vector. Each processor sends N/P data items.

CP2: No computation is involved.

CM2: Global broadcast of the collected vector. One processor sends N data items to
each processor.

CP3: Distributed computation of a matrix vector product (2N2/P statements) and a
scalar product (2N/P statements).

CM3: Global sum. Each processor sends one data item.

CP4: Global sum built by one processor.

CM4: Global sum. The processor that performed the sum in phase CP4 sends the sum
to every other processor.

CP5: Computation of two scalar-vector products (2N/P statements) and one scalar
product (2N/P statements) per processor resulting in a total of 6N/P statements.

CM5, CP6, CP4: same as CM3, CP4, and CM4, respectively.

For the CG-SPMD program, several global broadcast operations (CM2, CM4, CM6)
and global collect operations (CM1, CM3, CM5) have to be performed with different
message lengths. The PerPreT communication library contains routines that return the
predicted communication times TCMi for i=1,...,6 (simple_bcast and simple_collect).
The routines require the number of bytes to be transferred as an input parameter. They
also have access to the global parameters n_procs (number of processors = P) and
p_size (problem size =N). TYPE is an indicator of the data type to be able to determine
the number of bytes per data item. The notation is derived from the C programming lan-
guage. Based on the above, the following communication description formula of the
CG-SPMD program is used by PerPreT:



bytes1 = sizeof(TYPE) * p_size; bytes2 = sizeof(TYPE) * p_size/n_procs;
bytes3 = sizeof(TYPE);
comm_time += simple_bcast(bytes1); comm_time += 2 * simple_bcast(bytes3);
comm_time += simple_collect(bytes2); comm_time += 2 * simple_collect(bytes3);

Using the LOOP Language
The LOOP Language [LOOP94] is a high level language for SPMD programs. Similar
to PerPreT, the LOOP Language provides a library for typical communication patterns.
In Figure 5, the LOOP program for the CG-SPMD application is listed. The outer
LOOP (lines 1 to 24) counts the iterations of the CG-solver. The variable psize_node
has the value N/P (problem size divided by number of processors). The first inner
LOOP (lines 3 and 4) results in 2N/P statements (CP1 in Figure 4). Then a collect and
a broadcast of a vector are performed (CM1 and CM2 in Figure 4). Lines 8 to 11 contain
a matrix vector product and a scalar product (CP3 in Figure 4). The rest of the code
(lines 13 to 24) is self explanatory (gsc is a variable for the global scalar product, t1 and
t2 are temporary variables). Each LOOP communication function is available as a Per-
PreT communication function. The user has to specify how often a communication
function is called and how many bytes are transferred. Lines 5, 13 and 21 contain the
simple_collects and lines 6, 14 and 22 contain the simple_bcasts for each iteration.
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1 \LOOP (ITERATIONS) iter {
2 beta = t1 / t2 ;
3 \LOOP (psize_node) i {
4 P[i] = beta * P[i] - RES[i] ; }
5 \SIMPLE_COLLECT_VEC(P);
6 \SIMPLE_BCAST(P,psize*sizeof(TYPE));
7 \LOOP i { H2[i] = P[i] ;}
8 \LOOP (psize_node) i {
9 H1[i] = (TYPE) 0;
10 \LOOP j {
11 H1[i] += MAT[i][j] * H2[j]; } }
12 \SCALPROD(&t1, P, H1, psize_node);
13 \SIMPLE_GLOBAL_SUM(&t1, &gsc);
14 \SIMPLE_BCAST(&gsc, sizeof(gsc));
15 alpha = t1 / gsc;
16 \LOOP (psize_node) i {
17 X[i] += alpha * P[i];
18 RES[i] += alpha * H1[i];}
19 t2 = t1;
20 \SCALPROD (&t1,RES,RES,psize_node);
21 \SIMPLE_GLOBAL_SUM(&t1, &gsc);
22 \SIMPLE_BCAST(&gsc, sizeof(gsc));
23 t1 = gsc;
24 }

Fig. 4. Task Graph of CG-SPMD Program Fig. 5. LOOP Program for CG Method



User Defined
PerPreT allows the user to make predictions for a parallelization strategy without par-
allel code, task graph, or LOOP language representations. The user identifies the com-
munication situations that are involved in the parallelization strategy for a given algo-
rithm and replaces them by routines from the PerPreT communication library.

2.4. Computation

Besides communication, PerPreT also requires a description of the computations in-
volved in the SPMD program. It consists of a simple algebraic expression for the num-
ber of arithmetic statements that have to be executed by each processor. If this number
varies for different processors, the maximum number is used. The expression can be de-
rived from task graphs, the LOOP language, or from user specified complexity mea-
sures.

Using Task Graphs
If task graphs of an SPMD application are available, each circle, representing a task,
will have an algebraic expression (in terms of N and P) for the number of floating point
operations associated with it. After mapping the tasks onto the processors, the largest
sum of the TCPi for any one processor determines the formula required for PerPreT. In
most cases the number of arithmetic statements can be used to predict the computation
time fairly accurately. For the example task graph of Figure 4, this method leads to the
PerPreT computation description for one iteration of a parallel CG-method as:

comp = (10*N + 2*N2) / P + 2*P  (4)
where N is the problem size and P is the number of processors. If several iterations are
executed, the number of statements comp has to be multiplied by the number of itera-
tions.

Using the LOOP Language
The LOOP language is designed for SPMD programs. Its structure makes it easy to rep-
resent LOOP programs as task graphs. The computational complexity of a LOOP pro-
gram can easily be determined. In Figure 5, there are global sums in lines 13 and 21 (P
statements each), scalar products in lines 12 and 20 (2N/P statements each), vector-sca-
lar operations in lines 4, 17 and 18 (2N/P statements each), and a matrix vector product
in lines 8 to 11 (2N2/P statements).The sum of the statements is identical to (4). Auto-
matic representation of LOOP programs as task graphs is currently under study.

Complexity Measures
For many applications, the algorithmic complexity is known. For instance, the com-
plexity of a matrix multiplication is O(2*p_size3), the complexity of one relaxation
sweep of an iterative Gauss Seidel solver is O(5*p_size2). In SPMD programs, the data
is distributed across all processors. Dividing the proportionality constant of the comlex-
ity by the number of processors often leads to a formula for the computation description.

2.5. Scope of Modeled Applications

The previous sections demonstrate that it is possible to describe the communication and
computation behavior of an application with PerPreT. Additional examples for these



descriptions are given for three case study applications. It is easy to obtain these de-
scriptions for most SPMD programs. The SPMD programming model is selected be-
cause it isa most promising strategy in which to implement programs on massively par-
allel systems. If the parallelization strategy and the complexity of a sequential algorithm
are given, PerPreT allows the user to evaluate the strategy without explicitly realizing
it as an SPMD program.

3. System Description

3.1. Communication

In most existing message passing systems, the time required for communication can be
divided into five phases:

Fig. 6. Message Passing Communication

T1: Setup time for send routine: this time is needed for the communication between the
sender communication unit and the sender user process to initialize message buffers
and transfer the control of the transmission to the communication unit.

T2: Copy message time from user space to system buffer space: in the case of an asyn-
chronous message passing protocol, the outgoing message is often copied to a buff-
er controlled by the communication unit.

T3: Message transmission time: this time is required to copy the message from the
sender’s communication unit to the receiver’s communication unit.

T4: Setup time for receive routine: this time is needed for the communication of the re-
ceiver’s user process with the receiver’s communication unit. The receiver’s user
process is informed about the location of the message.

T5: Copy message time from system buffer space to user space: in the case of an asyn-
chronous message passing protocol, the incoming message is often copied from a
buffer controlled by the communication unit to the receiver’s process space.

Figure 6 outlines the five phases for communication. Depending on the message pass-
ing protocol of the underlying hardware, one or more of the phases may or may not ex-
ist. For instance, transputers use synchronous message passing where the messages are
directly copied from the user space on a processor to the user space on another proces-
sor. In this case it is not necessary to copy the messages from user space to the commu-
nication buffer and vice versa. The PerPreT approach is general enough to model a wide
variety of existing message passing protocols. The time for communication in message
passing system normally follows the simple formula:

Tc = T1+T2+T3+T4+T5
where Tc is the communication time. Some of the phases (e.g., T2, T3, T5) depend on
the message size. If a complete system specification is available, these times can be di-
rectly used by the PerPreT communication library routines. However, users often do not
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have access to a detailed specification. The vendor provided times tend to be “optimis-
tic“, by reporting best case times. These reported times may not be valid if third party
or other non native communication routines are used. For instance, if a program uses a
non native portable communication library such as PICL [PICL90], the times are slight-
ly higher because of the overhead of an additional software layer. The experiments re-
ported in the next section use the PICL communication library. This library is portable
across a variety of message passing systems including nCUBE Hypercubes and the Intel
Paragon. The times T1,..,T5 were determined for the PICL send0 and receive0 message
passing calls by experimentation [Smi95]. These times are used as input parameters for
the routines of the PerPreT communication library.

3.2. Computation

The computation description of an application yields a formula for the number of arith-
metic statements that have to be executed per processor. If the vendor specified compu-
tation performance is close to the sustained node performance, the specified MFLOP/s
rate can be used. Unfortunately, the difference between the specified performance and
the observed sustained performance is often significant. To provide PerPreT with real-
istic node performance values, the sustained MFLOP/s rate from the sequential program
(without communication) on a single node is used. The nCUBE nodes do not show sig-
nificantly different performance for the case studies described in the next section. The
sustained MFLOP/s rate is 0.43 and it is independent of the problem size. Therefore,
this value is used for all the nCUBE experiments.The i860 node processor of the Intel
Paragon is complex and performs differently for various case studies. The problem size
parameter also affects the sustained MFLOP/s rate. In order to obtain more accurate
PerPreT predictions, the computation description of the Paragon consists of a table of
measurements of the MFLOP/s rate for the sequential algorithm for each case study ex-
ample. More accurate performance values yield more accurate predictions. If a user
wants a fast investigation of a parallelization strategy, and the sequential program to
measure the single node performance is not available, it is possible to estimate the ex-
pected MFLOP/s rate by looking at sustained MFLOP/s rates for reference applications.

3.3. Limitations of the System Model

PerPreT is designed for massively parallel MIMD message passing architectures. The
model described in Section 3.1 handles many existing message passing architectures.
Since a simple analytical model for communication and computation is used rather than
running a more complex simulation, it is difficult to model hardware level phenomena
such as network contentions. PerPreT routines calculate the communication time by
taking the number of messages into account that can be sent or received simultaneously
from an execution unit. The PerPreT routines also include the message passing protocol
and the implemented routing strategy. Experiments with parallel benchmarks validate
PerPreT for SPMD applications as described in the next section.

4. Modeling using PerPreT

In this section, the output tables and graphs, generated by PerPreT, are presented. As in
the previous sections, the parallel Conjugate Gradient method is used as an example.
Figure 7 shows the output table of an example experiment. The first column contains



the number of processors (P), the second column contains the communication times
(COMM), the third column contains the computation time (COMP), the fourth column
contains the total execution time (TOTAL), and the last column contains the speedup
(SP). Speedup is defined as the ratio of the single processor execution time to the mul-
tiple processor execution time. The application examined is a Conjugate Gradient
Method and the system modeled is the INTEL Paragon with 512 processors. PerPreT
requires the application description, the system description, the parameter values for
problem size, and the range of processors as input.
The user can repeat the experiment with different values of the problem size and pro-
cessor range without changing the system or application description. In the PerPreT
generated output table in Figure 7, the problem size has the value 1024, and the number
of processors varies from 1 to 512. This type of experiment may help the user to decide
how many processors to allocate to the application. PerPreT also provides graphical
representations for speedup curve, execution, communication and computation time
curves in a single diagram, and separate diagrams for the individual time curves.

Fig. 7. Output Table for CG-Tree (Problem Size 1024, Varying Processors) on an Intel Paragon

The PerPreT graphical representation of this previous experiment is shown in Figure 8.
The default scale for both axes is logarithmic. Execution and computation times de-
crease with increasing processor number. The communication time increases as the
number of allocated processors increases. Between 64 and 128 processors the curves for
communication time and computation time cross. After this point the execution time
curve does not significantly decrease. In this case, the user may conclude that adding
more processors will not significantly improve the execution time. This intersection
point also indicates the 50% efficiency threshold. Beyond this point, more than half of
the execution time is attributed to communication.
In Figure 9 the same experiment is presented with problem size 4096 instead of 1024.
In this example, the execution time continues to significantly improve for the entire pro-
cessor allocation range. For 512 processors, the communication time and the computa-
tion time have reached similar values. This implies that for problem size 4096 the CG-
Tree algorithm scales well up to 512 processors on the Intel Paragon.

Computation for Conjugate Gradient CG
Communication for Tree Broadcast
Processors: 1...512 Problem Size: 1024
System: Paragon
Speedup estimate (all times in seconds):
P COMM  COMP  TOTAL SP
1 0.000000 0.771938 0.771938 1.00
2 0.000789 0.385969 0.386758 2.00
4 0.002285 0.192984 0.195269 3.95
8 0.003781 0.096492 0.100273 7.70
16 0.005277 0.048246 0.053523 14.42
32 0.006773 0.024123 0.030896 24.90
64 0.008268 0.012061 0.020330 37.97
128 0.009764 0.006030 0.015795 48.87
256 0.011260 0.003015 0.014276 54.07
512 0.012756 0.001507 0.014264 54.12



Fig. 10. Output Table for CG-Tree (Varying
Problem Size, 512 Processors) on an
Intel Paragon

Computation for Conjugate Gradient CG
Communication for Tree Broadcast
Processors: 512 Problem Size:512...16384
System: Paragon
Speedup estimate (all times in seconds):
PSZ SP
512 Single proc. t.: 0.180685 1.00
1024 Single proc. t.: 0.771938 1.00
2048 Single proc. t.: 3.080252 1.00
4096 Single proc. t.: 12.306004 1.00
8192 Single proc. t.: 49.194010 1.00
16384 Single proc. t.: 196.716026 1.00
PSZ COMM COMP TOTAL SP
512 0.01061 0.00035 0.01096 16.48
1024 0.01275 0.00150 0.01426 54.12
2048 0.01594 0.00601 0.02195 140.27
4096 0.02133 0.02403 0.04536 271.25
8192 0.03108 0.09608 0.12716 386.86
16384 0.04870 0.38421 0.43291 454.39

Fig. 11. All Times Plot of CG-Tree (512 Pro-
cessors, Varying Problem Size) on an
Intel Paragon
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Fig. 8. All Times Plot of CG-Tree with Prob-
lem Size 1024 on an Intel Paragon

Fig. 9. All Times Plot of CG-Tree with Prob-
lem Size 4096 on an Intel Paragon.

It is also possible to fix the number of processors and calculate the speedup over a range
of problem sizes. The resulting table for 512 processors and problem sizes varying from
512 to 16384 is illustrated in Figure 10, and graphically shown in Figure 11. The first
column in Figure 10 contains the problem size (PSZ), the rest of the columns are self
explanatory. The result of each experiment is summarized in two rows. The first row
contains the execution time on one processor for the considered problem size. The sec-
ond row contains the times and speedup for 512 processors.



This type of experiment may help the user to decide on the minimum problem size for
efficient use on a given (or constrained) number of allocated processors. For instance,
Figure 11 indicates that given 512 processors, a problem size of at least 4096 is needed
to make efficient use of the system. For smaller problem sizes, a smaller processor par-
tition would seem more appropriate.

5. Case Study Applications

In order to validate the accuracy and usefulness of PerPreT, a set of case studies has
been evaluated on an nCUBE/2 and on an Intel Paragon running several parallel kernels
from a LOOP benchmark suite [LOOP94]. All codes have been implemented using the
PICL [PICL90] communication library. Similar kernels are also used in the Parkbench
benchmark suite [Par94]. The execution times and speedups of the LOOP programs are
compared with the predicted values using PerPreT. All results are reported for 1 - 128
processors, since an 128 node nCUBE/2 is used for validation purposes. All curves in
the presented figures with prefix “PerPreT“ refer to PerPreT prediction results, while
all curves with prefix “<hostname>“ refer to execution times measured on the nCUBE
or on the Intel Paragon. PerPreT provides predictions for execution time, communica-
tion time, and computation time in the ±10% accuracy range for most cases. For a few
extreme cases (i.e., small problem size and large numbers of processors) the accuracy
range is ±20%. Slowdowns, as shown in Figure 12 and in Figure 13, are also predicted
correctly.

5.1. Conjugate Gradient Methods

CG-Tree:
In recent years, the conjugate gradient method for the solution of equation systems has
become popular again. These methods are better suited for SPMD programs than solv-
ers based on Gaussian Elimination. The basic algorithm consists of a matrix vector
product and several scalar products. Since the matrix data are distributed among all pro-
cessors, the multiplying vector has to be copied and distributed. To build this vector, the
routine tree_collect is used (CM1 in Figure 4). To distribute the vector, the routine
tree_bcast is used (CM2 in Figure 4). The prefix tree indicates that a treelike topology
is used to perform these communication operations. The same routines are used to col-
lect (CM3 and CM5 in Figure 4) and distribute (CM4 and CM6 in Figure 4) the global
sum of the scalar products. The only difference is that the amount of data to be trans-
ferred (parameter bytes3 in the formula given below) is a single data item. Thus, the
communication description of CG-Tree is:

bytes1 = sizeof(TYPE) * p_size; bytes2 = sizeof(TYPE) * p_size / n_procs;
bytes3 = sizeof(TYPE);
comm_time += tree_bcast(bytes1); comm_time += 2 * tree_bcast(bytes3);
comm_time += tree_collect(bytes2); comm_time += 2 * tree_collect(bytes3);

One iteration of the examined CG-method involves two dotproducts, three scalar vector
operations, and one matrix vector product. The calculation of one dotproduct requires
2*p_size floating point operations, the calculation of the scalar vector operations re-
quire 2*p_size floating point operations each, and the calculation of the matrix vector
product requires 2*p_size2 floating point operations. The number of floating point op-
erations per processor is:



(10*p_size+2*p_size2) / n_procs + 2*n_procs
Seven iterations were modeled resulting in the computation description of CG-Tree:

iter = 7;
comp = iter*(10*p_size+2*p_size2) / n_procs+2*n_procs;

The measured and predicted results for problem size 512 are presented in Figure 12 and
in Figure 13. The experiments included other problem sizes as well and consistently ex-
hibit a good match between predicted and measured values.

CG-Simple:
This version of the conjugate gradient method is similar to the CG-Tree method. The
only difference is that the topology used for the communication operations is not tree-
like. The routine simple_bcast(bytes) calculates the time for a broadcast where one pro-
cessor sequentially sends a message of length bytes to every other processor. The rou-
tine simple_collect(bytes) calculates the time that is needed for one processor to receive
a message of length bytes from every other processor. The two different versions of the
conjugate gradient method (CG-Tree and CG-Single) are used to find the number of
processors where a treelike topology outperforms plain broadcast/collect routines. The
PerPreT communication description of CG-Simple is:

bytes1 = sizeof(TYPE) * p_size; bytes2 = sizeof(TYPE) * p_size / n_procs;
bytes3 = sizeof(TYPE);
comm_time += simple_bcast(bytes1); comm_time += 2*simple_bcast(bytes3);
comm_time += simple_collect(bytes2); comm_time += 2*simple_collect(bytes3);

Fig. 13. Comparison of Actual and Predicted
Execution Times of CG-Methods for
Problem Size 512 on an nCUBE
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Fig. 12. Comparison of Actual and Predicted
Execution Times of CG-Methods for
Problem Size 512 on an Intel Paragon
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Since CG-Tree and CG-Simple only differ in calls to communication routines, the com-
putation description for PerPreT is the same. For higher numbers of allocated proces-
sors, the CG-Simple workload shows significantly worse performance. This is due to
the inefficient broadcast and collect operations. Using more than 32 processors, actually
results in a slowdown for CG-Simple on both systems (see Figures 12 and 13).



5.2. Matrix Multiplication
Parallel matrix multiplication (PMM) algorithms are often used to evaluate the perfor-
mance of multiprocessor systems. The parallel version of PMM that is used for the ex-
periments is described in [LOOP94]. The routine communicate(bytes) calculates the
time needed to send a message of length bytes to another processor and to receive a mes-
sage of the same length from a third processor. The PerPreT communication description
of PMM is:

bytes = sizeof(TYPE) *p_size2 / n_procs;
comm_time = (n_procs-1) * communicate(bytes);

The complexity of the sequential matrix multiplication algorithm is O(2*N3), where N
is the problem size. Giveen the problem size (p_size) and the data distribution onto
n_procs processors the PerPreT computation description of PMM is:

comp = 2 * p_size3 / n_procs;
The results for PMM show a close match of predicted and measured values for a prob-
lem size of 256 on an nCUBE and an Intel Paragon. Additional experiments have been
conducted with different problem sizes. The difference between PerPreT values and
measured values is always less than 10%.

5.3. Relaxation
Kernels in computational fluid dynamics (CFD) codes [NAS93] often use iterative
solvers such as the Gauss Seidel relaxation method. Other iterative solvers, such as the
successive overrelaxation method or multigrid methods, exhibit similar computational
behavior. Red Black (RB) is a parallel version of the Gauss Seidel relaxation algorithm.
The parallel version of RB that is used for the experiments is described in [LOOP94].
In the communication description for PerPreT, iter is the number of iterations, neighb
is the number of neighbors of each processor, and col is the number of colors (two in
the case of red black coloring). The routine exchange calculates the time needed to send
a message of length bytes to another processor and to receive a message of the same
length from that processor. This leads to the PerPreT communication description of RB:

iter = 10; neighb = 2; col = 2; bytes = sizeof(TYPE) * p_size;
comm_time = iter * neighb * col * exchange (bytes);

The starlike gridsolver involves five floating point operations per gridpoint and cycle.
The grid of dimension p_size*p_size is distributed across all processors. The resulting
PerPreT computation description of RB is:

iter = 10;
comp = iter * 5 * p_size * p_size / n_procs;

Experiments executed on an nCUBE and an Intel Paragon with different problem sizes
indicate a good match between PerPreT and measured values. Even for the relatively
small problem size of 256 for 128 processors, the PerPreT results and the measured ex-
ecution times are within 15% accuracy of each other.

6. Conclusions and Future Work
This paper introduces PerPreT, a performance prediction tool for massively parallel
systems. Several case studies involving parallel application kernels are used to validate
PerPreT and show that the predictions are accurate compared with the measured values
on an nCUBE and an Intel Paragon. The scalability of PerPreT with respect to the prob-



lem size and number of allocated processors is helpful when evaluating a range of ap-
plications and system configurations. Due to the modularity of the application and the
system description, PerPreT can be used for fast evaluation of parallelization strategies
and for fast evaluation of different systems.
Currently a more complex workload (Shallow Water Code, [Wor94]) is being imple-
mented on the Intel Paragon that will be used for further validation of PerPreT. The Per-
PreT communication library is also being extended to architectures others than the
nCUBE and Paragon. A graphical user interface for PerPreT will be available soon.
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