
chdir(2) chdir(2)

NAME

chdir, fchdir − change working directory

SYNOPSIS

#include <unistd.h>

int chdir(const char *path);
int fchdir(int fd);

DESCRIPTION

chdir() changes the current working directory of the calling process to the directory specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an open file descriptor.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

chmod(2) chmod(2)

NAME

chmod, fchmod, fchmodat − change permissions of a file

SYNOPSIS

#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);
int fchmod(int fd , mode_t mode);

DESCRIPTION

The chmod() and fchmod() system calls change a files mode bits. fchmod() is identical to chmod(); but

the directory is given as an open file descriptor. The new file mode is specified in mode.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

close(2) close(2)

NAME

close − close a file descriptor

SYNOPSIS

#include <unistd.h>

int close(int fd);

DESCRIPTION

close() closes a file descriptor, so that it no longer refers to any file and may be reused.

RETURN VALUE

close() returns zero on success. On error, −1 is returned, and errno is set appropriately.

closedir(3) closedir(3)

NAME

closedir − close a directory

SYNOPSIS

#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION

The closedir() function closes the directory stream associated with dirp.

RETURN VALUE

The closedir() function returns 0 on success. On error, −1 is returned, and errno is set appropriately.

dup(2) dup(2)

NAME

dup, dup2 − duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd , int newfd);

DESCRIPTION

The dup() system call duplicates a file descriptor.

The dup2() system call replaces the file descriptor specified in newfd with a copy of oldfd . If the file

descriptor newfd was previously open, it is silently closed before being reused.

The steps of closing and reusing the file descriptor newfd are performed atomically.

RETURN VALUE

On success: the new file descriptor. On error, −1 is returned, and errno is set appropriately.

exec(2) exec(2)

NAME

exec, execl, execv, execle, execve, execlp, execvp − execute a file

SYNOPSIS

#include <unistd.h>

int execl(const char * path, const char *arg0, . . ., const char *argn, char * /*NULL*/);

int execvp (const char * file, char *const argv[]);

DESCRIPTION

Each of the functions in the exec family overlays a new process image on an old process. The new process

image is constructed from an ordinary, executable file. This file is either an executable object file, or a file

of data for an interpreter. There can be no return from a successful call to one of these functions because

the calling process image is overlaid by the new process image.

When a C program is executed, it is called as follows:

int main (int argc, char ∗ argv[]);

where argc is the argument count, and argv is an array of character pointers to the arguments themselves.

As indicated, argc is at least one, and the first member of the array points to a string containing the name of

the file.

The argv argument is an array of character pointers to null-terminated strings. These strings constitute the

argument list available to the new process image. By convention, argv must have at least one member, and

it should point to a string that is the same as path (or its last component). The argv argument is terminated

by a null pointer.

The path argument points to a path name that identifies the new process file.

The file argument points to the new process file. If file does not contain a slash character, the path prefix for

this file is obtained by a search of the directories passed in the PATH environment variable (see environ(5)).

File descriptors open in the calling process remain open in the new process.

Signals that are being caught by the calling process are set to the default disposition in the new process

image (see signal(3C)). Otherwise, the new process image inherits the signal dispositions of the calling

process.

RETURN VALUES

If a function in the exec family returns to the calling process, an error has occurred; the return value is −1
and errno is set to indicate the error.

1

fnmatch(3) fnmatch(3)

NAME

fnmatch − match filename or pathname

SYNOPSIS

#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION

The fnmatch() function checks whether the string argument matches the pattern argument, which is a shell

wildcard pattern.

The flags argument modifies the behavior; it is the bitwise OR of zero or more flags.

RETURN VALUE

Zero if string matches pattern, FNM_NOMATCH if there is no match or another nonzero value if there is

an error.

fork(2) fork(2)

NAME

fork − create a child process

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

DESCRIPTION

fork() creates a new process by duplicating the calling process. The new process is referred to as the child

process. The calling process is referred to as the parent process.

The child process is an exact duplicate of the parent process except for the following points:

* The child has its own unique process ID.

* The child’s parent process ID is the same as the parent’s process ID.

RETURN VALUE

On success, the PID of the child process is returned in the parent, and 0 is returned in the child. On failure,

−1 is returned in the parent, no child process is created, and errno is set appropriately.

getline(3) getline(3)

NAME

getline, getdelim − delimited string input

SYNOPSIS

#include <stdio.h>

ssize_t getline(char **lineptr, size_t *n, FILE *stream);
ssize_t getdelim(char **lineptr, size_t *n, int delim, FILE *stream);

DESCRIPTION

getline() reads an entire line from stream, storing the address of the buffer containing the text into *lineptr.

The buffer is null-terminated and includes the newline character, if one was found.

If *lineptr is set to NULL and *n is set 0 before the call, then getline() will allocate a buffer for storing the

line. This buffer should be freed by the user program even if getline() failed.

Alternatively, before calling getline(), *lineptr can contain a pointer to a malloc(3)−allocated buffer *n

bytes in size. If nessecary, getline() will resizes it.

getdelim() works like getline(), except that a line delimiter is specified via the delimiter argument.

RETURN VALUE

On success, the number of characters read, including the delimiter, but excluding the terminating null byte.

On error and end-of-file −1 is returned. In the event of an error, errno is set appropriately.

kill(2) kill(2)

NAME

kill − send signal to a process

SYNOPSIS

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid , int sig);

DESCRIPTION

The kill() system call can be used to send any signal to any process.

If pid is positive, then signal sig is sent to the process with the ID specified by pid. If pid equals −1, then

sig is sent to every process for which the calling process has permission to send signals.

If sig is 0, then no signal is sent, but existence and permission checks are still performed.

RETURN VALUE

On success (at least one signal was sent), zero is returned. On error, −1 is returned, and errno is set appro-

priately.

ERRORS

EINVAL An invalid signal was specified.

EPERM The process does not have permission to send the signal to any of the target processes.

ESRCH The process or process group does not exist.

lseek(2) lseek(2)

NAME

lseek − reposition read/write file offset

SYNOPSIS

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fd , off_t offset, int whence);

DESCRIPTION

lseek() repositions the file offset of the open file description associated with the file descriptor fd to the

argument offset according to the directive whence as follows:

SEEK_SET The file offset is set to offset bytes.

SEEK_CUR The file offset is set to its current location plus offset bytes.

SEEK_END The file offset is set to the size of the file plus offset bytes.

lseek() allows the file offset to be set beyond the end of the file.

RETURN VALUE

Upon successful completion, lseek() returns the resulting offset location as measured in bytes from the

beginning of the file. On error, the value (off_t) −1 is returned and errno is set to indicate the error.

2

malloc(3) malloc(3)

NAME

malloc, free, calloc, realloc − allocate and free dynamic memory

SYNOPSIS

#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);

DESCRIPTION

The malloc() function allocates size bytes and returns a pointer to the allocated memory.

The free() function frees the memory space pointed to by ptr, which must have been returned by a previous

call to malloc(), calloc(), or realloc(). Otherwise, or if free(ptr) has already been called before, undefined

behavior occurs. If ptr is NULL, no operation is performed.

The calloc() function allocates memory for an array of nmemb elements of size bytes each and returns a

pointer to the allocated memory. The memory is set to zero.

The realloc() function changes the size of the memory block pointed to by ptr to size bytes. The contents

will be unchanged in the range from the start of the region up to the minimum of the old and new sizes.

Added memory will not be initialized. If ptr is NULL, then the call is equivalent to malloc(size), for all

values of size; if size is equal to zero, and ptr is not NULL, then the call is equivalent to free(ptr). Unless

ptr is NULL, it must have been returned by an earlier call to malloc(), calloc(), or realloc().

RETURN VALUE

The malloc() and calloc() functions return a pointer to the allocated memory. On error, these functions

return NULL. NULL may also be returned by a successful call to malloc() with a size of zero, or by a suc-

cessful call to calloc() with nmemb or size equal to zero.

The realloc() function returns a pointer to the newly allocated memory, or NULL if the request fails. If size

was equal to 0, either NULL or a pointer suitable to be passed to free() is returned. If realloc() fails, the

original block is left untouched; it is not freed or moved.

open(2) open(2)

NAME

open, creat − open and possibly create a file

SYNOPSIS

#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
int creat(const char * pathname, mode_t mode);

DESCRIPTION

The open() system call opens the file specified by pathname. If the specified file does not exist, it may

optionally (if O_CREAT is specified in flags) be created by open().

The argument flags must include one of the following access modes: O_RDONLY, O_WRONLY, or

O_RDWR. These request opening the file read-only, write-only, or read/write, respectively.

In addition, zero or more of the following flags can be bitwise-or’d in flags:

O_APPEND The file is opened in append mode.

O_CREAT If pathname does not exist, create it as a regular file.

The owner (user ID) of the new file is set to the effective user ID of the process.

The mode argument specifies the file mode bits be applied when a new file is created. This argument must

be supplied when O_CREAT is specified in flags; otherwise mode is ignored.

A call to creat() is equivalent to calling open() with flags equal to O_CREAT|O_WRONLY|O_TRUNC.

RETURN VALUE

on success: return the new file descriptor; on error:return −1, errno is set appropriately.

opendir(3) opendir(3)

NAME

opendir, fdopendir − open a directory

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

DESCRIPTION

The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer

to the directory stream.

After a successful call to fdopendir(), fd is used internally by the implementation, and should not otherwise

be used by the application.

RETURN VALUE

The opendir() and fdopendir() functions return a pointer to the directory stream. On error, NULL is

returned, and errno is set appropriately.

perror(3) perror(3)

NAME

perror − print a system error message

SYNOPSIS

#include <stdio.h>

void perror(const char *s);

#include <errno.h>

int errno;

DESCRIPTION

The perror() function produces a message on standard error describing the last error encountered during a

call to a system or library function.

First (if s is not NULL and *s is not a null byte ('\0')), the argument string s is printed, followed by a colon

and a blank. Then an error message corresponding to the current value of errno and a new-line.

When a system call fails, it usually returns −1 and sets the variable errno to a value describing what went

wrong.

pipe(2) pipe(2)

NAME

pipe, pipe2 − create pipe

SYNOPSIS

#include <unistd.h>

int pipe(int pipefd[2]);

DESCRIPTION

pipe() creates a pipe, a unidirectional data channel that can be used for interprocess communication. The

array pipefd is used to return two file descriptors referring to the ends of the pipe. pipefd[0] refers to the

read end of the pipe. pipefd[1] refers to the write end of the pipe.

RETURN VALUE

On success, zero is returned. On error, −1 is returned, and errno is set appropriately.

3

pthread_create(3) pthread_create(3)

NAME

pthread_create − create a new thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t *thread , const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

DESCRIPTION

The pthread_create() function starts a new thread in the calling process. The new thread starts execution

by invoking start_routine(); arg is passed as the sole argument of start_routine().

The new thread terminates in one of the following ways: It calls pthread_exit(3); it returns from start_rou-

tine(); it is canceled via pthread_cancel(3); any of the threads in the process calls exit(3); or the main

thread performs a return from main().

The attr argument points to a pthread_attr_t structure containing startup attributes. If attr is NULL, then

default attributes are used.

RETURN VALUE

On success, pthread_create() returns 0 and the thread ID is stored in *thread; on error, it returns an error

number, and the contents of *thread are undefined.

pthread_detach(3) pthread_detach(3)

NAME

pthread_detach − detach a thread

SYNOPSIS

#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION

The pthread_detach() function marks the thread identified by thread as detached. Resources of a detached

thread are automatically released on termination.

Attempting to detach an already detached thread results in unspecified behavior.

RETURN VALUE

On success, pthread_detach() returns 0; on error, it returns an error number.

read(2) read(2)

NAME

read − read from a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd , void *buf , size_t count);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf .

If count is zero, read() may detect the errors described below. In the absence of any errors, or if read()

does not check for errors, a read() with a count of 0 returns zero and has no other effects.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates end of file), and the file position is

advanced by this number. It is not an error if this number is smaller than the number of bytes requested.

On error, −1 is returned, and errno is set appropriately. In this case, it is left unspecified whether the file

position (if any) changes.

readdir(3) readdir(3)

NAME

readdir − read a directory

SYNOPSIS

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

DESCRIPTION

The readdir() function returns a pointer to a dirent structure representing the next directory entry in the

directory stream pointed to by dirp. It returns NULL on reaching the end of the directory stream or if an

error occurred.

The dirent structure is defined as follows:

struct dirent {

long d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */

unsigned short d_reclen; /* length of this record */

unsigned char d_type; /* type of file; not supported by all filesystem types */

char d_name[256]; /* filename */

};

RETURN VALUE

On success, readdir() returns a pointer to a dirent structure.

If the end of the directory stream is reached, NULL is returned and errno is not changed. If an error

occurs, NULL is returned and errno is set appropriately.

sem_getvalue(3) sem_getvalue(3)

NAME

sem_getvalue − get the value of a semaphore

SYNOPSIS

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

DESCRIPTION

sem_getvalue() places the current value of the semaphore pointed to sem into the integer pointed to by

sval.

RETURN VALUE

sem_getvalue() returns 0 on success; on error, −1 is returned and errno is set appropriately.

sem_init(3) sem_init(3)

NAME

sem_init − initialize an unnamed semaphore

SYNOPSIS

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared , unsigned int value);

DESCRIPTION

sem_init() initializes the unnamed semaphore at the address pointed to by sem. The value argument speci-

fies the initial value for the semaphore.

The pshared argument indicates whether this semaphore is to be shared between the threads of a process

(0), or between processes (1). Initializing a semaphore that has already been initialized results in undefined

behavior.

RETURN VALUE

sem_init() returns 0 on success; on error, −1 is returned, and errno is set appropriately.

4

sem_post(3) sem_post(3)

NAME

sem_post − unlock a semaphore

SYNOPSIS

#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION

sem_post() increments (unlocks) the semaphore pointed to by sem. If the semaphore’s value consequently

becomes greater than zero, then another process or thread blocked in a sem_wait(3) call will be woken up

and proceed to lock the semaphore.

RETURN VALUE

sem_post() returns 0 on success; on error, the value of the semaphore is left unchanged, −1 is returned, and

errno is set to indicate the error.

sem_wait(3) sem_wait(3)

NAME

sem_wait, sem_timedwait − lock a semaphore

SYNOPSIS

#include <semaphore.h>

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

DESCRIPTION

sem_wait() decrements (locks) the semaphore pointed to by sem. If the semaphore’s value is greater than

zero, then the decrement proceeds, and the function returns, immediately. If the semaphore currently has

the value zero, then the call blocks until either it becomes possible to perform the decrement (i.e., the sema-

phore value rises above zero), or a signal handler interrupts the call.

sem_trywait() is the same as sem_wait(), except that if the decrement cannot be immediately performed,

then call returns an error (errno set to EAGAIN) instead of blocking.

RETURN VALUE

on success: 0; on error, the value of the semaphore is left unchanged, −1 is returned, and errno is set to

indicate the error.

ERRORS

EINTR The call was interrupted by a signal handler

EINVAL sem is not a valid semaphore.

EAGAIN The operation could not be performed without blocking (sem_trywait() only).

sigaction(2) sigaction(2)

NAME

sigaction − examine and change a signal action

SYNOPSIS

#include <signal.h>

int sigaction(int signum, const struct sigaction *act,
struct sigaction *oldact);

DESCRIPTION

The sigaction() system call is used to change the action taken by a process on receipt of the signal signum.

If act is non-NULL, the new action for signal signum is installed from act. If oldact is non-NULL, the pre-

vious action is saved in oldact.

The sigaction structure is defined as follows:

struct sigaction {

void (*sa_handler)(int);

...

};

sa_handler specifies the action to be associated with signum and may be SIG_DFL for the default action,

SIG_IGN to ignore this signal, or a pointer to a signal handling function. This function receives the signal

number as its only argument.

RETURN VALUE

sigaction() returns 0 on success; on error, −1 is returned, and errno is appropriately

stat(2) stat(2)

NAME

stat, fstat, lstat − get file status

SYNOPSIS

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

int stat(const char * pathname, struct stat *statbuf);
int fstat(int fd , struct stat *statbuf);
int lstat(const char *pathname, struct stat *statbuf);

DESCRIPTION

These functions return information about a file, in the buffer pointed to by statbuf . stat() retrieves informa-

tion about the file pointed to by pathname; lstat() is identical to stat(), except that if pathname is a sym-

bolic link, then it returns information about the link itself, not the file that it refers to. fstat() is identical to

stat(), except that the file about which information is to be retrieved is specified by the file descriptor fd .

struct stat {

ino_t st_ino; /* Inode number */

mode_t st_mode; /* File type and mode */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

off_t st_size; /* Total size, in bytes */

struct timespec st_atim; /* Time of last access */

struct timespec st_mtim; /* Time of last modification */

struct timespec st_ctim; /* Time of last status change */

};

RETURN VALUE

On success: 0; on error, −1 is returned, and errno is set appropriately.

5

strtok(3) strtok(3)

NAME

strtok − extract tokens from strings

SYNOPSIS

#include <string.h>

char *strtok(char *str, const char *delim);

DESCRIPTION

The strtok() function breaks a string into a sequence of zero or more nonempty tokens. On the first call to

strtok(), the string to be parsed should be specified in str. In each subsequent call that should parse the

same string, str must be NULL.

The delim argument specifies a set of bytes that delimit the tokens in the parsed string. The caller may

specify different strings in delim in successive calls that parse the same string.

RETURN VALUE

strtok() returns a pointer to the next token, or NULL if there are no more tokens.

strtol(3) strtol(3)

NAME

strtol − convert a string to a long integer

SYNOPSIS

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

DESCRIPTION

The strtol() function converts the initial part of the string in nptr to a long integer value according to the

given base, which must be between 2 and 36 inclusive, or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by isspace(3)) followed by a

single optional '+' or '−' sign. If base is zero or 16, the string may then include a "0x" or "0X" prefix, and

the number will be read in base 16; otherwise, a zero base is taken as 10 (decimal) unless the next character

is '0', in which case it is taken as 8 (octal).

The remainder of the string is converted to a long int value in the obvious manner, stopping at the first char-

acter which is not a valid digit in the given base. (In bases above 10, the letter 'A' in either uppercase or

lowercase represents 10, 'B' represents 11, and so forth, with 'Z' representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in *endptr. If there were no

digits at all, strtol() stores the original value of nptr in *endptr (and returns 0). In particular, if *nptr is not

'\0' but **endptr is '\0' on return, the entire string is valid.

RETURN VALUE

The strtol() function returns the result of the conversion, unless the value would underflow or overflow,

returning LONG_MIN or LONG_MAX and settting errno to ERANGE.

wait(2) wait(2)

NAME

wait, waitpid − wait for process to change state

SYNOPSIS

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *wstatus);

pid_t waitpid(pid_t pid , int *wstatus, int options);

DESCRIPTION

All of these system calls are used to wait for state changes in a child of the calling process, and obtain

information about the child whose state has changed. In the case of a terminated child, performing a wait

allows the system to release the resources associated with the child.

wait() and waitpid()
The wait() and waitpid() system calls suspends execution of the calling thread until one of its (specified)

children terminates. The call wait(&wstatus) is equivalent to waitpid(−1, &wstatus, 0);

The value of pid can be:

−1 meaning wait for any child process.

> 0 meaning wait for the child whose process ID is equal to the value of pid .

The value of options is an OR of zero or more of the following constants:

WNOHANG return immediately if no child has exited.

WUNTRACED also return if a child has stopped.

WCONTINUED also return if a stopped child has been resumed.

If wstatus is not NULL, wait() and waitpid() store status information in the int to which it points. This

integer can be inspected with the following macros:

WIFEXITED(wstatus) returns true if the child terminated normally

WEXITSTATUS(wstatus) returns the exit status of the child. Use only if WIFEXITED returned true.

RETURN VALUE

On success: child pid; on error: -1 and errno is set appropriately; if WNOHANG is specified and children

exist but did not exit: 0

write(2) write(2)

NAME

write − write to a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t write(int fd , const void *buf , size_t count);

DESCRIPTION

write() writes up to count bytes from the buffer starting at buf to the file referred to by the file descriptor fd .

RETURN VALUE

On success, the number of bytes written is returned (zero indicates nothing was written). It is not an error

if this number is smaller than the number of bytes requested;

On error, −1 is returned, and errno is set appropriately.

6

