
0

The LOOP Approach, a new Method for the
Evaluation of Parallel Systems

Jürgen Brehm

Address until July 20th, 1995:

Department of Computer Science
Vanderbilt University
Box 1679, Station B
Nashville, TN, 37235

USA

Address after July 20th, 1995:

Institut für Rechnerstrukturen und Betriebssysteme
Universität Hannover

Lange Laube 3
30159 Hannover

Germany

e-mail: brehm@irb.uni-hannover.de

Abstract

The increasing number of different parallel computers requires a method to compare the perfor-
mance of such systems. Values like MIPS and MFLOPS often used by computer vendors are nor-
mally of secondary value since such information says little about the behavior of real applications
running on a certain system. This problem, well known from single processor systems, is even com-
licated further in multiprocessor systems. Architectural features such as the arrangement of pro-
cessors and the performance of interconnection networks significantly influence the overall system
performance and cannot be described by these values.

This paper describes a new “LOOP“ approach to benchmark message passing multiprocessor sys-
tems. The approach uses a description language for parallel workloads, a program generator for
deadlock free message passing programs, and an interface to a visualization tool. The package us-
ing the approach has been was implemented on three different machines, the MEIKO Transputer
system, the nCUBE/2 Hypercube, and the Intel Paragon. After a brief discussion of existing mul-
tiprocessor benchmarks the paper describes the new approach in detail and presents results for
the MEIKO, nCUBE, and Paragon systems.

Keywords: Benchmarking, Workload Characterization, Performance Evaluation

1

1. Introduction

Benchmarking computer systems is an impor-
tant issue for both, computer architects and us-
ers. The purpose of benchmarking reaches
from identifying architectural bottlenecks to
determine purchase decisions. The number of
multiprocessor architectures has substantially
increased in the last years, so did the efforts to
evaluate these machines. Unfortunately, none
of the existing approaches is feasible for a
wide range of existing multiprocessors or is
adaptable to user defined workloads. This pa-
per describes a portable high level workload
description language (LOOP language) for
parallel systems. To automatically produce
program code for the different systems, a pro-
gram generator was developed that translates
the LOOP computation and the LOOP com-

The LOOP Approach, a new Method for the
Evaluation of Parallel Systems

Abstract

The increasing number of different parallel computers requires a method to compare the performance of such systems.
Values like MIPS and MFLOPS often used by computer vendors are normally of secondary value since such informa-
tion says little about the behavior of real applications running on a certain system. This problem, well known from
single processor systems, is even comlicated further in multiprocessor systems. Architectural features such as the ar-
rangement of processors and the performance of interconnection networks significantly influence the overall system
performance and cannot be described by these values.

This paper describes a new “LOOP“ approach to benchmark message passing multiprocessor systems. The approach

uses a description language for parallel workloads, a program generator for deadlock free message passing pro-

grams, and an interface to a visualization tool. The package using the approach has been was implemented on three

different machines, the MEIKO Transputer system, the nCUBE/2 Hypercube, and the Intel Paragon. After a brief dis-

cussion of existing multiprocessor benchmarks the paper describes the new approach in detail and presents results for

the MEIKO, nCUBE, and Paragon systems.

Keywords: Benchmarking, Workload Characterization, Performance Evaluation

munication instructions into instrumented par-
allel C code. The instrumentation results in
trace data that are visualized by appropriate
tools. Thus, a user can evaluate a system for
the specific workloads of his applications. Ad-
ditionally, LOOP descriptions of a set of pa-
rameterized workloads are part of the LOOP
benchmark package. These workloads are
used to compare different systems.

The rest of the paper is organized as follows.
In section 2, a brief survey of standard bench-
mark approaches is given. Section 3 describes
the approach of benchmarking parallel sys-
tems in general and section 4 explains the
LOOP approach in detail. A set of parameter-
ized parallel workloads that are used as stan-
dard benchmarks is described in section 5. Re-
sults for these workloads on the MEIKO,

Jürgen Brehm

Institut für Rechnerstrukturen und Betriebssysteme
Universität Hannover,Lange Laube 3, 30159 Hannover

Germany
e-mail: brehm@irb.uni-hannover.de

2

nCUBE, and Paragon systems are provided in
section 6. The final section with an outlook to
future work concludes this paper.

2. Standard Approaches

This section describes several well known
benchmark tests. An overview of existing
benchmarks for single processor computers
provides a useful perspective. Most bench-
mark programs consist of synthetic programs
or real applications (uni- and multiprocessor
applications).

Often, small benchmark programs are used to
get a first impression of a system’s perfor-
mance. In general these programs are easy to
port to another machine, but they typically
measure only a single aspect of the machine,
for example, the integer performance.

Dhrystone:
A well known benchmark program is Dhry-
stone. This program was originally written in
ADA by R. Weicker and was later implement-
ed in C by R. Richardson. Dhrystone evaluates
the performance of the CPU and the compiler.
This synthetic benchmark program /Wei91/
generates a representative workload which is
typical for single processor machines. By ex-
amining a large amount of program code and
analyzing the type of operations, Weicker tries
to recreate typical program behavior. The re-
sulting benchmark is one where the amount of
each operation type mimics that of the exam-
ined programs.

The performance of the CPU and the optimiza-
tion features of the compiler are tested with
this benchmark. It does not test floating point
arithmetic nor does it stress the operating sys-
tem. Due to its small size, it fits in almost ev-
ery cache and may exaggerate the cache’s ef-
fectiveness. Much work has been done to keep
compilers from doing special optimizations
specifically for Dhrystone.

Whetstone:
In order to test the performance of floating
point operations, the Whetstone benchmark
test was designed. Like the Dhrystone it is a
synthetic benchmark where the procedures are
designed to generate typical workload behav-
ior rather than to execute a specific task.

SSBA:
SSBA is a benchmark suite assembled by the
French UNIX user group (AFUU). It has espe-
cially been designed to test the performance of
UNIX based systems. A recent version tests
multiprocessor systems.

Linpack:
Another approach to benchmarking is to ex-
amine the performance of real applications.
Compilers, databases and other programs are
often used to simulate the overall system per-
formance of a general purpose machine. Two
famous suites of such programs are Linpack
and SPEC.

The Linpack benchmark is widely used in sci-
entific environments. It consists of several
procedures which calculate problems such as
the solution of large systems of linear equa-
tions, matrix multiplications, and dotproducts.

SPEC:
The SPEC benchmark suite consists of com-
pilers, databases and other application pro-
grams that are typically found on general pur-
pose machines /Spec91/. They are a typical
mixture of floating point intensive, integer
arithmetic intensive and memory bound appli-
cations. Large production code packages such
as SPICE are used to create similar effects. In
the newer versions of the SPEC benchmark
suite some synthetical benchmarks can also be
found.

SLALOM:
SLALOM is used to test parallel systems. The
most unique feature in the SLALOM bench-
mark test is that instead of having a fixed prob-
lem-size and measuring its execution time, the
execution time is fixed and the problem size is

3

chosen such that the benchmark completes in
the allotted time. In /Sla90/ the algorithm,
which calculates how a coupled set of diffuse
surfaces emits and absorbs radiation, is intro-
duced and it is shown how the problem size
can be scaled.

SPLASH:
SPLASH is a set of several typical applica-
tions which are often used on parallel systems.
These applications are well documented and
thus can be used for benchmarking a system.
This set of applications is described in /Sin91/.

3. Benchmarking Parallel Systems

3.1. The System Under Test

There are several approaches to the evaluation
of systems, depending on the desired level of
abstraction. Although there is a continuum of
possible views, two examples of different ab-
straction levels are illustrated in Figure 1.

For the programmer of a high level application
the system under test (SUT) includes several
components such as the compiler, the operat-
ing system, and the underlying hardware. In a
multiprocessor environment the interconnec-
tion network is also part of the SUT. The pro-
grammer might be interested in several perfor-
mance features including:

• response time,

• elapsed time,

• resource utilization,

• communication patterns,

• concurrency profile, and the

• space-time-diagram.

A different view of the same computer system
is shown in Figure 1b. A hardware developer
is normally less interested in the performance
of the compiler or the operating system.Thus,
the benchmarks of most use are specifically

designed for the evaluation of certain compo-
nents of interest. The features of most interest
to the hardware developer include:

• native MIPS,

• cache hit rate,

• bus utilization, and

• memory access times.

The system under test considered in this paper
is the one of the application programmer, Fig-
ure 1a. The compiler, the operating system,
and the underlying hardware will be regarded
as a black box. The instrumentation results in
data for the single node performance, the com-
munication behavior and the overall perfor-
mance. Looking at the amount and speed of
communication at the nodes, potential and ex-
isting bottlenecks in the interconnection net-
work may be found.

In the field of parallel computing a broad black
box approach with fixed workloads (e.g., as
used by SPEC) is no longer adequate. Some

Application

Compiler

OS

System under Test
Hardware

a. SUT for application programmer

Figure 1: SUT depending on the level of ab-
straction

Application

Compiler

OS

System under Test
Hardware

b. SUT for hardware developer

4

knowledge of the machine architecture always
influences the design of the application pro-
gram. The LOOP method introduced in the
next section allows certain machine dependent
optimizations.

The term parallel systems used here refers to
massively parallel computer systems and not
to architectures such as multiprocessor work-
stations. Benchmarking the latter is similar to
the evaluation of single processor architec-
tures. These environments normally consider a
number of processes per processor with little
communication between them. They are pro-
grammed in a code-parallel manner. Besides
evaluating pure processor performance,
benchmark tests must determine processor ca-
pabilities, e.g., how many processes can be
handled at the same time and how long are the
context switches. Under this scenario work-
load mixes consisting of conventional bench-
marks can be used, so long as it is guaranteed
that all available processors have some com-
putational work to do. Workstation networks
running applications in an SPMD (single pro-
gram multiple data) mode can also be consid-
ered as massively parallel systems and can
thus be evaluated using the LOOP approach.

The situation in evaluating massively parallel
computers is more difficult than for single pro-
cessor architectures. Standard benchmark tests
cannot be used for such systems since they
have not been specially designed for these ar-
chitectures. Special algorithms are required
since applications normally are tuned to cer-
tain processor or cache topologies. Contrary to
single processor architectures, massively par-
allel machines are typically not stressed under
normal workload conditions. This creates the
need for a new kind of benchmark. The com-
munication features of the system should be
evaluated, and special workload characteris-
tics should be described. The remainder of this
section summarizes the approach of a new
benchmark that is able to evaluate the overall
system performance of massively parallel

computer systems. The advantages of this pa-
rameterized benchmark over previous bench-
marks are given, and the methods by which the
new approach can be applied are explained.

3.2. Using Parameters

All of the existing benchmark tests described
in section 2 do not allow the use of parameters
by which the user load can be calibrated. This
restricts the influence that a user has on the ex-
ecution of a benchmark program. This restric-
tion is useful to make sure that results are uni-
form and comparable. On the other hand, the
user is bound to a program which probably
does not represent the same workload as the
specific application of interest. Giving the user
the ability to adapt the behavior of a certain ap-
plication enables the benchmark to mimic the
behavior of the described program. Two ap-
proaches are possible.

A first and rather static approach is to create a
single program that is able to change its behav-
ior according to input parameters from the
user. Such a program can change its behavior
in a restricted manner.

Another, more flexible approach is to develop
a program that not only makes use of these pa-
rameters, but also generates different pro-
grams. These synthetic programs are then to
comprise the benchmark workload. This im-
plies the creation of a Benchmark Generator
rather than developing a benchmark program
in isolation.

In both cases, the use of parameters has the im-
portant advantage that only a single program
has to be ported to different machines in order
to obtain a wide variety of synthetic work-
loads. This implies that a user does not have to
port an application program to the new archi-
tecture to investigate its behavior. By incorpo-
rating several scaling parameters it is possible
to simulate the application’s (communication
and computation) behavior under different
conditions.

5

A second important advantage of this ap-
proach is the fact that special features of a sys-
tem’s performance can be tested individually.
For example, different kinds of message pat-
terns can be generated by manipulating mes-
sage size and frequency parameters.

The benchmark generator also has another ad-
vantage over simply porting special applica-
tions and using them as benchmark programs.
Evaluation facilities and tracing capabilities
can automatically be included. Using a set of
parameters to describe an application implies a
trade-off between the conflicting goals of easy
usability and model representativeness. A
large number of parameters makes it easier to
create a workload with behavior close to the
application from which these parameters are
derived. However, the extra parameters add to
the complexity of the benchmark. Ideally, the
benchmark should be characterized by a small
set of parameters while not sacrificing repre-
sentativeness.

4. The LOOP Method

In the LOOP approach /BBS94a,Schl93/,
workloads are not defined using one specific
workload described in detail. Instead, an envi-
ronment for a user specified evaluation of par-
allel computer systems is provided. The
LOOP method has been developed assuming
that the user has structural knowledge of the
intended workload. The benchmark generator
then constructs a workload with the same
structural characteristics.

It is often useful to obtain a first impression of
a new algorithm’s behavior on a known ma-
chine. The exact amount of code related to
communication handling does not have to be
specified. Instead, one can concentrate on the
algorithm itself. Some predefined standard
workloads described in Section 5 can be used
to get a first impression of the system without
the need to fully implement a user specific ap-
plication.

In Figure 2, the LOOP approach is illustrated.
A structural load description (LOOP program)
is fed into the generator. The generator pro-
duces the corresponding parallel instrumented
program. The program can be run on the target
architecture with different input parameters
and the behavior can be analyzed using col-
lected trace information. The central part of
the LOOP method is the Workload Generator.
This generator is the only program that has to
be ported to a new machine to test the new ma-
chine with a wide variety of workloads.

Although the problems evaluated using the
LOOP method can be defined at a high level of
abstraction, the use of a powerful visualization

Structural parameters
(LOOP program)

- Program structure
- Data structure
- Communication structure
- Computation structure

Runtime parameters
(used by the generated workload)

- Problem size
- No. of Processors

Visualization of

Workload Generator

Parallel Instrumented Program

Parallel Machine

Trace-data

Trace-data

Figure 2: Generating Workloads using the
LOOP-method

6

tool allows the user to examine such things as
the communication structure in detail. Com-
munication bottlenecks in the hardware or in
the chosen algorithm can be detected. It can be
determined if a certain network topology is
suitable for a problem with specific character-
istics. Examples are described in sections 5
and 6.

Given a description of the workload and the
architecture to be tested, the workload genera-
tor constructs a program in standard C which
is executed on the target system. To have a
widely accepted communication model, the
generator uses the PICL library /PICL90/
(Portable Instrumented Communication Li-
brary). Besides the ability to write portable
code for massively parallel systems, this li-
brary is capable of tracing basic communica-
tion instructions. PICL trace information can
be analyzed with a visualization tool, Para-
Graph /Para92/.

The main goal in the design of the LOOP mod-
el is to ensure ease of use. This is accom-
plished by making the description of the work-
load significantly more concise than the user’s
actual application. In situations where a new
architecture is to be evaluated, this is of espe-
cially important. Another important goal in the
LOOP design is to make the programming of
parallel program communication for message
passing systems as easy as possible.

In the LOOP method, the user can describe
programs in a pseudo-code like manner simi-
lar to that often found in literature, for exam-
ple, /Gol83,Pre88/. To accomplish this, the
LOOP language is an extension to standard C
and PICL /Schl93/. LOOP constructs and data
structures can easily be manipulated. The im-
plementation of the abstract constructs for the
description of communication workloads
guarantees deadlock-free workloads, because
sender and corresponding receiver are auto-
matically addressed as pairs.

4.1. How to write LOOP programs

The first step in the evaluation of a parallel
system with the LOOP method is to give struc-
tural information of the desired workload to
the generator. Based on this information, the
generator produces executable code for the
target system. By using the LOOP language,
all structural information is given.

In a typical experiment, it is often useful to ex-
ecute the same workloads with different prob-
lem sizes and with varying number of proces-
sors. Such sensitivity analysis finds limitations
in the hardware regarding memory or cache
behavior. Therefore, at runtime certain param-
eters can be specified to the generated work-
load. This implies that even without rebuilding
the program, problem size limitations of algo-
rithms or hardware can be tested.

4.1.1. Structural Parameters

The structural parameters are specified via
LOOP language constructs. In this section, the
most important constructs are explained and
their usage is demonstrated via examples.

4.1.1.1. Programs and Data Structures

Considering problems normally solved on
massively parallel systems, numerical applica-
tions are arguable the most important. Numer-
ical programming problems mainly deal with
operations on matrices and vectors. Programs
for these kinds of problems, therefore, consist
of iterations over matrices and vectors. For
this reason, the design of the LOOP language
focuses on offering convenient ways to de-
scribe such operations.

Along with the \LOOP construct which deter-
mines loop nesting, several instructions hand-
ling high-level data structures are available. In
Figure 3, a LOOP program abstraction of a
simple parallel matrix multiplication is shown.
The use of the construct \LOOP and the decla-

7

ration of high-level data structures can be
seen. The communication is specified via the
\COMMUNICATE statement which is ex-
plained later. The declared matrices are allo-
cated dynamically by the \MAT construct and
initialized as specified by the \INIT_ARRAY
construct. This Initialization can be omitted if
specific array values are not required.

All LOOP language instructions are prefixed
by the sign \. The generator recognizes these
tagged backslash instructions and converts
them to normal C. This implies that additional
C code can be incorporated directly into the
LOOP program.

int main(void){
int nodes, me, host, prob_size, amount;
\OPEN0(&nodes, &me, &host, &prob_size,

 TRACE_BUF_SIZE);
/* Declarations: */
\Mat(double) Mat1, Mat2, Mat3;
/*random init */
\INIT_ARRAY(Mat1);
\INIT_ARRAY(Mat2);
\INIT_ARRAY(Mat3, 0);
amount=sizeof(double)*prob_size*

prob_size/nodes;
\LOOP i3 {

\LOOP i2 {
\LOOP i1 {
Mat3[i3][i2] += Mat1[i3][i1]*Ma-

t2[i1][i2];
}

\COMMUNICATE(amount,1,1);
}}
\CLOSE0();

}

Figure 3: Complete program for a parallel
Matrix-Matrix multiplication

The construct

\LOOP [iterator]

in Figure 3 is used to describe iterations over
the complete problem size. The use of iteration
variables (i1 - i3 in our example) is optional.
The variables can be omitted if they are not
needed. The default number of LOOP itera-

tions is the problem size. No definition or ini-
tialization for the iterators and the matrices is
necessary. Iteration variables are automatical-
ly declared by their use in the LOOP construct.
High-level data structures like matrices are de-
clared and initialized by using special instruc-
tions which, in our example, are the constructs

\MAT and \INIT_ARRAY.

The code given in Figure 3 is the complete in-
put for the generator. The result of the genera-
tor is a parallel instrumented program, PIP
(see Figure 2). The benchmark package in-
cludes a user friendly interface that aids in all
phases of the machine evaluation. After the
PIP is generated, the code is compiled and ex-
ecuted. A tracefile is collected and written to
disk.

4.1.1.2. Computational Load

In the above example the computational load
results from the statement

Mat3[i3][i2] += Mat1[i3][i1]*Mat2[i1][i2]

in the inner loop. Often the user may not be
able to give the exact statements generating
the desired computational load. In such cases
it is important to have a set of statements with
which the computational behavior can be de-
scribed. Since the resulting computational
load depends upon the position in the loop hi-
erarchy, these statements have to be deter-
mined for each loop level of the program
structure. Three examples of such statements
illustrate various options.

\MATPROD

indicates the calculation of a matrix multipli-
cation. The type of operations can be deter-
mined by the declaration of the matrices which
are to be multiplied. The sizes of the matrices
(submatrices) can be given as arguments.

\MATVECPROD

8

is similar to the matrix multiplication instruc-
tion and generates code for a matrix-vector
product.

\SCALPROD

calculates a scalar product. Two vectors and
the name of the resulting scalar are given as ar-
guments.

These and other operations often used in mas-
sively parallel programming are provided to
make the description of the computational
load easy. Since various data structures can be
specified it is easy to generate different classes
of workloads. Using these constructs, it is pos-
sible, for example, to describe a diverse set of
abstract tests for integer and floating point per-
formance.

4.1.1.3. Modeling Communication

The design of a workload for multiprocessor
machines should include a description of
workload placed on the interconnection net-
work. Several goals are discussed in the fol-
lowing.

First, it is important to have a simple, easy to
use description of several communication re-
lated parameters. Such parameters include:

• the frequency and type of messages,

• the size and pattern of messages, and

• the locality and communication distance,
including the sending and receiving
nodes.

Another goal, related to the programming of
message-passing architectures, is to make the
communication code deadlock-free. The de-
velopment of such code is problematic since
statements for receiving messages are normal-
ly blocking. In order to make the code dead-
lock-free, a mechanism is needed which as-
sures that an adequate number of messages are
sent to nodes which are waiting to receive.

Describing communication in an abstract way
implies that neither setup routines nor special
point-to-point programming should be neces-
sary. The LOOP language provides high level
instructions from which the generator is able
to produce correct communication code for
each node. These are motivated through the
following example.

4.1.1.4. The COMMUNICATE Statement

One common communication function is the
transfer of messages between several proces-
sor nodes of a given distance. In parallel com-
puting, situations can be found in which sever-
al processors of a certain distance communi-
cate regularly. Nodes typically send results to
another node and receive new data from a third
node.

As an example, s simple parallel matrix multi-
plication is considered. First, the basic algo-
rithm is described in Figure 4.

In this figure, it is shown that both matrices A
and B are distributed in blocks of rows and
columns, respectively. Each node is able to
compute a certain sub-matrix of the resulting
matrix C. Having calculated the sub-matrix, it

A B C

x =

Each node performs the following step number of
nodes times:

• gets part of A and B

• computes a submatrix of C

• sends own part of B to another node

• receives new part of B from a third node

Figure 4: Structure of a parallel matrix-ma-
trix multiplication

9

is necessary that each node sends its column
block of matrix B to another node and receives
a new block of columns from a third node.
Typically, the blocks of columns are ex-
changed cyclically.

Reconsidering the LOOP program shown in
Figure 3, the communication can be modelled
with the

\COMMUNICATE (size, distance, partners)

instruction. The arguments specify the amount
of data which has to be communicated, the dis-
tance between the communicating processors,
and the number of processors to which the data
shall be transferred, respectively. Thus, the

\COMMUNICATE(amount,1,1)

statement in Figure 3 indicates that a certain
number of matrix entries (amount) has to be
transferred to one partner of distance one. Op-
tionally, the \COMMUNICATE statement can
be given a compound statement. Such com-
pound statements indicate cases in which the
low level send and receive operations generat-
ed by the high level \COMMUNICATE in-
struction are positioned at different places in
the parallel code. The sending operations are
done before the execution of the compound
statement and the receiving of the messages is
done afterwards. Inside the compound state-
ment a certain amount of computation may be
performed. Because of the non blocking send
operation, overlapping between communica-
tion and computation can be achieved. Gener-
ally speaking, with the \COMMUNICATE in-
struction it is possible to check the perfor-
mance of the interconnection network with
respect to

• the communication distance and

• the message length.

4.1.1.5. Information Exchange

Similar to the \COMMUNICATE construct,
the \EXCAHANGE statement generates com-

munication between two processors of a cer-
tain distance.Although it might initially seem
possible, this construct cannot be replaced by
the use of two \COMMUNICATE instructions
which generate only very few bidirectional
communications. Therefore, a construct which
generates only bidirectional communication
between pairs of processors is provided. The
construct

\EXCHANGE (size, distance, partners)

generates bidirectional communication by
sending and receiving messages of length
‘size’ between ‘partners’ (i.e., processors) of a
certain communication ‘distance’.

In parallel linear algebra and image processing
there are several algorithms which make use of
data exchange between pairs of processors. As
an example we consider the principles of a
parallel red-black relaxation algorithm.

All elements of the matrix are marked in a
chess-board like manner using the colors red
and black. Each processor gets a part of the
matrix as shown in Figure 5. In each iteration
step all elements of a processor’s submatrix
are recalculated. New values are calculated by
using a function which takes a certain neigh-
borhood of the point into account. This means
for each point, a statement

Shared points

Shared points

Proc 1

Proc 2

Proc 3

Figure 5: Parallel red-black relaxation

10

P’[i, j] := f(P[i][j], P[i-1][j],
P[i+1][j], P[i][j-1], P[i][j+1])

has to be calculated.

Red elements are recalculated first in which el-
ements shared between two processors have to
be exchanged. After that, recalculation and ex-
change of black elements is done. This process
continues until changes in the matrix values
are below a certain error threshold where the
algorithm is assumed to have found the solu-
tion to the problem.

int main(void)
{
int amount, host, me,

psize /* problemsize */, nodes /* nodes */;
\MAT (TYPE: MY_TYPE, S1: psize_node) Mat ;
\OPEN0(&nodes, &me, &host, &psize, T_BUF);
int psize_node = (int) (psize / nodes) ;
\INIT_ARRAY(Mat);
amount = psize * sizeof(MY_TYPE) ;
\LOOP (ITERATIONS) {

\EXCHANGE (amount, 1, 2) ;
relax (0, psize, psize_node) ;
\EXCHANGE (amount, 1, 2) ;
relax (1, psize, psize_node) ;

}
\CLOSE0();
return EXIT_SUCCESS;
}

Figure 6: LOOP program for parallel
red_black relaxation

A LOOP program which is capable to model
this algorithm is shown in Figure 6. The sub-
routine relax performs the iteration of one col-
or (red or black) on the matrix. The function
for the computation of new elements is the
arithmetic mean of the four neighboring ele-
ments. In contrast to a real algorithm which
would terminate if the error bound between
two iteration steps is smaller than a given lim-
it, this example iterates a distinct number of
times. At runtime the user can specify the
amount of iterations by defining the value of
iterations.

Besides placing computational load on each
processor, the program as it is described in

Figure 6 stresses the interconnection network
with a large amount of bidirectional messages
expressed by the \EXCHANGE construct.
Here it can be seen how some normal C con-
structs are integrated in the LOOP program.
The distribution of the matrix itself and other
setup overhead is not regarded in this example.
To handle the distribution of data some high-
level communication routines as shown below
are provided.

4.1.1.6. High-level Communication Routines

Two major types of high-level communication
routines are provided: multi-broadcast and
vector communication kernels. The first one
has been implemented to place a massive load
on the interconnection network. All of these
massively communicating routines are imple-
mented by sending a certain amount of data
from all nodes to all others. This functionality
is called a multi-broadcast operation. The
LOOP package has three slightly different im-
plementations of this multi-broadcast state-
ment.

\MULTIBCAST0(amount)

All nodes start by performing all send opera-
tions first; after that all receives are executed.
The amount of data sent by each node is given
as an argument. All nodes begin by sending to
node 0 and proceed by sending to the remain-
ing nodes in numerical order. (Nodes do not
send messages to themselves). Message re-
ceiving is done in the same order starting at
node 0.

\MULTIBCAST_ME(amount)

This procedure is similar to the above de-
scribed operation. The only difference is that
nodes do not start sending to node 0. Instead
each starts with the node which is numbered
one greater than itself (modulo the highest pro-
cessor number). This is to make sure that node
0 and the communication paths near node 0 are
not overwhelmingly loaded.

11

\MULTIBCAST_ALTER(amount)

In contrast to the two above mentioned func-
tions this one does not separate all send and re-
ceive operations. Instead, as the name indi-
cates, it places a receive operation after each
send. The order of these operations is such that
send operations are done with increasing and
receive operations are done with decreasing
processor numbers. This strategy avoids hot
spots and puts an evenly distributed communi-
cation load on the interconnection network.

The other class of high-level communication
routines are vector communication kernels.
Such routines are often used in parallel com-
puting. Routines for distributing, collecting,
and broadcasting vectors are provided. The
communication pattern used by these proce-
dures is based on a virtual (binary) tree topol-
ogy. Although a tree topology might not map
well on the target architecture, it does offer the
advantage that collection and distribution can
be done in logarithmic time. Three different
routines are provided by the LOOP language.

\TREE_BCAST(start_data,amount)

Node 0 sends (broadcasts) ‘amount’ bytes to
all other nodes. The data sent is located at the
position indicated by ‘start_data’.

\TREE_COLLECT_VEC(start_vec)

Processor 0 collects the parts of a distributed
vector from all other processors and rebuilds
the original vector at ‘start_vec’.

\TREE_DISTRIB_VEC(start_vec)

Processor 0 starts distributing a vector at
‘start_vec’ to all other processors. Each node
gets its own part of the vector. These tree com-
munications are carried out in log2(proces-
sors) steps. In each step the data to be collect-
ed/distributed is passed to the next upper/low-
er level of the assumed virtual tree topology. A
default logical tree topology is implemented
with the LOOP package. The mapping of the
nodes on the target architecture can be tuned
by the user.

4.1.2. Runtime Parameters

In the preceding, the structural parameters
needed to generate a certain type of workload
are described. For different executions, this
generation step need not be repeated, only dif-
ferent runtime parameters are needed.

One important runtime parameter is the prob-
lem size. The overall execution time and com-
munication behavior depend directly on this
parameter. For example, in the SLALOM
benchmark, by varying the problem size it is
possible to analyze the cache influence. Work-
loads with a large problem size do not fit in
small data caches. A second important runtime
parameter is the number of processors allocat-
ed to the generated workload. Both, the prob-
lem size and the number of allocated proces-
sors, are important in determining the granu-
larity at which the problem is solved most
efficient on the tested machine. To be able to
model iterative algorithms, a third runtime pa-
rameter, the number of iterations is provided.

Problem size:
The size of the data structures over which the
program iterates.

Processors:
The number of processors allocated to the
workload.

Iterations:
In case of iterative algorithms, the number of
passes the algorithm makes over the specified
data structures.

4.2. PICL and ParaGraph

An important feature of any successful bench-
mark is to design it to be portable across as
many machines as possible. This is difficult
task in the case of multiprocessor architec-
tures, because there is no standard program-
ming language. There are also various pro-
gramming models (e.g., host node model,
node model, synchronous communication,

12

asynchronous communication). A group of re-
searchers at Oak Ridge National Laboratory
(ORNL) addressed this task by constructing a
communication library. The idea is simple:

1) Identify the communication needs of a mes-
sage passing program (e.g., send, receive,
barrier, broadcast, etc.).

2) Provide the user with routines for those
needs.

3) Put the routines in a software library that is
easy to install for a wide variety of multi-
processors.

4) Make it publicly available.

The result is PICL (Portable Instrumented
Communication Library) which has been im-
plemented on several multiprocessor systems.
PICL programs are portable between ma-
chines where PICL is implemented. PICL in-
cludes all communication routines that are
needed for parallel message passing programs.
The generator of the benchmarking package
transforms the LOOP description of a parallel
workload into a parallel program with C and
PICL statements. A detailed description of
PICL can be found in /PICL90/, which is also
part of the LOOP benchmark documentation
package1.

PICL automatically instruments the code for
tracing purposes. The resulting traces can be
interpreted with ParaGraph, a graphical dis-
play system for visualizing the behavior and
performance of parallel programs on message
passing multicomputer architectures. Visual
animation is provided based on execution
trace information monitored during an actual
run of a parallel program. The resulting trace
data is replayed pictorially and provides a dy-
namic depiction of the behavior of the parallel
program. Graphical summaries of overall per-
formance behavior is also provided. Different
visual perspectives provide different insights
of the same performance data. A description of

1. available via ftp (ftp@irb.uni-hannover.de)

ParaGraph can be found in /PARA92/, which
is also part of the benchmark documentation
package.

The output of the generator was chosen to be
PICL programs for three reasons: instrumenta-
tion, availability, and portability. PICL pro-
vides instrumentation, it is public domain soft-
ware and it is implemented on several systems.
The generator output is not inherently restrict-
ed to PICL. Whenever a new message passing
paradigm becomes available that meets the
three requirements above, the generator output
can easily be changed. This implies that the
basic LOOP approach is independent of the
underlying message passing hardware. In this
paper it is not possible to describe all LOOP
statements, a complete description can be
found in /BBS94a/.

5. Predefined Benchmarks

Once the basic LOOP structure has been spec-
ified it is possible to write generic LOOP pro-
grams to analyze a wide range of system fea-
tures. The LOOP package includes some pro-
grams that can be used as predefined
benchmarks. The predefined benchmarks con-
sist of LOOP programs for typical parallel
workloads (e.g., matrix multiplication, conju-
gate gradient, relaxation, fast fourier transfor-
mation) and of one special synthetic test pro-
gram that provides an overall impression of
the computation and communication perfor-
mance of the machine. This special test pro-
gram is termed the Fingerprint LOOP pro-
gram. The predefined benchmarks are de-
signed for users who want to evaluate and
compare different machines.

5.1. The Fingerprint

To assess the communication capabilities of a
machine in comparison to the computational
power, the Fingerprint benchmark has been
developed. The goal is to provide quick, visual

13

reference information for a first glance com-
parison between different machines. As shown
in the annotated version of the space time dia-
gram in Figure 8, the Fingerprint was de-
signed to illustrate

(1) the time needed for a certain computa-
tion intensive phase,

(2a-c)the time needed for communications of
different message length, and

(3) the effect of heavy communication loads
which partially saturate the communica-
tion network.

This latter effect is provoked by concentrating
on node 0, then on node 1, and so on. Thus,
communication delays tend to be compounded
for higher processor numbers. Therefore, a se-
vere “V-type“ profile indicates a high number
of conflicts in the communication network. A
more rectangular (i.e., vertical) profile is typi-
cal for a non-saturated network as evidenced
by the ends of phases 2a and 2b. In Figure 7
the LOOP source code for the Fingerprint
workload is given.

#include “LOOP.h“
#define TRACE_BUF_SIZE 250000
#define MY_TYPE double
int main(void)
{

int myself,allnodes,host,problemsize ;
\OPEN0(&allnodes, &myself, &host,

&problemsize, TRACE_BUF_SIZE) ;
\VEC(TYPE: MY_TYPE) sc, vec1, vec2;
\VISIBLE_SYNC();
\LOOP {

\SCALPROD(sc, vec1, vec2);}
\VISIBLE_SYNC();
/* multi-broadcast, 1 bytes */
\MULTIBCAST0(1);
\VISIBLE_SYNC();
/* multi-broadcast,500 bytes */
\MULTIBCAST0(500);
\VISIBLE_SYNC();
/* multi-broadcast, 1000 bytes */
\MULTIBCAST0(1000);
\VISIBLE_SYNC();
\CLOSE0();
return EXIT_SUCCESS;

}

Figure 7: LOOP source code for Fingerprint

Figure 8: Space time diagram for a typical 16 processor fingerprint execution

Computation Phase short
commu.
phase

medium
commu.
phase

large
commu.
phase

over-
load
phase

visible sync

1 2a 2b 2c 3

14

The execution of the Fingerprint workload
falls into two parts. In the first part, a scalar
product of two vectors of size problemsize is
calculated on each node. The parameter prob-
lemsize is specified at runtime making several
different executions possible. The second part
consists of three multibroadcast instructions
with different message lengths. In each multi-
broadcast the selected amount of information
is transmitted from each node to all other
nodes. This produces a heavy load for the in-
terconnection network. The different amount
of data sent increases the network load and
produces space time diagrams which can be
compared across various machines.

To provide a boundary between the computa-
tion and communication phases easier a \VISI-
BLE_SYNC() construct is used. Since the
PICL sync0 instruction does not produce any
trace data to be visualized by ParaGraph, the
LOOP system provides this special form of
synchronization. All nodes execute a sync0
operation. Next, every node sends a short mes-
sage to its right hand neighbor1. This produces
a vertical line in the space-time diagram. To
synchronize the execution of all nodes after
sending a message to and receiving a message
from the neighbors, a second sync0 is per-
formed by all nodes. The second sync0 mini-
mizes the time difference for the processors to
start the next phase of the program.

5.2. Parameterized Applications

For the comparison of different computer sys-
tems the benchmark package provides five dif-
ferent LOOP workload programs:

- fingerprint (fp),
- conjugate gradient method (cg),
- matrix multiplication sync (mmm_s),
- matrix multiplication async (mmm_a), and
- red-black relaxation (red_black).

1. Using a virtual ring topology

The fingerprint workload is described in the
previous section. The second workload (cg) is
a LOOP workload for a parallel conjugate gra-
dient method. The two different matrix multi-
plication versions are with asynchronous com-
munication (mmm_a) and with synchronous
communication (mmm_s). In the first case,
sending of messages is overlapped with com-
putation. This can be important for architec-
tures being capable of doing computation and
communication in parallel. The synchronous
version is favorable for architectures with a
synchronous message passing hardware. The
last workload simulates a parallel red-black re-
laxation algorithms. The LOOP workload pro-
gram is described in Figure 6.

6. Results

For the comparison of a MEIKO (a 64 node
T800 based multiprocessor), an nCUBE/2 (a
128 node hypercube connected multiproces-
sor), and an Intel Paragon (a 512 node i860
based mesh connected multiprocessor), five
different LOOP workloads that are described
are executed on each system. The workloads
are executed with 16 and 32 processors on all
three machines /BBS94b/. The timings are
given in Table 1. On the nCUBE/2 and the
Paragon the workloads are also executed with
64 and 128 nodes. The results are shown in Ta-
ble 3. The results tables are organized as fol-
lows. First, the name for the LOOP workload
program is given. The first parameter is the
numbers of allocated processors, the second
parameter is the problem size, and the third pa-
rameter is the number of iterations (if applica-
ble).

6.1. Execution Times

Table 1 shows the results of the LOOP bench-
marks executed on the different systems.

15

An interesting result is that none of the three
target architectures profits from the overlap-
ping communication in the second matrix mul-
tiplication algorithm. On the Paragon and the
nCUBE, asynchronous communication results
in a lower bandwidth. The asynchronous com-
munication can also slow down computation
because the processor and the communication
unit try to access main memory simultaneous-
ly. On the MEIKO, asynchronous communi-
cations are converted to synchronous commu-
nications at the hardware level resulting in ad-
ditional overhead. [Note: In a separate
experiment, the message passing paradigm
“send as soon as possible, receive as late as
possible“ does not necessarily improve perfor-
mance.]

To see the results from a relative viewpoint,
the times are converted to “paragon seconds“
(see Table 2). The workloads in the tables are
ordered from communication bound loads to
computation bound loads. That is, the finger-
print workload has the highest communica-
tion/computation ratio, while the relaxation
workload has the lowest communication/com-
putation ratio. From the published single node
peak performances, one could expect that the
performance of the nCUBE/2 and the MEIKO
are similar and that the Paragon is an order of
magnitude faster.

Runtime in seconds
MEIKO nCUBE Paragon

fp 16/100 0.282 0.073 0.024
fp 32/100 0.559 0.112 0.036
cg 16/256/8 0.601 0.299 0.062
cg 32/256/8 0.624 0.237 0.055
mmm_s 16/256 13.461 8.586 1.692
mmm_s 32/256 7.788 4.643 0.855
mmm_a 16/256 13.680 8.437 1.692
mmm_a 32/256 7.922 4.470 0.886
red_black 16/1024/5 6.885 4.439 0.567
red_black 32/1024/5 3.621 2.210 0.284

Table 1: Execution times for the LOOP
benchmarks

The first experiment (Fingerprint) shows that
this expectation is not necessarily true. For a
communication bound synthetic workload
(i.e., fp16/100) a slowdown of only 3 is ob-
served for the nCUBE/2 and a slowdown of 11
is observed for the MEIKO. However, the
lower the communication/computation ratio
is, the more the MEIKO and the nCUBE/2 are
outperformed by the Paragon. For the most
computation bound workload, red_black32/
1024/5, the closer the MEIKO and nCUBE/2
are to each other and are approximately an or-
der of magnitude slower than the Paragon. The
Fingerprint results (execution time, space time
diagram) show that the nCUBE/2 scores better
with respect to communication bound work-
loads.

Slowdown
MEIKO nCUBE Paragon

fp 16/100 11.729 3.033 1.0
fp 32/100 15.517 3.111 1.0
cg 16/256/8 9.931 4.823 1.0
cg 32/256/8 11.345 4.309 1.0
mmm_s 16/256 7.956 5.074 1.0
mmm_s 32/256 8.800 5.246 1.0
mmm_a 16/256 8.085 4.986 1.0
mmm_a 32/256 8.941 5.045 1.0
red_black 16/1024/5 12.121 7.743 1.0
red_black 32/1024/5 12.750 7.782 1.0

Table 2: Slowdown against Paragon

Runtime in secs. Slowdown
nCUBE Paragon nCUBE

fp 64/100 0.181 0.072 2.613
fp 128/100 0.380 0.145 2.621
cg 64/1024/8 1.129 0.189 5.974
cg 128/1024/8 0.829 0.145 5.717
mmm_s 64/256 2.968 0.484 6.132
mmm_s 128/256 2.598 0.327 7.945
mmm_a 64/256 2.816 0.484 5.818
mmm_a 128/256 2.468 0.328 7.524
red_bl. 64/1024/5 1.078 0.143 7.531
red_bl. 128/1024/5 0.544 0.074 7.351

Table 3: Runtimes for the LOOP bench-
marks on 64 and 128 nodes

16

Some of the results are expected (e.g., overall
performance). However, some tests provide
interesting insight into machine behavior
(through trace visualization tools). These re-
sults can be used by both parallel programmers
and system developers to improve perfor-
mance. Examples include balancing the com-
putation and communication performance
(e.g., Fingerprint) and the improving of asyn-
chronous communication (e.g., matrix multi-
plication). It is noted that the parallelization
for message passing systems is still rather
coarse (i.e., a certain amount of computation
between communication is needed) otherwise
slowdowns can easily result from adding pro-
cessors (e.g., the result for the conjugate gradi-
ent workload on the MEIKO for 16 and 32
processors).

6.2. Standard Result Sheets

For a more complete overview on the test re-
sults, three standard result sheets for each ex-
periment are developed. The first page con-
tains information on the workload, including
the structural and runtime parameters, infor-
mation on the system hardware (e.g., number
of processors, type of interconnection net-
work), the measured performance metrics
(e.g., execution time, percentages for busy,
idle and overhead times), a profile of the par-
allel workload, and a utilization summary for
each processor. The second page gives an
overview of various statistical information of
an experiment. It contains information such as
the number of messages sent and received, the
average, maximum and minimum times for
the send and receive operations, and message
queue lengths1. An example for the standard
result sheets for a conjugate gradient LOOP
workload is provided as Appendix.

1. A report explaining in more detail the standard
evaluation sheets for all tests is available via ftp from
ftp@irb.uni-hannover.de (directory /pub/bench)

The PICL tracefiles contain all the information
on communication and computation events.
Paragraph offers a wide variety of displays to
visualize these events. Thus, the user can go
into as much detail as desired.

7. Conclusions and Future Work

A primary goal of the LOOP approach is to
provide the user with a set of parallel work-
loads which can be used to compare various
aspects of different systems quickly. A second
goal is to offer a convenient way to implement
user defined workloads on parallel systems.
There are a variety of LOOP statements (not
all of which are described in this paper) for
typical communication and computation
loads. LOOP programs can be complemented
with C statements. Once the description of a
workload is complete, the remaining steps are
automatic. The user only has to specify runt-
ime parameters (problemsize, number of pro-
cessors, and number of iterations). The pro-
gram is then executed and a tracefile is gener-
ated. ParaGraph can be used to visualize the
trace data.

Regarding future work on the LOOP ap-
proach, two extensions are planned:

1) The use of LOOP programs for automatic
workload characterization, and

2) the use of the LOOP language for fast pro-
totyping of message passing programs.

17

8. References

/BBS94a/ J. Brehm et.al.:
A Multiprocessor Benchmark, User’s guide and refern-
ce manual, ESPRIT III technical report, available via ft-
p.irb.uni-hannover.de

/BBS94b/ J. Brehm et.al.:
A Multiprocessor Benchmark, Appendix D, machine
evaluations, ESPRIT III technical report, available via
ftp.irb.uni-hannover.de

/Gol83/ Gene H. Golub et al.:
Matrix Computation, North Oxford Academic, Oxford
1983

/Jain91/ R. Jain:
The art of computer systems performance analysis:
techniques for experimental design, measurement, si-
mulation and modeling,
John Wiley&Sons, New York 1991

/Ker88/ B. W. Kernighan; D. M. Ritchie:
The C Programming Language
Prentice-Hall, 1988

/Kil94/ U. Killermann:
Implementierung der parallelen Programmierumge-
bung PPRC auf nCube
Diplomarbeit IRB, Hannover 1994

/PARA91/ M. T. Heath; J. E. Finger:
ParaGraph: A Tool for Visualizing Performance of Pa-
rallel Programs, IEEE Software, 8(5), September 1991,
pp. 29-39

/PARA92/ M. T. Heath; J. E. Finger:
ParaGraph: A Tool for Visualizing Performance of Pa-
rallel Programs, User
Guide, Oak Ridge National Laboratory, Oak Ridge,
October 1992

/PICL90/ G.A. Geist; M.T. Heath; B.W. Peyton;
P.H. Worley:
PICL - A Portable Instrumented Communication Libr-
ary, Technical Report, Oak Ridge National Laboratory,
Oak Ridge, July 1990

/PICL90a/G.A. Geist; M.T. Heath; B.W. Peyton; P.H.
Worley:
PICL - A Portable Instrumented Communication Libr-
ary, C Reference Manual, Oak Ridge National Labora-
tory, Oak Ridge, July 1990

/Pre88/ H. Press et. al.:
Numerical Recipes in C - The Art of Scientific Comp-
tuing,
Cambridge University Press, New York 1988

/Schl93/ T. Schlemeier:
Entwicklung eines Generators für parallele Benchmark-
programme
Diplomarbeit IRB, Hannover 1993

/Sin91/ Singh; Weger; Gupta:
SPLASH: Stanford Parallel Applications for Shared-
Memory
Stanford University, CA 94305, Technical Report CSL-
TR-91-469

/Sla90/ J. Gustafson et. al.:
SLALOM: The First Scalable Supercomputer Bench-
mark
Supercomputing Review, November 1990, pp.56-61

/Spec91/ SunTech Journal:
SPECulations (Defining the SPEC Benchmark)
January 1991

/Wei91/ Reinhold Weicker:
Benchmarking: Status, Kritik, Aussichten, Proceedings
zur 6. GI/ITG Fachtagung Messung Modellierung und
Bewertung von Rechensystemen,
p. 259-277, Springer-Verlag, Berlin 1991

18

Appendix: Example for the standard result sheets for a conjugate gradient workload

Evaluated Problem

Fingerprint(1,500,1000)

No. nodes: 16
Problemsize: 100
Iterations: 100

Main Results

Execution time: 0,0728 sec
Percent Processors Busy: 51.32 %
Percent Processors Overhead: 43.37 %
Percent Processors Idle: 5.32 %
Avg Time Send (usec): 4378
Avg Time Rcvd (usec: 4378

Hardware

nCUBE/2

Nodes: 128 at 20MHz
Network: Hypercube

19

Appendix: Example for the standard result sheets for a conjugate gradient workload

Statistics evaluated by ParaGraph (Scalingfactor for times: 100):

20

nC
ub

e
2

Fi
ng

er
pr

in
t (

10
0,

1,
50

0,
10

00
)

(S
ca

lin
g

12
0)

Appendix: Example for the standard result sheets for a conjugate gradient workload

