
close(2) close(2)

NAME

close − close a file descriptor

SYNOPSIS

#include <unistd.h>

int close(int fd);

DESCRIPTION

close() closes a file descriptor, so that it no longer refers to any file and may be reused.

RETURN VALUE

close() returns zero on success. On error, −1 is returned, and errno is set appropriately.

closedir(3) closedir(3)

NAME

closedir − close a directory

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION

The closedir() function closes the directory stream associated with dirp.

RETURN VALUE

The closedir() function returns 0 on success. On error, −1 is returned, and errno is set appropriately.

dup(2) dup(2)

NAME

dup, dup2 − duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd , int newfd);

DESCRIPTION

The dup() system call creates a copy of the file descriptor oldfd , using the lowest-numbered unused file

descriptor for the new descriptor.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-numbered unused

file descriptor, it uses the file descriptor number specified in newfd . If the file descriptor newfd was previ-

ously open, it is silently closed before being reused.

The steps of closing and reusing the file descriptor newfd are performed atomically.

RETURN VALUE

On success, these system calls return the new file descriptor. On error, −1 is returned, and errno is set

appropriately.

1

exec(2) exec(2)

NAME

exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS

#include <unistd.h>

int execl(const char * path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char * file, char *const argv[]);

DESCRIPTION

Each of the functions in the exec family overlays a new process image on an old process. The new process

image is constructed from an ordinary, executable file. This file is either an executable object file, or a file

of data for an interpreter. There can be no return from a successful call to one of these functions because

the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int argc, char ∗ argv[]);

where argc is the argument count, and argv is an array of character pointers to the arguments themselves.

As indicated, argc is at least one, and the first member of the array points to a string containing the name of

the file.

The argv argument is an array of character pointers to null-terminated strings. These strings constitute the

argument list available to the new process image. By convention, argv must have at least one member, and

it should point to a string that is the same as path (or its last component). The argv argument is terminated

by a null pointer.

The path argument points to a path name that identifies the new process file.

The file argument points to the new process file. If file does not contain a slash character, the path prefix for

this file is obtained by a search of the directories passed in the PATH environment variable (see environ(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process

image (see signal(3C)). Otherwise, the new process image inherits the signal dispositions of the calling

process.

RETURN VALUES

If a function in the exec family returns to the calling process, an error has occurred; the return value is −1
and errno is set to indicate the error.

fnmatch(3) fnmatch(3)

NAME

fnmatch − match filename or pathname

SYNOPSIS

#include <fnmatch.h>

int fnmatch(const char * pattern, const char *string, int flags);

DESCRIPTION

The fnmatch() function checks whether the string argument matches the pattern argument, which is a shell

wildcard pattern.

The flags argument modifies the behavior; it is the bitwise OR of zero or more flags.

RETURN VALUE

Zero if string matches pattern, FNM_NOMATCH if there is no match or another nonzero value if there is

an error.

2

fork(2) fork(2)

NAME

fork − create a child process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

DESCRIPTION

fork() creates a new process by duplicating the calling process. The new process is referred to as the child

process. The calling process is referred to as the parent process.

The child process is an exact duplicate of the parent process except for the following points:

* The child has its own unique process ID.

* The child’s parent process ID is the same as the parent’s process ID.

RETURN VALUE

On success, the PID of the child process is returned in the parent, and 0 is returned in the child. On failure,

−1 is returned in the parent, no child process is created, and errno is set appropriately.

open(2) open(2)

NAME

open, creat − open and possibly create a file

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

int creat(const char * pathname, mode_t mode);

DESCRIPTION

The open() system call opens the file specified by pathname. If the specified file does not exist, it may

optionally (if O_CREAT is specified in flags) be created by open().

The return value of open() is a file descriptor.

The argument flags must include one of the following access modes: O_RDONLY, O_WRONLY, or

O_RDWR. These request opening the file read-only, write-only, or read/write, respectively.

In addition, zero or more flags can be bitwise-or’d in flags. The file creation flags are

O_APPEND
The file is opened in append mode.

O_CREAT
If pathname does not exist, create it as a regular file.

The owner (user ID) of the new file is set to the effective user ID of the process.

The mode argument specifies the file mode bits be applied when a new file is created. This argument must

be supplied when O_CREAT is specified in flags; otherwise mode is ignored.

creat()
A call to creat() is equivalent to calling open() with flags equal to O_CREAT|O_WRONLY|O_TRUNC.

RETURN VALUE

open(), openat(), and creat() return the new file descriptor, or −1 if an error occurred (in which case, errno

is set appropriately).

3

opendir(3) opendir(3)

NAME

opendir, fdopendir − open a directory

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

DESCRIPTION

The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer

to the directory stream.

After a successful call to fdopendir(), fd is used internally by the implementation, and should not otherwise

be used by the application.

RETURN VALUE

The opendir() and fdopendir() functions return a pointer to the directory stream. On error, NULL is

returned, and errno is set appropriately.

pipe(2) pipe(2)

NAME

pipe, pipe2 − create pipe

SYNOPSIS

#include <unistd.h>

int pipe(int pipefd[2]);

DESCRIPTION

pipe() creates a pipe, a unidirectional data channel that can be used for interprocess communication. The

array pipefd is used to return two file descriptors referring to the ends of the pipe. pipefd[0] refers to the

read end of the pipe. pipefd[1] refers to the write end of the pipe.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

read(2) read(2)

NAME

read − read from a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd , void *buf , size_t count);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf .

If count is zero, read() may detect the errors described below. In the absence of any errors, or if read()

does not check for errors, a read() with a count of 0 returns zero and has no other effects.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates end of file), and the file position is

advanced by this number. It is not an error if this number is smaller than the number of bytes requested.

On error, −1 is returned, and errno is set appropriately. In this case, it is left unspecified whether the file

position (if any) changes.

4

